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ARTICLE INFO ABSTRACT

Keywords: The increasing complexity of modern industrial systems, particularly those integrating smart wearables, makes it
FRAM harder for traditional risk analysis methods to keep up. Systemic approaches such as the Functional Resonance
P?O Analysis Method (FRAM) help to understand how systems behave; however, there is an opportunity to develop
};;il;r:sfvf:;:li;:s more reliable quantification methods and integrate sustainability criteria, which current methods often do not
Sustainability emphasize. To address these gaps, this paper introduces a novel semi-quantitative framework that integrates
FRAM with the Particle Swarm Optimization (PSO). This hybrid approach provides a structured methodology to
systematically identify system functions, quantify performance variability, and model risk propagation. A key
contribution is the explicit integration of multi-dimensional sustainability criteria (environmental, economic,
and social) into the risk management process. This allows for the selection of optimized mitigation strategies.
Three case studies involving smart wearables in assembly and disassembly systems were used to demonstrate the
effectiveness of the proposed methodology. The results showcase the model’s ability to identify high-risk
pathways and prioritize mitigation efforts. This confirms its potential as a decision-support tool. This study
contributes a novel methodological structure for embedding sustainability and optimization into systemic risk

management.

1. Introduction

The increasing complexity of Industry 4.0 systems challenges
(Aniceski et al., 2024; Zheng & Liu, 2025) the efficacy of traditional risk
assessment methods (Berx et al., 2022), driving the adoption of systemic
approaches that analyze how entire systems function rather than
focusing solely on component failures (Karevan & Nadeau, 2024b; Read
et al., 2021). Among prominent systemic methods like STAMP (System
Theoretic Accident Model and Process) and AcciMap (Accident Causa-
tion, Consequence, and Investigation Mapping Process), FRAM has
gained significant popularity for its ability to model non-linear in-
teractions and performance variability in complex sociotechnical sys-
tems (Bellini et al., 2019; Hollnagel, 2012; Karevan & Nadeau, 2024c;
Patriarca et al., 2020). In systemic models, STAMP, FRAM, and AcciMap
are some of the most commonly referenced (Moslem et al., 2025; Yousefi
et al., 2019).

FRAM is widely applied in aviation, healthcare, and industrial pro-
cesses and accounts for over half of the published studies on the method
(Patriarca et al., 2020). Beyond these fields, FRAM has also been popular
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and used in maritime operations (Salihoglu & Besikci, 2021), offshore
drilling (Franca et al., 2021), coal mine accidents (Qiao et al., 2019), and
software engineering (de Carvalho et al., 2021). While FRAM is typically
used in high-risk industries, it has also been found to be relevant in
manufacturing (Melanson & Nadeau, 2019). It provides valuable qual-
itative insights into system resilience and potential hazards.

However, FRAM’s inherently qualitative nature presents limitations
when precise risk quantification is needed. Recognizing this, researchers
have explored various quantitative extensions (Patriarca et al., 2020).
Monte Carlo Simulation (MCS) is the most common, particularly in oil
and gas (Yu et al., 2025), healthcare (Kaya & Hocaoglu, 2020; Zhou
et al., 2023), transportation (Kaya et al., 2021), aviation (Patriarca, Di
Gravio, & Costantino, 2017), manufacturing (Costantino et al., 2018),
offshore wind farms (Kopke et al., 2020), marine industry (Peng et al.,
2022), due to its ability to model uncertainty. As demonstrated by
Patriarca, Di Gravio, and Costantino (2017), the primary strength of the
FRAM-MCS approach is diagnostic risk analysis. It uses simulation to
generate a probability distribution of risk (the VPN) to identify which
parts of a system are most likely to become critical.
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Beyond simulation, other prominent quantitative extensions have
focused on probabilistic modeling and structured decision-making.
Bayesian Networks (BN) and Dynamic Bayesian Networks (DBN) are
also widely applied in the construction (Wang et al., 2023), marine (Guo
et al., 2023), gas pipeline industry (Zhang et al., 2022), oil and gas in-
dustry (Bahoo Toroody et al., 2017), and chemical industries
(Zinetullina et al., 2021) for predictive risk assessment. Their strength
lies in dynamic resilience assessment and tracking system performance
over time. The Analytic Hierarchy Process (AHP) is frequently used in
construction (Haddad & Rosa, 2015; Rosa et al., 2017, 2020), the oil and
gas industry (Franca et al., 2020), and socio-technical systems (de Car-
valho et al., 2016) for structured decision-making. Additionally, newer
approaches like fuzzy logic rough sets (Slim & Nadeau, 2019), rein-
forcement learning (Salehi et al., 2022), and genetic algorithms
(Patriarca et al., 2025) are emerging, signaling a shift toward Al-driven
risk analysis in complex systems from diverse industries.

While these methods provide powerful tools for risk analysis, they
are primarily diagnostic. Techniques like MCS and DBN allow the
identification of the parts of a system that are most at risk, but they do
not inherently guide the selection of optimal interventions. This chal-
lenge is particularly relevant in modern industrial environments where
processes like assembly and disassembly involve intricate interactions
between humans, machines, advanced robotic systems (Torres et al.,
2022), and smart wearable technologies (Karevan & Nadeau, 2024a).
While wearables, such as smart gloves and glasses, have benefits for
maximizing efficiency and safety, a systematic understanding and
quantification of the risks associated with their deployment is lacking in
the literature (Karevan & Nadeau, 2023). Prior work has initiated
qualitative analysis using FRAM/STPA (Mofidi Naeini & Nadeau, 2023)
and quantitative assessment via STPA-PSO for specific wearables
(Karevan & Nadeau, 2024a, 2025), highlighting the need for more in-
tegrated and comprehensive systemic approaches.

This paper addresses this gap by proposing a hybrid methodology
that moves beyond risk analysis to prescriptive risk optimization. Our
contribution is a novel framework that integrates three distinct
elements:

e Systemic Modeling (FRAM): Capturing the non-linear interactions
and functional resonance of complex systems.

e Automated Optimization (PSO): Moving beyond simulation to
actively search for and identify the most effective mitigation strate-
gies from a predefined set of options.

o Integrated Sustainability Criteria: Explicitly embedding environ-
mental, economic, and social factors as core objectives within the
optimization process, a dimension largely absent from prior quanti-
tative FRAM literature.

The FRAM-PSO method is designed to systematically identify,
quantify, and guide the mitigation of risks within complex industrial
processes that incorporate smart wearables. To clarify its unique

Table 1
Comparative analysis of quantitative FRAM methodologies.
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contribution, a comparative analysis of this method against other
quantitative FRAM methodologies is summarized in Table 1. This work
therefore contributes a novel framework specifically designed for
sustainability-driven, multi-objective risk optimization, filling a gap
between purely diagnostic risk analysis models and single-objective
optimization approaches. By applying this integrated framework, we
anticipate the establishment of a feedback loop that continuously en-
hances sustainability and reduces system risk over time. We believe this
work establishes a foundation for future research aimed at promoting
more sustainable and resilient industrial practices.

The remainder of this paper is organized as follows: Section 2 details
the FRAM-PSO methodology. Section 3 presents the case studies. Section
4 outlines the results. Section 5 discusses the findings and limitations.
Section 6 provides conclusions and future studies.

2. Methodology

This study uses FRAM to identify and analyze the system’s risks, and
PSO is added to effectively quantify, mitigate, and improve the identi-
fied risks. The FRAM analysis process typically includes four key steps:
defining the functions within the system, analyzing the variations in
how each function performs, exploring the relationships and in-
teractions among functions, and developing methods to observe and
regulate these variations (Sujan et al., 2025).

However, before proceeding, it is essential to define the primary
objective of the study, whether it is an accident investigation or a system
risk assessment, commonly referred to as Step O (Patriarca, Di Gravio, &
Costantino, 2017). In this case, the analysis focuses on assessing the
system’s risk.

The next steps are outlined below and illustrated in Fig. 1. The figure
presents the FRAM-PSO framework, illustrating the sequence of steps
involved. It distinguishes between steps requiring human input from the
decision-making team and steps processed by the intelligent algorithm
(PSO). The diagram also highlights which elements build upon previous
studies and pinpoints the specific contributions introduced in this paper.
The entire framework is encompassed by a green border, visually
emphasizing the ultimate objective: to improve system performance and
sustainability.

2.1. Identification and description of the system’s functions

Each function can be described through six key attributes: Input
(function trigger), Output (function results), Precondition (actions to be
considered or prepared), Resource (consumable resources), Control (any
instruction that control the function), and Time (time requirements)
(Kaya & Hocaoglu, 2020; Qiao et al., 2022). Also, these functions can be
categorized into foreground functions and background functions. Fore-
ground functions are central to the analysis and require a definition of all
six aspects whenever feasible. In contrast, background functions are
outside the scope of the analysis and only require a definition of either

FRAM-MCS (Patriarca, Di FRAM-GA (Patriarca et al.,
Gravio, Costantino, et al., 2017) 2025)

Feature

FRAM-DBN (Zhang et al., 2022) FRAM-PSO (This study)

Primary goal Risk analysis (diagnostic) Cost optimization (single-
objective)

Monte Carlo Simulation Genetic Algorithm
Probability distribution of risk Cost-effective maintenance
(VPN) plan

Manual, post-analysis task Optimized based on cost

Core engine
Primary output

Handling of

mitigations

Sustainability Not included Not included
integration

Key question Which parts of my system are What is the cheapest way to
answered most at risk? schedule maintenance?

Resilience modeling (dynamic) Risk optimization & decision support (multi-
objective)

Dynamic Bayesian Network Particle Swarm Optimization

System performance profile over An optimal sequence of mitigation strategies
time balancing risk and sustainability

Automatically selected and sequenced based on
both risk reduction and sustainability scores
Explicitly integrated as a core, multi-dimensional
component of the optimization objective.

What is the best sequence of actions to reduce
overall risk in a sustainable way?

Modeled as events in a timeline
Not included
How will my system’s

performance evolve during an
incident?




A. Karevan and S. Nadeau

Computers & Industrial Engineering 210 (2025) 111560

FRAM-PSO

] Decision-making
team analysis

1. Define
system
functions

Intelligent
|algorithm analysis
~,

2.2.Set
variabilities'
probabilities

2.1. Define

performance

variability 4. Variability

3. Define
aggregation of
variability -

Previous
studies

Management /'

5.1. Calculate
initial VPN

6.1. Define
mitigation
strategies

/6.2. Select best

6.5. Apply
strategies

Improve the system

performance and
sustainability

5.3. Identify .2. Calculate
highest path initial path
VPN VPN

63. /| Contributions
. | of this paper

Recalculate

strategy the model

6.4. Repeat
—~—{ until stopping
)\ criteria met

Fig. 1. Methodology process.

one input or one output (Patriarca, Di Gravio, & Costantino, 2017).
Identifying background functions helps clarify how different parts of the
system interact and affect overall performance and reliability. This
distinction allows analysts to focus on key functions while still consid-
ering the broader system. The specifications of FRAM functions can be
visually represented using a Functional Model Visualizer (FMV) (Mofidi
Naeini & Nadeau, 2022). This step is also the first (1) step demonstrated
in Fig. 1.

2.2. Identification of performance variability

This step involves analyzing function variability specific to each risk
scenario by creating instances of the FRAM model. This includes iden-
tifying potential variability under different conditions and examining
actual variability in each instance (Kim & Yoon, 2021). Variability in a
function can arise due to its connection with upstream functions, where
changes or fluctuations in upstream outputs can directly impact the
performance and behaviour of downstream functions (Rosa et al., 2015).
Function variability arises from three main sources: internal (changes
within the function), external (influences from the work environment),
and coupling (effects from upstream functions). Understanding these
factors helps explain why function outputs differ (Kim & Yoon, 2021).

Variability can be categorized into several types based on charac-
teristics such as timing, precision, speed, distance, sequence, object,
force, duration, and direction (Zinetullina et al., 2021). However, most
researchers simplify the approach by focusing primarily on timing and
precision (Kumar et al., 2024), such as those by (Kaya & Hocaoglu,
2020; Kaya et al., 2021; Mofidi Naeini & Nadeau, 2023; Patriarca, Di
Gravio, & Costantino, 2017; Slim & Nadeau, 2019; Yu et al., 2025;
Zinetullina et al., 2021).

In this work, we focus on assembly and disassembly operations,
where time, precision, force (exerted by the worker), and sequence are
key factors. These were selected as they directly map to the primary
failure modes and performance enhancements associated with the use of
smart wearables in manual tasks. For instance, smart glasses provide
visual cues that directly influence the sequence of operations, while
smart gloves provide haptic feedback affecting the force and precision of
handling components. Time is a critical overarching factor in production
line efficiency. Given their interdependence and impact on overall
performance, we consider them for further analysis. Table 2 shows the
variability values for each characteristic considered in this study.

OV is the variability of the upstream output j, which is calculated by
equation (1).

Table 2
Proposed variability values.
Characteristic Variability Value
Time (V,) Too early 1
On-time 2
Too late 3
Not at all 4
Precision (V;) Precise 1
Acceptable 2
Imprecise 3
Wrong 4
Force (Vy) Too low 1
On Target 2
Too high 3
Not at all 4
Sequence (V) Correct order 1
Wrong order 2
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ov; = 1/}?*\/;’*1/]&1/]? €))
Where VI, V7, andV} represent the variability in timing, precision, and
force, respectively, while VJS accounts for sequence variability. This
equation provides a systematic approach to quantifying how these
variations collectively influence system outputs. To improve the reli-
ability of the results, an occurrence probability vector is introduced for
each output, considering its timing, precision, force, and sequence.
Since simulated data are used in this study, MCS will be used to es-
timate the probability distribution of the outputs, which can be used in
the design phase analysis; however, in the running cases, the past
behavior of these variabilities should be considered. Table 3 provides an
example of a probability distribution for a randomly selected function.

2.3. Aggregation of variability

The aggregation of variability is a crucial aspect of analyzing the
functional relationships within a system. By using FRAM, the interplay
among system functions is graphically modelled to reveal how the
variability of upstream functions propagates downstream (Kaya &
Hocaoglu, 2020). This variability arises from a combination of a func-
tion’s inherent characteristics and the input it receives from upstream
functions (Patriarca, Di Gravio, & Costantino, 2017). When the vari-
ability from upstream functions amplifies, it can create resonant effects
within the system, potentially leading to critical paths or cascading
failures (Zinetullina et al., 2021).

Examining these couplings highlights the dual nature of variability’s
impact. On one hand, negative variability can resonate across inter-
connected functions, magnifying system risks and identifying critical
areas of concern, such as accident precursors or key contributors to
hazards. On the other hand, positive variability can serve as a stabilizing
force, mitigating downstream variability and enhancing system resil-
ience (Zinetullina et al., 2021). A comprehensive understanding of these
dynamics is essential for identifying critical couplings and assessing how
variability propagates through the system, ultimately improving risk
management and system performance (Yu et al., 2025).

The values for these factors, presented in Table 4, were chosen based
on their proven reliability in previous studies (Kaya & Hocaoglu, 2020;
Kaya et al., 2021; Mofidi Naeini & Nadeau, 2023; Patriarca, Di Gravio, &
Costantino, 2017; Slim & Nadeau, 2019; Yu et al., 2025; Zinetullina
et al., 2021). Using established values ensures consistency and enables
meaningful comparisons with other studies. These parameters could be
varied according to each system and industry. The parameters agn, agn,
(xg.n, and agn represent the effect of output n from upstream function j on
downstream function i, in terms of time, precision, force, and sequence,
respectively. These factors are incorporated to assess their impact on the
overall system performance. To quantify the overall impact of timing,
precision, force, and sequence on system performance, we define the
cumulative interaction effect (CI;), as demonstrated in equation (2).

I rab *af % a @

ijn Fijn Fjn~ Xy,

Clijn = Q.

Table 3
Example of the probability distribution for the variability output of a function.
Characteristic ~ Too Early / On-Time / Too Late / Not at
Acceptable / Precise / On- Imprecise / All/
Too Low Target/ Correct ~ Too High Wrong
Order
Time (V,) 0.08 0.80 0.09 0.03
Precision (V) 0.15 0.75 0.08 0.02
Force (Vy) 0.20 0.65 0.14 0.01
Sequence (V;) - 0.90 — 0.1
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Table 4

Damping and amplifying factor values.
Effect type Value
Damping effect 0.5
No effect 1
Amplifying effect 2

2.4. Management of variability

Managing variability focuses on amplifying positive outcomes and
minimizing negative ones by addressing critical couplings identified
through functional resonance analysis (Patriarca et al.,, 2025).
Improvement measures aim to prevent accidents or restore the system to
optimal functionality in case of disruptions (Zinetullina et al., 2021).

After analyzing the core performance characteristics, the next step is
to integrate the influence of external operating conditions on the sys-
tem’s performance. This involves defining a set of Scenario Performance
Conditions (SPCs) that capture various internal and external factors,
such as environmental influences (e.g., temperature, lighting), equip-
ment reliability, workload variations, etc., that may affect overall
performance.

For each function within the system, the impact of each SPC is
evaluated by assigning an impact rating, where a value of 1 indicates a
high impact, a value less than 1 indicates a moderate impact, and O in-
dicates no impact. This method creates a clear relationship between
external conditions and the system’s functions. These values should be
assessed by the decision-making team based on the past system
behavior. In a practical application, ensuring the reliability of these
subjective inputs would be critical. In a practical application, these
values would be established through structured workshops with domain
experts, leveraging techniques like pairwise comparison or direct rating
scales to ensure consistency and justification for the assigned weights
(Afnor, 2024; O’Hagan et al., 2006). Furthermore, prior to integrating
assigned impact ratings into the model, calculating inter-rater reliability
scores among experts, such as Cohen’s kappa or intraclass correlation, is
essential to validate the consistency and robustness of their judgments to
ensure alignment with structured elicitation protocols (O'Hagan et al.,
2006).

Once the influence of the SPCs on the functions is established,
distinct operating scenarios are defined by assigning specific ratings to
each SPC. Each scenario is characterized by a particular combination of
performance condition effects. Decision makers must identify the most
critical scenarios which can influence the system. The overall effect of a
scenario on a given function is determined by summing the weighted
contributions of each SPC, as shown in Equation (3).

m
¢ = SPCL*bt ©)
k=1

Here, €/ is the conditional variability of function j under scenario z, spck
denotes the rating of the k™ condition in scenario 2, and b}’f represents the
impact of the k™ condition on function j. If a function is not influenced by
any external condition (i.e., all bj’-< equal zero), the variability is

considered a baseline value of 1 (Patriarca, Di Gravio, & Costantino,
2017).

2.5. Quantifying the risks

The index for each coupling, Variability Propagation Number (VPN)
can be derived from equation (4). This index combines the inherent
variability of the upstream function j (OV;), the cumulative interaction
effect between upstream and downstream functions (CI), and the con-
ditional variability e, which represents how external factors in scenario

z influence the system’s performance. By incorporating these elements,
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this equation provides a detailed and dynamic measure of the coupling’s
variability, capturing internal performance fluctuations and the effects
of external operating conditions.

VPNZ = OV;*Cl;*e? )

In the next step, the data collected through FRAM will be used to apply
the PSO algorithm, providing a structured and systematic way to
quantify the model. PSO is inspired by the movement of swarms in na-
ture, where candidate solutions are represented as particles navigating a
multi-dimensional search space. Each particle has a position X; =
(X1, Xi2, -+, Xiq), @ velocity V; = (vi1,Viz, -+, Via), and a personal best po-
sition P; = (pa,Pi2, -, Pia). The algorithm continuously updates each
particle’s velocity and position to move toward an optimal solution. The
velocity update follows equation (5) (Karevan & Vasili, 2018; Marini &
Walczak, 2015).

Vk(l + 1) = Vi (l) +cirn (P]I;est.i — Xk (l) ) +Cala (gbest‘i — Xk (l) ) (5)

This update consists of three components: momentum, which helps
maintain previous velocity for smoother movement; cognitive influence,
which pulls the particle toward its own best-known position; and social
influence, which directs the particle toward the global best solution
found by the swarm. Once the velocity is adjusted, the particle’s new
position is calculated as equation (6) (Karevan et al., 2020; Lalwani
et al., 2013).

Xi(i+1) =X (D) + Vie(i+1) (6)

To initialize the algorithm, the variability values of each output (VjT, V}’ ,
VJF , V%) are first defined. Then, the relationships between outputs,
including upstream and downstream dependencies, are mapped,
creating function paths. A Monte Carlo Simulation is employed to esti-
mate the occurrence probability of each output under four different
variabilities. Based on these probabilities, the OV of each output is
calculated (Eq.1).

Next, damping and amplifying factors are assigned, applying specific
weighting factors to variability aspects such as timing, precision, force,
and sequence based on predefined conditions (Eq.2). In real-world ap-
plications, these weighting factors can be determined through empirical
data analysis, expert elicitation, or human factors and ergonomics (HF/
E) assessments. Decision-makers identify the most influential factors by
conducting task analyses, observational studies, and data-driven risk
assessments. Since this approach relies on measurable inputs and sys-
tematic evaluation, it can be readily applied in real-world cases,
allowing decision-makers to adjust the factors dynamically to reflect
actual operational conditions.

Following this, various SPCs and external influence factors e} are

considered. Using these inputs, the VPN is calculated for each function,
followed by the computation of the path VPN based on the summation of
downstream functions for each function. Then, the initial high path VPN
is determined, leading to the identification of the critical path. The
objective function is to minimize the path VPN, which results in mini-
mizing the VPN for each function.

2.6. PSO implementation and parameters

For the results presented in this paper, the PSO algorithm was
implemented with the following parameters, chosen based on common
practices in the literature to ensure stable convergence. The swarm size
was set to 50 particles for 500 iterations. An inertia weight (w) was used,
linearly decreasing from 0.9 to 0.4 over the course of the iterations, to
balance global and local search. The cognitive and social coefficients (c1
and c2) were set to 0.9 and 1.5, respectively. The decision vector for
each particle represented a potential set of mitigation strategies to

apply.
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2.7. Sustainable mitigation strategies

After identifying the highest path VPN, the next step is to system-
atically mitigate it by selecting sustainable strategies (alternatives).
Depending on each case study and industry, decision-makers may
identify various sustainable mitigation strategies. These strategies must
consider three main pillars of sustainability. Economically, manufac-
turers can improve cost efficiency through automation and lean prac-
tices (Hasanain, 2024), reduce operational costs via process innovation
(Martin-Gomez et al., 2024), and simplify assembly processes to mini-
mize downtime while recovering valuable components for cost savings
(Machado et al., 2020). Environmentally, initiatives include boosting
energy efficiency with energy-efficient machinery and smart systems
(Jovanovi¢ & Filipovi¢, 2016), utilizing renewable energy at facilities
(Machado et al., 2020), optimizing waste reduction (Martin-Gomez
et al., 2024), and lowering carbon emissions through process optimi-
zation (Foo & Tan, 2016). Socially, efforts focus on investing in
employee training (Ciccarelli et al., 2023), enhancing employee satis-
faction through better work environments (Hasanain, 2024), and
ensuring safe working conditions (Gualtieri et al., 2021).

Decision-making teams need to determine the associated functions
and SPCs for each strategy, assess the level of difficulty in implementing
each strategy (feasibility), and evaluate the impact of each strategy on
the system, and assess its contribution to the three sustainability pillars
(environmental, economic, and social). The algorithm then selects the
best strategy in each iteration, applies it to the model, and recalculates
the overall risk profile from the beginning. Over successive rounds, this
iterative process not only reduces high-risk outputs but also progres-
sively transforms the entire model into a sustainable one, balancing risk
reduction with long-term environmental, economic, and social benefits.
The process involves:

1) Identifying the function with the maximum Path VPN.

2) Selecting the most effective available sustainable mitigation
strategy from Table 9 relevant to that function’s associated SPCs
(with a constraint preventing the immediate re-selection of the same
strategy for the same path if alternatives exist).

3) Applying the chosen strategy’s impact weight within the model.
4) Recalculating all function VPNs and path VPNs.

5) Repeating the process for a predetermined number of steps (four
in this study).

3. Case studies

Case studies serve as a crucial research approach, particularly when
investigating complex subjects with limited prior knowledge (Rashid
et al., 2019). Also, using multiple case studies allows for comparative
analysis across different contexts, facilitating the identification of pat-
terns, trends, and underlying factors that may remain undetected in a
single case study. Examining operations such as assembly and disas-
sembly across various settings enhances theoretical generalization
(Karevan & Nadeau, 2025).

The case studies presented in this research were originally examined
in another paper (Karevan & Nadeau, 2025) and are being reused to
validate the proposed methodology. To ensure an extensive perspective,
these cases represent different operational environments: an assembly
line, a job shop assembly process, and a disassembly line. Each case is
briefly summarized below. However, for a deeper understanding of the
cases and their details, the authors recommend referring to the paper
mentioned.

The first case study looks at an assembly section in a refrigerator
manufacturing plant. In this setup, refrigerators move along a conveyor
line, and workers perform specific tasks at each station along the way. In
this particular assembly section, the worker’s role involves selecting and
assembling various components from bins. To assist with the task, they
wear smart gloves that help with handling the parts more precisely.
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Table 5
Identified functions.

Additionally, smart glasses are used to display assembly instructions,
guiding the worker step-by-step through the process.
In the second case study, the focus is on a job shop assembly process Code

Function Description Related
where the assembler is equipped with smart glasses and smart gloves to case study
assist with the work. The workstation is organized with a tool cabinet 1 2 3
containing the necessary tools for the task and seven bins of required F-1 To train workers Workers must be trained to use -

parts positioned in front of the assembler. A dolly is used to transport the
assembly structure, allowing the worker to move the parts and compo-
nents easily. Work instructions are accessed through a computer, guid-
ing the assembly process.

In the third case study, the focus is on a refrigerator disassembly
process, where the worker’s main job is to remove parts like the
refrigerant for recycling, along with the freezer door, process pipe, and
dry filter. The workstation is equipped with a tool cabinet and storage
bins to sort the disassembled components. The smart glasses provide
step-by-step instructions, visually guiding the worker on what needs to
be removed. The smart gloves help the worker apply the right amount of
force and even detect hazardous components.

This combination of wearables simplifies the workflow, ensuring
that workers can follow instructions accurately and efficiently while
minimizing the chances of errors. The use of these technologies en-
hances both the speed and accuracy of the assembly and disassembly
processes and also improves sorting efficiency and enables real-time
communication with supervisors.

4. Results

This section details the application of the proposed FRAM-PSO
methodology to assembly and disassembly processes case studies,
focusing on function identification, risk assessment via VPN calculation,
and the impact of targeted mitigation strategies. The initial step
involved identifying and characterizing the core functions essential to
the system.

These functions, derived from analysis of the case study operations,
are listed and described in Table 5. This table also indicates the specific
case studies where each function is relevant.

Each function was examined based on six key attributes. Addition-
ally, the FVM software was used to visually map these functions in Fig. 2
for the first case study, Fig. 3 for the second case study, and Fig. 4 for the
third case study. Table 6 presents a mapping of these outputs and their
related downstream functions, illustrating the system’s interconnected
nature.

To evaluate system variability and potential vulnerabilities, we
identified three key SPCs critical to the case studies:

o Wearable Performance (WP): Evaluates the effectiveness of smart
wearables like gloves and glasses in terms of calibration, function-
ality, and accuracy.

e Worker Condition (WC): Encompasses the worker’s physical,

physiological and cognitive state in response to task demands,

drawing upon the Stress-Strain Model (Rohmert, 1973). This model
distinguishes between stress (external demands such as task
complexity, workload, and shift duration) and strain (the worker’s
response, influenced by factors like skill, fatigue, cognitive load,
posture, and training). Maintaining a balance between these factors
is crucial for efficiency, efficacy, safety, and well-being in assembly

tasks (Djefour et al., 2024).

Resource Availability (RA): Refers to the availability of essential

components, tools, wearables, and devices required for the assembly

process.

The potential impact of suboptimal performance in each SPC on
system functions was categorized using a standardized scale (Table 7),
ranging from no impact (0) to high impact (1). These values are used
based on the literature to have a more robust framework (Patriarca, Di
Gravio, & Costantino, 2017). Applying this scale, we assessed the

F-2 To manage resources

F-3 To calibrate and
maintain

F-4 To program wearables

F-5 To verify stock levels

F-6 To verify the product
map

F-7 To select and handle
components

F-8 To assemble the
product
F-9 To supervise workers

F-10 To monitor and report
production in real
time

F-11 To move the product
using a conveyor/
dolly

F-12 Next station

F-13 Human resource
planning

F-14 Production and
resource planning

F-15 To receive and
analyze data

F-16 To access work
instructions (via
computer)

F-17 To manage the tool

cabinet

F-18 To disassemble the
product

F-19 To detect hazardous
components

F-20 To sort disassembled
components

F-21 To manage storage
bins

the wearables effectively,
ensuring that they understand
how to interact with the smart
devices during assembly.
Restock bins and ensure
components/tools/wearables are
available to prevent stoppages.
Calibration and maintenance of
the wearables and devices to
avoid any inaccuracy and
stoppage.

Programming ensures that the
smart gloves and smart glasses
provide accurate feedback and
guidance to the worker.
Workers use smart glasses to
check stock levels to ensure that
sufficient parts are available to
avoid assembly stoppage.

Before assembly, the worker
verifies the correct components
using the product map to ensure
the right parts are being used.
The worker uses smart gloves to
select and handle components
with precision and correct
pressure.

The worker assembles the
product.

The supervisor remotely monitors
the assembly process, ensuring
adherence to quality and
production standards.

The production process is
continuously monitored online.
Data is collected in real time to
track assembly performance and
to ensure quality.

The product transfers between the
stations using a conveyor or a
dolly.

The assembled product moves to
the next station.

Hiring new workers.

Providing the plan of the
production and resources.
Collect and analyze data from
wearables.

The worker retrieves and views
procedural guidance for the task
using a workstation computer
interface.

Ensure necessary tools are
available, organized, and
accounted for within the
designated tool cabinet.

The worker takes apart the
product, removing specific
components according to the
process requirements

Use smart gloves and smart
glasses to identify potentially
dangerous materials or parts
during handling or disassembly.
Place removed parts into
designated storage bins based on
material type, destination, or
other criteria.

Ensure storage bins are available,
correctly labelled, and emptied or
replaced as needed to facilitate
sorting and storage.
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Fig. 4. The FRAM model of the third case study.

specific impact of each SPC on every identified function, based on the
operational context of the case studies. The results of this assessment are
presented in Table 8. For instance, *To Assemble the Product’ (F-8) and
‘F-18: To disassemble the product’ (F-18) are highly impacted by all
three SPCs, while *To Move the Product’ (F-11) is unaffected under the
defined conditions. Herein, the authors used arbitrary values based on
their perspective; however, in real case studies, it should be determined
by the decision-making team.

To simulate varying operational contexts and assess system resil-
ience, four distinct scenarios were defined, modulating the impact level
of the SPCs:

Normal conditions: Assumes moderate variability across all SPCs.
Wearable malfunction: Represents high variability in Wearable
Performance (WP).

High fatigue: Simulates high variability in Worker Condition (WC).
Resource shortage: Introduces high variability in Resource Avail-
ability (RA).

By using the established function network, SPC impacts (Table 8),
and scenario definitions, we employed the PSO algorithm integrated
within the FRAM framework (FRAM-PSO) to calculate the VPN for each
function. The VPN quantifies the potential variability or risk associated
with each function under the defined scenarios.

From the individual function VPNs (Eq.4), the Path VPN is calculated
for each function, representing the cumulative variability propagated
through its downstream dependencies. The initial state of the system,
depicting the calculated Path VPNs before any mitigation, is visualized
in Fig. 5. In this graph, the intensity or thickness of the connections can
represent the magnitude of the Path VPN, emphasizing critical
pathways.

For this study, the algorithm’s objective is to reduce the path VPNs,
which results in the reduction of the function VPNs and improvement of

the overall model. We defined a set of potential sustainable mitigation
actions (Table 9), each linked to specific SPCs and associated functions.

For each strategy, we assigned illustrative values for implementation
feasibility (from easy to difficult), impact weight (from low to high
improvement), and contribution to sustainability pillars (environ-
mental, economic, social - rated from low to high impact). To provide a
clear perspective on how to use this methodology, the authors base these
values on their assessment when assigning values to these variables. In a
practical application, these values would be established through struc-
tured workshops with domain experts, leveraging techniques like pair-
wise comparison or direct rating scales to ensure consistency and
justification for the assigned weights (Afnor, 2024; O’Hagan et al.,
2006). Additionally, based on the level of importance for each industry,
the sustainable aspects can be weighted to demonstrate their signifi-
cance for each specific industry (Karevan & Vasili, 2018). However, this
study assumes equal weight for each aspect.

The FRAM-PSO algorithm was used in an iterative mitigation pro-
cess. In the interest of conciseness, the main body of this paper includes
graphs and figures pertaining only to the first case study. The results
derived from the other case studies can be found in the Appendix. The
initial assessment performed showed that the sum of all path functions
was 8736. The algorithm then starts by identifying the highest path
VPN. The function with the highest initial path VPN was F-2 (to manage
resources), which had a value of 1726.

Then, the four-step mitigation process unfolds as follows:

e Step 1: F-2 (to manage resources) was targeted as the highest path
VPN. Then the algorithm selected and applied the most suitable
mitigation strategy across all the options, “Digital inventory
management”.

e Step 2: F-15 (to receive and analyze data) was identified as the next
highest path VPN. The “Wearable maintenance program” strategy
was selected and applied.
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Table 6
Functions and their outputs.
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Table 8
SPC impact on the process.

Function Output Downstream functions

Code

F-1 Trained worker F-8

F-2 Inventory data F-5

Wearables F-3, F-4, F-5, F-6, F-7, F-8, F-10,
F-15
Components F-7
Devices F-3, F-11
F-3 Calibrated wearables F-5, F-6, F-7, F-10, F-11, F-15
Functional devices F-11
F-4 Programmed wearables F-5, F-6, F-7, F-10, F-15
F-5 Verified stock levels F-8
Stock level monitoring F-2
F-6 Verified instructions F-8
F-7 Precisely selected F-8
components
F-8 Assembled product F-11
Assembly data F-9, F-10, F-15
F-9 Product map F-6
Work instructions F-8
Training needs F-1
Supervisor feedback F-8
Calibration instructions F-3
F-10 Real-time production report F-9
System monitoring F-9

F-11 Transferred product F-12

F-13 Hiring a new worker F-1

F-14 Production schedule F-2, F9

Inventory level F-2
F-15 Wearable feedback F-6, F-7, F-8
Analyzing the wearable F-3, F-4, F-10
accuracy
Worker performance data F-1,F-9
Performance reports F-9
F-16 Work instructions F-8
F-17 Available/organized tools F-2, F-7, F-8, F-18
Tool status F-2
F-18 Disassembled product F-11, F-12, F-20
Disassembly data F-9, F-10, F-15
F-19 Hazard alert/notification F-7, F-9, F-20
Hazard data F-9, F-15
F-20 Sorted components F-21
F-21 Bin storage information F-2, F-20
Table 7
SPC impact definition.

The Value  Wearable Worker Condition Resource

impact of Performance (WC) Availability

SPCs (WP) (RA)

No impact 0 Wearables donot  The worker’s Resource
affect the physical and availability does
function cognitive state not significantly

does not affect the
significantly affect  function
the function

Moderate 0.5 Wearables are The worker’s Limited

impact useful but have physical and resources may
limitations or cognitive state cause some
occasional affects delays or
malfunctions performance, but inefficiencies
not critically
High 1 Wearables are The worker’s Lack of
impact critical for physical and resources causes
functional cognitive state is significant
success crucial for delays or
successful stoppages
performance

e Step 3: F-3 (to calibrate and maintain) emerged as the next target,
and the “Worker-centric wearable design” strategy was
implemented.

=
-l
=
(9]
g

Function

F-1: To train workers

F-2: To manage resources

F-3: To calibrate and maintain

F-4: To program wearables

F-5: To verify stock levels

F-6: To verify the product map

F-7: To select and handle components

F-8: To assemble the product

F-9: To supervise workers

F-10: To monitor and report production in real-time
F-11: To move the product using a conveyor/dolly
F-12: Next station

F-13: Human resource planning

F-14: Production and resource planning

F-15: To receive and analyze data

wu
wu

wu

wu
o

(S0}

F-16: To access work instructions (via computer) 5 5
F-17: To manage the tool cabinet 5

F-18: To disassemble the product

F-19: To detect hazardous components

F-20: To sort disassembled components 5 5

OFRrHHOOHOOOOROHHFERFEOKRROO
OCOHHOHFHROOHFROOOHHKFEREKFEHOOOHR
HOOHHOOHOOOOOHHOHRRHKHEO

(&2

F-21: To manage storage bins

e Step 4: In the last step, F-8 (to assemble the product) was selected,
and the “Wellness monitoring and breaks” strategy was applied.

While the Path VPN provides a robust internal metric for quantifying
systemic risk within the model, its direct managerial relevance can be
enhanced by linking it to tangible Key Performance Indicators (KPIs).
The mitigation strategies selected by the FRAM-PSO algorithm can be
directly mapped to expected improvements in operational metrics that
decision-makers track.

Table 10 provides an illustrative mapping for the four mitigation
strategies applied in the first case study. This demonstrates how the
concept of “risk reduction” can be translated into a practical perfor-
mance monitoring plan. For example, the “Worker-centric wearable
design” strategy, which reduced the Path VPNs, would be expected to
yield measurable improvements in KPIs such as a lower human error
rate and a reduction in reported musculoskeletal discomfort
(Alenjareghi et al., 2025). This translation is a critical step in bridging
the gap between systemic modeling and practical, data-driven
management.

After these four mitigation steps, for the first case study, the total
sum of path VPNs in the methodological prototype decreased signifi-
cantly to 6207. This represents an overall risk reduction of approxi-
mately 28.9 % within the model’s illustrative scenario. The maximum
path VPN observed was reduced to 1241. It is critical to note that this
figure is not a prediction of real-world performance but a demonstration
of the framework’s mechanics and its ability to quantify the systemic
impact of targeted interventions. The progression of this risk reduction is
illustrated in Fig. 6. The second and third case studies showed similar
improvements within their respective models (see Appendix).

Fig. 7 provides insight into the systemic impact of each applied
strategy, mapping which functions were affected by each strategy. For
example, implementing “Worker-centric wearable design” influenced
the VPNs of six distinct functions (F-1, F-3, F-7, F-8, F-10, F-13). This
occurs because an ergonomic and intuitive wearable (the mitigation
strategy) directly improves the physical and cognitive aspects of tasks
like handling components (F-7) and assembling the product (F-8). It also
reduces the training burden (F-1) and makes it easier for supervisors to
monitor work (F-10), a finding consistent with the work of Valdesse
Eko’ola & Nadeau (2025).

A direct comparison of the initial and final Path VPNs for each
function is presented in Fig. 8. This figure highlights the percentage
reduction achieved for each pathway. Notably, while mitigation efforts
directly targeted only F-2, F-15, F-3, and F-8 in these steps, the
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Table 9

Sustainable mitigation strategies.
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Strategy Description Related functions Related Feasibility Weight Sustainability aspects
SPC level Envi. Econ. Social
Worker-centric Use wearables with ergonomic features (e. F-1, F-3, F-7, F-8. F- WC, RA Difficult High Low Medium High
wearable design g., lightweight, easily adjustable) 10, F-13, F-18 impact impact impact
Low-power sensors Use wearables with energy-efficient sensors F-2, F-3, F-19, F-21 WP, RA Difficult Medium High Medium Low
powered by kinetic energy or solar cells impact impact impact
Wearable Regular calibration and repair using F-3, F-4, F-6, F-9, F- WP, RA Medium High High Medium Low
maintenance recycled parts 11, F-15, F-16, F-18, impact impact impact
program F-19
Wellness Equip wearables with real-time health F-8, F-9, F-13, F-18 wWC Easy High Low Medium High
monitoring and tracking to trigger mandatory breaks and impact impact impact
breaks reduce physical strain
Tool sharing Use wearables to track and optimize tool- F-2, F-9, F-14, F-17 WP, RA Easy Medium  High Medium Low
optimization sharing across workers, reducing idle impact impact impact
resources
Reusable tool Shift to modular, reusable tools with F-2, F-14, F-17 RA, WP Medium Medium  High High Low
systems wearables for maintenance tracking impact impact impact
Digital inventory Use wearables to monitor and optimize F-2, F-5, F-11, F-14, RA Medium High Medium High Medium
management material stock digitally, reducing over- F-17, F-20, F-21 impact impact impact
ordering
.F-ﬂ
Y
F-
F-8 F-14 \
= F9 .
Y
|
Y F-3.
A A
F-5
/ High VP
J F4
-1
Y
.F-12 7 10
Low VPN

Fig. 5. Path Graph with VPN-Weighted Connections (first case study).

interconnected nature of the system led to significant indirect im-
provements in other functions. For instance, the path VPN for F-1 (to
train workers) decreased by 37.3 %, demonstrating the cascading ben-
efits of the applied strategies. This significant indirect improvement is
because the implementation of more ergonomic and easier-to-use
wearables (a mitigation for F-8) reduces the complexity and duration
of the required training. Conversely, some functions like F-11 (To move
the product), which had low initial VPN and weak connections to the
targeted areas, only improved by 14.9 %.

These results demonstrate the effectiveness of the FRAM-PSO
approach in identifying critical risk paths and quantifying the system-
wide impact of targeted, sustainable mitigation strategies. The signifi-
cant reduction in overall path VPN, achieved through just four strategic
interventions, underscores the value of this methodology for enhancing
system resilience and sustainability.

5. Discussion

Resilience is gaining growing importance in modern manufacturing
environments (Chari et al., 2023). The resilience engineering commu-
nity has successfully applied FRAM as both a retrospective and pro-
spective method, explaining that system outcomes are shaped by how
different functions vary and interact, often leading to unexpected results

10

known as functional resonance (Lundblad et al., 2008; Yousefi et al.,
2019; Zheng et al., 2024). However, FRAM is inherently qualitative,
prompting numerous efforts to enhance its objectivity and quantifica-
tion capabilities (Patriarca, Di Gravio, & Costantino, 2017). This study
directly engages with this challenge within the context of modern in-
dustrial systems incorporating smart wearables.

The successful application of this novel FRAM-PSO framework
resulted in a substantial 28.9 % reduction in the overall system risk
through four targeted sustainable mitigation steps (first case study). This
highlights the methodology’s effectiveness in not only modelling vari-
ability but also guiding practical interventions. Furthermore, the find-
ings illustrate the systemic effects central to FRAM. While mitigation
directly targeted functions F-2, F-15, F-3, and F-8, significant improve-
ments propagated to interconnected functions, such as the 34.1 % risk
reduction observed in F-5 (to verify stock levels) (Fig. 8). This demon-
strates how targeted interventions can yield broader system resilience
benefits.

Addressing the known challenge of FRAM quantification (Patriarca,
Di Gravio, & Costantino, 2017), the integration of PSO offers a distinct
contribution. Unlike other quantification methods (e.g., MCS, BN), PSO
actively optimizes, allowing the framework not only to quantify vari-
ability (VPN) but also to search for and select optimal sustainable
mitigation strategies to maximize risk reduction. To the best of our
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Table 10
Ilustrative Mapping of Selected Mitigation Strategies to Managerial KPIs.

Mitigation Primary Path Selected Ilustrative Managerial
Step VPN Reduction Mitigation KPIs to Monitor
Strategy
Step 1 F-2 (to manage Digital Inventory e Reduction in line
resources) Management stoppages due to part
shortages
e Improvement in
inventory turnover rate
e Decrease in ordering
errors
Step 2 F-15 (toreceive =~ Wearable e Reduction in wearable
and analyze Maintenance failure rate
data) Program e Decrease in maintenance
costs
e Improvement in data
accuracy from wearables
Step 3 F-3 (to Worker-Centric e Reduction in human
calibrate and Wearable Design error rate
maintain) e Decrease in reported
musculoskeletal
discomfort
e Reduction in task
completion time
Step 4 F-8 (to Wellness e Decrease in fatigue-
assemble the Monitoring and related incidents
product) Breaks e Improvement in

employee satisfaction
scores

Increase in adherence to
mandatory break
protocols

knowledge, this combination of FRAM and PSO for risk quantification
and optimized mitigation represents a novel contribution to the field.
This study also tackles the specific gap concerning systematic risk
assessment for smart wearables (Karevan & Nadeau, 2023). Moving
beyond prior qualitative (Mofidi Naeini & Nadeau, 2023) or STPA-based
analyses (Karevan & Nadeau, 2024a, 2025), the FRAM-PSO approach
provides a quantitative, systemic, and mitigation-oriented framework

Computers & Industrial Engineering 210 (2025) 111560

for these technologies. Another contribution is the explicit integration of
sustainability (environmental, economic, and social factors) into the risk
mitigation process. This integration addresses the critical need, high-
lighted by Karwowski et al. (2025) in their grand challenges, for human
factors and ergonomics to contribute towards sustainability, including
enhancing system resilience and developing ethical principles for sus-
tainable futures (Karwowski et al., 2025; Valette et al., 2023). Also,
achieving sustainable production is a key objective in today’s
manufacturing industry (Ma et al., 2024; Zhang et al., 2024). By
adopting Industry 5.0 principles, this work introduces an integrated
approach to understanding risk that fills a gap we identified in existing
systemic risk frameworks through a literature review.

An additional contribution is the framework’s alignment with
emerging regulatory and reporting standards for sustainability. Global
frameworks, such as the International Sustainability Standards Board
(ISSB) standards, the European Sustainability Reporting Standards
(ESRS), and the Global Reporting Initiative (GRI) standards, increas-
ingly require organizations to implement robust processes for identi-
fying, assessing, and mitigating sustainability-related risks (Elidrisy,
2024; Krivogorsky, 2024). Our FRAM-PSO model provides a tangible,
operational-level methodology to meet these requirements. By system-
atically linking system functions to environmental, social, and economic
impacts, the model makes sustainability risks traceable and mitigation
efforts transparent. This strengthens its utility for decision-makers who
must navigate evolving regulatory landscapes while managing opera-
tional risk.

While the results are promising, limitations must be acknowledged.

e The findings are based on three specific case studies, necessitating
further applications for broader generalizability. While the meth-
odology is designed to be adaptable, its performance and the specific
critical functions identified might differ in other industrial contexts
or systems with different structures and technologies. The method-
ology can be generalized to other complex socio-technical domains
such as aerospace, healthcare, and logistics by redefining the system
functions, performance variabilities, and SPCs to match the specific
operational context.
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Fig. 6. Mitigation Progress: Risk Reduction Over Steps (first case study).
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e The initial assessment of SPC impacts and the characterization of
mitigation strategies (feasibility, weight, and sustainability impacts)
relied on illustrative values. This approach was intentionally chosen
to demonstrate the mechanics and viability of the FRAM-PSO
framework as a methodological prototype. As is common in foun-
dational studies that propose new models, the primary goal is to
establish the framework’s internal logic and potential before un-
dertaking extensive, context-specific empirical validation. We fully
acknowledge that for a real-world application, gathering these data
and inputs from domain experts and empirical assessments is crucial
for ensuring the practical reliability and robustness of the results.

6.

Furthermore, the assessment of sustainability contributions remains
at a semi-quantitative level. To increase its practical utility, the
framework would need to be enhanced to operationalize these di-
mensions with fully quantitative metrics, such as measured energy
savings, specific cost reductions, or validated changes in worker
satisfaction surveys.

Conclusions

This paper addresses the need for semi-quantitative, systemic risk

assessment in complex industrial systems, particularly those utilizing
smart wearables, while simultaneously integrating sustainability
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considerations. We developed and demonstrated a novel methodology
integrating the FRAM with PSO. FRAM-PSO model applied in three case
studies of the assembly and disassembly systems, which use smart gloves
and smart glasses. We demonstrated that this is a powerful model to
systematically identify, quantify, analyze and mitigate the risks with
sustainable strategies. The results demonstrate that applying this model
can improve the system by reducing the risk of the model by more than
22 % after four steps of mitigation for all three case studies.

The core contributions of this research are the synergistic integration
of FRAM and PSO for quantitative risk analysis and optimized mitiga-
tion, and the pioneering incorporation of multi-dimensional sustain-
ability criteria (environmental, economic, social) directly within this
systemic risk management process. This work represents a valuable
advancement towards building more resilient, efficient, and responsible
industrial operations, in line with the goals of Industry 5.0. This method
equips practitioners with a structured tool to identify vulnerabilities,
quantify risks, and prioritize sustainable mitigation investments in
complex, wearable-integrated systems. Theoretically, it advances
quantitative FRAM approaches and pioneers the integration of sustain-
ability within systemic operational risk management.

Future research should prioritize broader application and validation
across diverse industrial contexts, along with refining methods for
robust input elicitation. Specific directions for future work include:

e Validating the model using real-time operational data from indus-
trial partners to confirm its predictive accuracy and practical utility.

This would also involve refining input elicitation methods through
structured expert judgment or fuzzy logic techniques.

Appendix

I. Case study 2 results
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e Exploring the integration of alternative optimization algorithms to
compare their effectiveness and computational efficiency in identi-
fying optimal mitigation strategies.

o Developing a software-based decision-support tool to facilitate the
practical application of the FRAM-PSO framework enabling industry
practitioners to conduct systemic risk assessments more easily and
effectively.
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