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A B S T R A C T

The increasing complexity of modern industrial systems, particularly those integrating smart wearables, makes it 
harder for traditional risk analysis methods to keep up. Systemic approaches such as the Functional Resonance 
Analysis Method (FRAM) help to understand how systems behave; however, there is an opportunity to develop 
more reliable quantification methods and integrate sustainability criteria, which current methods often do not 
emphasize. To address these gaps, this paper introduces a novel semi-quantitative framework that integrates 
FRAM with the Particle Swarm Optimization (PSO). This hybrid approach provides a structured methodology to 
systematically identify system functions, quantify performance variability, and model risk propagation. A key 
contribution is the explicit integration of multi-dimensional sustainability criteria (environmental, economic, 
and social) into the risk management process. This allows for the selection of optimized mitigation strategies. 
Three case studies involving smart wearables in assembly and disassembly systems were used to demonstrate the 
effectiveness of the proposed methodology. The results showcase the model’s ability to identify high-risk 
pathways and prioritize mitigation efforts. This confirms its potential as a decision-support tool. This study 
contributes a novel methodological structure for embedding sustainability and optimization into systemic risk 
management.

1. Introduction

The increasing complexity of Industry 4.0 systems challenges 
(Aniceski et al., 2024; Zheng & Liu, 2025) the efficacy of traditional risk 
assessment methods (Berx et al., 2022), driving the adoption of systemic 
approaches that analyze how entire systems function rather than 
focusing solely on component failures (Karevan & Nadeau, 2024b; Read 
et al., 2021). Among prominent systemic methods like STAMP (System 
Theoretic Accident Model and Process) and AcciMap (Accident Causa
tion, Consequence, and Investigation Mapping Process), FRAM has 
gained significant popularity for its ability to model non-linear in
teractions and performance variability in complex sociotechnical sys
tems (Bellini et al., 2019; Hollnagel, 2012; Karevan & Nadeau, 2024c; 
Patriarca et al., 2020). In systemic models, STAMP, FRAM, and AcciMap 
are some of the most commonly referenced (Moslem et al., 2025; Yousefi 
et al., 2019).

FRAM is widely applied in aviation, healthcare, and industrial pro
cesses and accounts for over half of the published studies on the method 
(Patriarca et al., 2020). Beyond these fields, FRAM has also been popular 

and used in maritime operations (Salihoglu & Beşikçi, 2021), offshore 
drilling (França et al., 2021), coal mine accidents (Qiao et al., 2019), and 
software engineering (de Carvalho et al., 2021). While FRAM is typically 
used in high-risk industries, it has also been found to be relevant in 
manufacturing (Melanson & Nadeau, 2019). It provides valuable qual
itative insights into system resilience and potential hazards.

However, FRAM’s inherently qualitative nature presents limitations 
when precise risk quantification is needed. Recognizing this, researchers 
have explored various quantitative extensions (Patriarca et al., 2020). 
Monte Carlo Simulation (MCS) is the most common, particularly in oil 
and gas (Yu et al., 2025), healthcare (Kaya & Hocaoglu, 2020; Zhou 
et al., 2023), transportation (Kaya et al., 2021), aviation (Patriarca, Di 
Gravio, & Costantino, 2017), manufacturing (Costantino et al., 2018), 
offshore wind farms (Köpke et al., 2020), marine industry (Peng et al., 
2022), due to its ability to model uncertainty. As demonstrated by 
Patriarca, Di Gravio, and Costantino (2017), the primary strength of the 
FRAM-MCS approach is diagnostic risk analysis. It uses simulation to 
generate a probability distribution of risk (the VPN) to identify which 
parts of a system are most likely to become critical.
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Beyond simulation, other prominent quantitative extensions have 
focused on probabilistic modeling and structured decision-making. 
Bayesian Networks (BN) and Dynamic Bayesian Networks (DBN) are 
also widely applied in the construction (Wang et al., 2023), marine (Guo 
et al., 2023), gas pipeline industry (Zhang et al., 2022), oil and gas in
dustry (Bahoo Toroody et al., 2017), and chemical industries 
(Zinetullina et al., 2021) for predictive risk assessment. Their strength 
lies in dynamic resilience assessment and tracking system performance 
over time. The Analytic Hierarchy Process (AHP) is frequently used in 
construction (Haddad & Rosa, 2015; Rosa et al., 2017, 2020), the oil and 
gas industry (França et al., 2020), and socio-technical systems (de Car
valho et al., 2016) for structured decision-making. Additionally, newer 
approaches like fuzzy logic rough sets (Slim & Nadeau, 2019), rein
forcement learning (Salehi et al., 2022), and genetic algorithms 
(Patriarca et al., 2025) are emerging, signaling a shift toward AI-driven 
risk analysis in complex systems from diverse industries.

While these methods provide powerful tools for risk analysis, they 
are primarily diagnostic. Techniques like MCS and DBN allow the 
identification of the parts of a system that are most at risk, but they do 
not inherently guide the selection of optimal interventions. This chal
lenge is particularly relevant in modern industrial environments where 
processes like assembly and disassembly involve intricate interactions 
between humans, machines, advanced robotic systems (Torres et al., 
2022), and smart wearable technologies (Karevan & Nadeau, 2024a). 
While wearables, such as smart gloves and glasses, have benefits for 
maximizing efficiency and safety, a systematic understanding and 
quantification of the risks associated with their deployment is lacking in 
the literature (Karevan & Nadeau, 2023). Prior work has initiated 
qualitative analysis using FRAM/STPA (Mofidi Naeini & Nadeau, 2023) 
and quantitative assessment via STPA-PSO for specific wearables 
(Karevan & Nadeau, 2024a, 2025), highlighting the need for more in
tegrated and comprehensive systemic approaches.

This paper addresses this gap by proposing a hybrid methodology 
that moves beyond risk analysis to prescriptive risk optimization. Our 
contribution is a novel framework that integrates three distinct 
elements: 

• Systemic Modeling (FRAM): Capturing the non-linear interactions 
and functional resonance of complex systems.

• Automated Optimization (PSO): Moving beyond simulation to 
actively search for and identify the most effective mitigation strate
gies from a predefined set of options.

• Integrated Sustainability Criteria: Explicitly embedding environ
mental, economic, and social factors as core objectives within the 
optimization process, a dimension largely absent from prior quanti
tative FRAM literature.

The FRAM-PSO method is designed to systematically identify, 
quantify, and guide the mitigation of risks within complex industrial 
processes that incorporate smart wearables. To clarify its unique 

contribution, a comparative analysis of this method against other 
quantitative FRAM methodologies is summarized in Table 1. This work 
therefore contributes a novel framework specifically designed for 
sustainability-driven, multi-objective risk optimization, filling a gap 
between purely diagnostic risk analysis models and single-objective 
optimization approaches. By applying this integrated framework, we 
anticipate the establishment of a feedback loop that continuously en
hances sustainability and reduces system risk over time. We believe this 
work establishes a foundation for future research aimed at promoting 
more sustainable and resilient industrial practices.

The remainder of this paper is organized as follows: Section 2 details 
the FRAM-PSO methodology. Section 3 presents the case studies. Section 
4 outlines the results. Section 5 discusses the findings and limitations. 
Section 6 provides conclusions and future studies.

2. Methodology

This study uses FRAM to identify and analyze the system’s risks, and 
PSO is added to effectively quantify, mitigate, and improve the identi
fied risks. The FRAM analysis process typically includes four key steps: 
defining the functions within the system, analyzing the variations in 
how each function performs, exploring the relationships and in
teractions among functions, and developing methods to observe and 
regulate these variations (Sujan et al., 2025).

However, before proceeding, it is essential to define the primary 
objective of the study, whether it is an accident investigation or a system 
risk assessment, commonly referred to as Step 0 (Patriarca, Di Gravio, & 
Costantino, 2017). In this case, the analysis focuses on assessing the 
system’s risk.

The next steps are outlined below and illustrated in Fig. 1. The figure 
presents the FRAM-PSO framework, illustrating the sequence of steps 
involved. It distinguishes between steps requiring human input from the 
decision-making team and steps processed by the intelligent algorithm 
(PSO). The diagram also highlights which elements build upon previous 
studies and pinpoints the specific contributions introduced in this paper. 
The entire framework is encompassed by a green border, visually 
emphasizing the ultimate objective: to improve system performance and 
sustainability.

2.1. Identification and description of the system’s functions

Each function can be described through six key attributes: Input 
(function trigger), Output (function results), Precondition (actions to be 
considered or prepared), Resource (consumable resources), Control (any 
instruction that control the function), and Time (time requirements) 
(Kaya & Hocaoglu, 2020; Qiao et al., 2022). Also, these functions can be 
categorized into foreground functions and background functions. Fore
ground functions are central to the analysis and require a definition of all 
six aspects whenever feasible. In contrast, background functions are 
outside the scope of the analysis and only require a definition of either 

Table 1 
Comparative analysis of quantitative FRAM methodologies.

Feature FRAM-MCS (Patriarca, Di 
Gravio, Costantino, et al., 2017)

FRAM-GA (Patriarca et al., 
2025)

FRAM-DBN (Zhang et al., 2022) FRAM-PSO (This study)

Primary goal Risk analysis (diagnostic) Cost optimization (single- 
objective)

Resilience modeling (dynamic) Risk optimization & decision support (multi- 
objective)

Core engine Monte Carlo Simulation Genetic Algorithm Dynamic Bayesian Network Particle Swarm Optimization
Primary output Probability distribution of risk 

(VPN)
Cost-effective maintenance 
plan

System performance profile over 
time

An optimal sequence of mitigation strategies 
balancing risk and sustainability

Handling of 
mitigations

Manual, post-analysis task Optimized based on cost Modeled as events in a timeline Automatically selected and sequenced based on 
both risk reduction and sustainability scores

Sustainability 
integration

Not included Not included Not included Explicitly integrated as a core, multi-dimensional 
component of the optimization objective.

Key question 
answered

Which parts of my system are 
most at risk?

What is the cheapest way to 
schedule maintenance?

How will my system’s 
performance evolve during an 
incident?

What is the best sequence of actions to reduce 
overall risk in a sustainable way?
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one input or one output (Patriarca, Di Gravio, & Costantino, 2017). 
Identifying background functions helps clarify how different parts of the 
system interact and affect overall performance and reliability. This 
distinction allows analysts to focus on key functions while still consid
ering the broader system. The specifications of FRAM functions can be 
visually represented using a Functional Model Visualizer (FMV) (Mofidi 
Naeini & Nadeau, 2022). This step is also the first (1) step demonstrated 
in Fig. 1.

2.2. Identification of performance variability

This step involves analyzing function variability specific to each risk 
scenario by creating instances of the FRAM model. This includes iden
tifying potential variability under different conditions and examining 
actual variability in each instance (Kim & Yoon, 2021). Variability in a 
function can arise due to its connection with upstream functions, where 
changes or fluctuations in upstream outputs can directly impact the 
performance and behaviour of downstream functions (Rosa et al., 2015). 
Function variability arises from three main sources: internal (changes 
within the function), external (influences from the work environment), 
and coupling (effects from upstream functions). Understanding these 
factors helps explain why function outputs differ (Kim & Yoon, 2021).

Variability can be categorized into several types based on charac
teristics such as timing, precision, speed, distance, sequence, object, 
force, duration, and direction (Zinetullina et al., 2021). However, most 
researchers simplify the approach by focusing primarily on timing and 
precision (Kumar et al., 2024), such as those by (Kaya & Hocaoglu, 
2020; Kaya et al., 2021; Mofidi Naeini & Nadeau, 2023; Patriarca, Di 
Gravio, & Costantino, 2017; Slim & Nadeau, 2019; Yu et al., 2025; 
Zinetullina et al., 2021).

In this work, we focus on assembly and disassembly operations, 
where time, precision, force (exerted by the worker), and sequence are 
key factors. These were selected as they directly map to the primary 
failure modes and performance enhancements associated with the use of 
smart wearables in manual tasks. For instance, smart glasses provide 
visual cues that directly influence the sequence of operations, while 
smart gloves provide haptic feedback affecting the force and precision of 
handling components. Time is a critical overarching factor in production 
line efficiency. Given their interdependence and impact on overall 
performance, we consider them for further analysis. Table 2 shows the 
variability values for each characteristic considered in this study.

OVj is the variability of the upstream output j, which is calculated by 
equation (1). 

Fig. 1. Methodology process.

Table 2 
Proposed variability values.

Characteristic Variability Value

Time (Vt) Too early 1
On-time 2
Too late 3
Not at all 4

Precision (Vp) Precise 1
Acceptable 2
Imprecise 3
Wrong 4

Force (Vf ) Too low 1
On Target 2
Too high 3
Not at all 4

Sequence (Vs) Correct order 1
Wrong order 2
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OVj = VT
j *VP

j *VF
j *VS

j
(1) 

Where VT
j ,VP

j , andVF
j represent the variability in timing, precision, and 

force, respectively, while VS
j accounts for sequence variability. This 

equation provides a systematic approach to quantifying how these 
variations collectively influence system outputs. To improve the reli
ability of the results, an occurrence probability vector is introduced for 
each output, considering its timing, precision, force, and sequence.

Since simulated data are used in this study, MCS will be used to es
timate the probability distribution of the outputs, which can be used in 
the design phase analysis; however, in the running cases, the past 
behavior of these variabilities should be considered. Table 3 provides an 
example of a probability distribution for a randomly selected function.

2.3. Aggregation of variability

The aggregation of variability is a crucial aspect of analyzing the 
functional relationships within a system. By using FRAM, the interplay 
among system functions is graphically modelled to reveal how the 
variability of upstream functions propagates downstream (Kaya & 
Hocaoglu, 2020). This variability arises from a combination of a func
tion’s inherent characteristics and the input it receives from upstream 
functions (Patriarca, Di Gravio, & Costantino, 2017). When the vari
ability from upstream functions amplifies, it can create resonant effects 
within the system, potentially leading to critical paths or cascading 
failures (Zinetullina et al., 2021).

Examining these couplings highlights the dual nature of variability’s 
impact. On one hand, negative variability can resonate across inter
connected functions, magnifying system risks and identifying critical 
areas of concern, such as accident precursors or key contributors to 
hazards. On the other hand, positive variability can serve as a stabilizing 
force, mitigating downstream variability and enhancing system resil
ience (Zinetullina et al., 2021). A comprehensive understanding of these 
dynamics is essential for identifying critical couplings and assessing how 
variability propagates through the system, ultimately improving risk 
management and system performance (Yu et al., 2025).

The values for these factors, presented in Table 4, were chosen based 
on their proven reliability in previous studies (Kaya & Hocaoglu, 2020; 
Kaya et al., 2021; Mofidi Naeini & Nadeau, 2023; Patriarca, Di Gravio, & 
Costantino, 2017; Slim & Nadeau, 2019; Yu et al., 2025; Zinetullina 
et al., 2021). Using established values ensures consistency and enables 
meaningful comparisons with other studies. These parameters could be 
varied according to each system and industry. The parameters αT

ijn, αP
ijn, 

αF
ijn, and αS

ijn represent the effect of output n from upstream function j on 
downstream function i, in terms of time, precision, force, and sequence, 
respectively. These factors are incorporated to assess their impact on the 
overall system performance. To quantify the overall impact of timing, 
precision, force, and sequence on system performance, we define the 
cumulative interaction effect (CIij), as demonstrated in equation (2). 

CIijn = αT
ijn*αP

ijn*αF
ijn* αS

ijn
(2) 

2.4. Management of variability

Managing variability focuses on amplifying positive outcomes and 
minimizing negative ones by addressing critical couplings identified 
through functional resonance analysis (Patriarca et al., 2025). 
Improvement measures aim to prevent accidents or restore the system to 
optimal functionality in case of disruptions (Zinetullina et al., 2021).

After analyzing the core performance characteristics, the next step is 
to integrate the influence of external operating conditions on the sys
tem’s performance. This involves defining a set of Scenario Performance 
Conditions (SPCs) that capture various internal and external factors, 
such as environmental influences (e.g., temperature, lighting), equip
ment reliability, workload variations, etc., that may affect overall 
performance.

For each function within the system, the impact of each SPC is 
evaluated by assigning an impact rating, where a value of 1 indicates a 
high impact, a value less than 1 indicates a moderate impact, and 0 in
dicates no impact. This method creates a clear relationship between 
external conditions and the system’s functions. These values should be 
assessed by the decision-making team based on the past system 
behavior. In a practical application, ensuring the reliability of these 
subjective inputs would be critical. In a practical application, these 
values would be established through structured workshops with domain 
experts, leveraging techniques like pairwise comparison or direct rating 
scales to ensure consistency and justification for the assigned weights 
(Afnor, 2024; O’Hagan et al., 2006). Furthermore, prior to integrating 
assigned impact ratings into the model, calculating inter-rater reliability 
scores among experts, such as Cohen’s kappa or intraclass correlation, is 
essential to validate the consistency and robustness of their judgments to 
ensure alignment with structured elicitation protocols (O’Hagan et al., 
2006).

Once the influence of the SPCs on the functions is established, 
distinct operating scenarios are defined by assigning specific ratings to 
each SPC. Each scenario is characterized by a particular combination of 
performance condition effects. Decision makers must identify the most 
critical scenarios which can influence the system. The overall effect of a 
scenario on a given function is determined by summing the weighted 
contributions of each SPC, as shown in Equation (3). 

ez
j =

∑m

k=1

SPCk
z*bk

j (3) 

Here, ez
j is the conditional variability of function j under scenario z, SPCk

z 

denotes the rating of the kth condition in scenario z, and bk
j represents the 

impact of the kth condition on function j. If a function is not influenced by 
any external condition (i.e., all bk

j equal zero), the variability is 
considered a baseline value of 1 (Patriarca, Di Gravio, & Costantino, 
2017).

2.5. Quantifying the risks

The index for each coupling, Variability Propagation Number (VPN) 
can be derived from equation (4). This index combines the inherent 
variability of the upstream function j (OVj), the cumulative interaction 
effect between upstream and downstream functions (CIij), and the con
ditional variability ez

j , which represents how external factors in scenario 
z influence the system’s performance. By incorporating these elements, 

Table 3 
Example of the probability distribution for the variability output of a function.

Characteristic Too Early / 
Acceptable / 
Too Low

On-Time / 
Precise / On- 
Target/ Correct 
Order

Too Late / 
Imprecise / 
Too High

Not at 
All / 
Wrong

Time (Vt) 0.08 0.80 0.09 0.03
Precision (Vp) 0.15 0.75 0.08 0.02
Force (Vf ) 0.20 0.65 0.14 0.01
Sequence (Vs) − 0.90 − 0.1

Table 4 
Damping and amplifying factor values.

Effect type Value

Damping effect 0.5
No effect 1
Amplifying effect 2
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this equation provides a detailed and dynamic measure of the coupling’s 
variability, capturing internal performance fluctuations and the effects 
of external operating conditions. 

VPNz
ij = OVj*CIij*ez

j (4) 

In the next step, the data collected through FRAM will be used to apply 
the PSO algorithm, providing a structured and systematic way to 
quantify the model. PSO is inspired by the movement of swarms in na
ture, where candidate solutions are represented as particles navigating a 
multi-dimensional search space. Each particle has a position Xi =

(xi1, xi2,⋯, xid), a velocity Vi = (vi1, vi2,⋯, vid), and a personal best po
sition Pi = (pi1, pi2,⋯, pid). The algorithm continuously updates each 
particle’s velocity and position to move toward an optimal solution. The 
velocity update follows equation (5) (Karevan & Vasili, 2018; Marini & 
Walczak, 2015). 

Vk(i+1) = Vk(i)+ c1r1

(
Pk

best,i − Xk(i)
)
+ c2r2

(
gbest,i − Xk(i)

)
(5) 

This update consists of three components: momentum, which helps 
maintain previous velocity for smoother movement; cognitive influence, 
which pulls the particle toward its own best-known position; and social 
influence, which directs the particle toward the global best solution 
found by the swarm. Once the velocity is adjusted, the particle’s new 
position is calculated as equation (6) (Karevan et al., 2020; Lalwani 
et al., 2013). 

Xk(i+1) = Xk(i)+Vk(i+1) (6) 

To initialize the algorithm, the variability values of each output (VT
j ,VP

j ,

VF
j ,V

S
j ) are first defined. Then, the relationships between outputs, 

including upstream and downstream dependencies, are mapped, 
creating function paths. A Monte Carlo Simulation is employed to esti
mate the occurrence probability of each output under four different 
variabilities. Based on these probabilities, the OV of each output is 
calculated (Eq.1).

Next, damping and amplifying factors are assigned, applying specific 
weighting factors to variability aspects such as timing, precision, force, 
and sequence based on predefined conditions (Eq.2). In real-world ap
plications, these weighting factors can be determined through empirical 
data analysis, expert elicitation, or human factors and ergonomics (HF/ 
E) assessments. Decision-makers identify the most influential factors by 
conducting task analyses, observational studies, and data-driven risk 
assessments. Since this approach relies on measurable inputs and sys
tematic evaluation, it can be readily applied in real-world cases, 
allowing decision-makers to adjust the factors dynamically to reflect 
actual operational conditions.

Following this, various SPCs and external influence factors ez
j are 

considered. Using these inputs, the VPN is calculated for each function, 
followed by the computation of the path VPN based on the summation of 
downstream functions for each function. Then, the initial high path VPN 
is determined, leading to the identification of the critical path. The 
objective function is to minimize the path VPN, which results in mini
mizing the VPN for each function.

2.6. PSO implementation and parameters

For the results presented in this paper, the PSO algorithm was 
implemented with the following parameters, chosen based on common 
practices in the literature to ensure stable convergence. The swarm size 
was set to 50 particles for 500 iterations. An inertia weight (w) was used, 
linearly decreasing from 0.9 to 0.4 over the course of the iterations, to 
balance global and local search. The cognitive and social coefficients (c1 
and c2) were set to 0.9 and 1.5, respectively. The decision vector for 
each particle represented a potential set of mitigation strategies to 
apply.

2.7. Sustainable mitigation strategies

After identifying the highest path VPN, the next step is to system
atically mitigate it by selecting sustainable strategies (alternatives). 
Depending on each case study and industry, decision-makers may 
identify various sustainable mitigation strategies. These strategies must 
consider three main pillars of sustainability. Economically, manufac
turers can improve cost efficiency through automation and lean prac
tices (Hasanain, 2024), reduce operational costs via process innovation 
(Martín-Gómez et al., 2024), and simplify assembly processes to mini
mize downtime while recovering valuable components for cost savings 
(Machado et al., 2020). Environmentally, initiatives include boosting 
energy efficiency with energy-efficient machinery and smart systems 
(Jovanović & Filipović, 2016), utilizing renewable energy at facilities 
(Machado et al., 2020), optimizing waste reduction (Martín-Gómez 
et al., 2024), and lowering carbon emissions through process optimi
zation (Foo & Tan, 2016). Socially, efforts focus on investing in 
employee training (Ciccarelli et al., 2023), enhancing employee satis
faction through better work environments (Hasanain, 2024), and 
ensuring safe working conditions (Gualtieri et al., 2021).

Decision-making teams need to determine the associated functions 
and SPCs for each strategy, assess the level of difficulty in implementing 
each strategy (feasibility), and evaluate the impact of each strategy on 
the system, and assess its contribution to the three sustainability pillars 
(environmental, economic, and social). The algorithm then selects the 
best strategy in each iteration, applies it to the model, and recalculates 
the overall risk profile from the beginning. Over successive rounds, this 
iterative process not only reduces high-risk outputs but also progres
sively transforms the entire model into a sustainable one, balancing risk 
reduction with long-term environmental, economic, and social benefits. 
The process involves: 

1) Identifying the function with the maximum Path VPN.
2) Selecting the most effective available sustainable mitigation 
strategy from Table 9 relevant to that function’s associated SPCs 
(with a constraint preventing the immediate re-selection of the same 
strategy for the same path if alternatives exist).
3) Applying the chosen strategy’s impact weight within the model.
4) Recalculating all function VPNs and path VPNs.
5) Repeating the process for a predetermined number of steps (four 
in this study).

3. Case studies

Case studies serve as a crucial research approach, particularly when 
investigating complex subjects with limited prior knowledge (Rashid 
et al., 2019). Also, using multiple case studies allows for comparative 
analysis across different contexts, facilitating the identification of pat
terns, trends, and underlying factors that may remain undetected in a 
single case study. Examining operations such as assembly and disas
sembly across various settings enhances theoretical generalization 
(Karevan & Nadeau, 2025).

The case studies presented in this research were originally examined 
in another paper (Karevan & Nadeau, 2025) and are being reused to 
validate the proposed methodology. To ensure an extensive perspective, 
these cases represent different operational environments: an assembly 
line, a job shop assembly process, and a disassembly line. Each case is 
briefly summarized below. However, for a deeper understanding of the 
cases and their details, the authors recommend referring to the paper 
mentioned.

The first case study looks at an assembly section in a refrigerator 
manufacturing plant. In this setup, refrigerators move along a conveyor 
line, and workers perform specific tasks at each station along the way. In 
this particular assembly section, the worker’s role involves selecting and 
assembling various components from bins. To assist with the task, they 
wear smart gloves that help with handling the parts more precisely. 
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Additionally, smart glasses are used to display assembly instructions, 
guiding the worker step-by-step through the process.

In the second case study, the focus is on a job shop assembly process 
where the assembler is equipped with smart glasses and smart gloves to 
assist with the work. The workstation is organized with a tool cabinet 
containing the necessary tools for the task and seven bins of required 
parts positioned in front of the assembler. A dolly is used to transport the 
assembly structure, allowing the worker to move the parts and compo
nents easily. Work instructions are accessed through a computer, guid
ing the assembly process.

In the third case study, the focus is on a refrigerator disassembly 
process, where the worker’s main job is to remove parts like the 
refrigerant for recycling, along with the freezer door, process pipe, and 
dry filter. The workstation is equipped with a tool cabinet and storage 
bins to sort the disassembled components. The smart glasses provide 
step-by-step instructions, visually guiding the worker on what needs to 
be removed. The smart gloves help the worker apply the right amount of 
force and even detect hazardous components.

This combination of wearables simplifies the workflow, ensuring 
that workers can follow instructions accurately and efficiently while 
minimizing the chances of errors. The use of these technologies en
hances both the speed and accuracy of the assembly and disassembly 
processes and also improves sorting efficiency and enables real-time 
communication with supervisors.

4. Results

This section details the application of the proposed FRAM-PSO 
methodology to assembly and disassembly processes case studies, 
focusing on function identification, risk assessment via VPN calculation, 
and the impact of targeted mitigation strategies. The initial step 
involved identifying and characterizing the core functions essential to 
the system.

These functions, derived from analysis of the case study operations, 
are listed and described in Table 5. This table also indicates the specific 
case studies where each function is relevant.

Each function was examined based on six key attributes. Addition
ally, the FVM software was used to visually map these functions in Fig. 2
for the first case study, Fig. 3 for the second case study, and Fig. 4 for the 
third case study. Table 6 presents a mapping of these outputs and their 
related downstream functions, illustrating the system’s interconnected 
nature.

To evaluate system variability and potential vulnerabilities, we 
identified three key SPCs critical to the case studies: 

• Wearable Performance (WP): Evaluates the effectiveness of smart 
wearables like gloves and glasses in terms of calibration, function
ality, and accuracy.

• Worker Condition (WC): Encompasses the worker’s physical, 
physiological and cognitive state in response to task demands, 
drawing upon the Stress-Strain Model (Rohmert, 1973). This model 
distinguishes between stress (external demands such as task 
complexity, workload, and shift duration) and strain (the worker’s 
response, influenced by factors like skill, fatigue, cognitive load, 
posture, and training). Maintaining a balance between these factors 
is crucial for efficiency, efficacy, safety, and well-being in assembly 
tasks (Djefour et al., 2024).

• Resource Availability (RA): Refers to the availability of essential 
components, tools, wearables, and devices required for the assembly 
process.

The potential impact of suboptimal performance in each SPC on 
system functions was categorized using a standardized scale (Table 7), 
ranging from no impact (0) to high impact (1). These values are used 
based on the literature to have a more robust framework (Patriarca, Di 
Gravio, & Costantino, 2017). Applying this scale, we assessed the 

Table 5 
Identified functions.

Code Function Description Related 
case study
1 2 3

F-1 To train workers Workers must be trained to use 
the wearables effectively, 
ensuring that they understand 
how to interact with the smart 
devices during assembly.

* * *

F-2 To manage resources Restock bins and ensure 
components/tools/wearables are 
available to prevent stoppages.

* * *

F-3 To calibrate and 
maintain

Calibration and maintenance of 
the wearables and devices to 
avoid any inaccuracy and 
stoppage.

* * *

F-4 To program wearables Programming ensures that the 
smart gloves and smart glasses 
provide accurate feedback and 
guidance to the worker.

* * *

F-5 To verify stock levels Workers use smart glasses to 
check stock levels to ensure that 
sufficient parts are available to 
avoid assembly stoppage.

* * *

F-6 To verify the product 
map

Before assembly, the worker 
verifies the correct components 
using the product map to ensure 
the right parts are being used.

* * *

F-7 To select and handle 
components

The worker uses smart gloves to 
select and handle components 
with precision and correct 
pressure.

* * *

F-8 To assemble the 
product

The worker assembles the 
product.

* * ​

F-9 To supervise workers The supervisor remotely monitors 
the assembly process, ensuring 
adherence to quality and 
production standards.

* * *

F-10 To monitor and report 
production in real 
time

The production process is 
continuously monitored online. 
Data is collected in real time to 
track assembly performance and 
to ensure quality.

* * *

F-11 To move the product 
using a conveyor/ 
dolly

The product transfers between the 
stations using a conveyor or a 
dolly.

* * *

F-12 Next station The assembled product moves to 
the next station.

* * *

F-13 Human resource 
planning

Hiring new workers. * * *

F-14 Production and 
resource planning

Providing the plan of the 
production and resources.

* * *

F-15 To receive and 
analyze data

Collect and analyze data from 
wearables.

* * *

F-16 To access work 
instructions (via 
computer)

The worker retrieves and views 
procedural guidance for the task 
using a workstation computer 
interface.

​ * ​

F-17 To manage the tool 
cabinet

Ensure necessary tools are 
available, organized, and 
accounted for within the 
designated tool cabinet.

​ * *

F-18 To disassemble the 
product

The worker takes apart the 
product, removing specific 
components according to the 
process requirements

​ ​ *

F-19 To detect hazardous 
components

Use smart gloves and smart 
glasses to identify potentially 
dangerous materials or parts 
during handling or disassembly.

​ ​ *

F-20 To sort disassembled 
components

Place removed parts into 
designated storage bins based on 
material type, destination, or 
other criteria.

​ ​ *

F-21 To manage storage 
bins

Ensure storage bins are available, 
correctly labelled, and emptied or 
replaced as needed to facilitate 
sorting and storage.

​ ​ *
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Fig. 2. The FRAM model of the first case study.

Fig. 3. The FRAM model of the second case study.
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specific impact of each SPC on every identified function, based on the 
operational context of the case studies. The results of this assessment are 
presented in Table 8. For instance, ’To Assemble the Product’ (F-8) and 
‘F-18: To disassemble the product’ (F-18) are highly impacted by all 
three SPCs, while ’To Move the Product’ (F-11) is unaffected under the 
defined conditions. Herein, the authors used arbitrary values based on 
their perspective; however, in real case studies, it should be determined 
by the decision-making team.

To simulate varying operational contexts and assess system resil
ience, four distinct scenarios were defined, modulating the impact level 
of the SPCs: 

Normal conditions: Assumes moderate variability across all SPCs.
Wearable malfunction: Represents high variability in Wearable 
Performance (WP).
High fatigue: Simulates high variability in Worker Condition (WC).
Resource shortage: Introduces high variability in Resource Avail
ability (RA).

By using the established function network, SPC impacts (Table 8), 
and scenario definitions, we employed the PSO algorithm integrated 
within the FRAM framework (FRAM-PSO) to calculate the VPN for each 
function. The VPN quantifies the potential variability or risk associated 
with each function under the defined scenarios.

From the individual function VPNs (Eq.4), the Path VPN is calculated 
for each function, representing the cumulative variability propagated 
through its downstream dependencies. The initial state of the system, 
depicting the calculated Path VPNs before any mitigation, is visualized 
in Fig. 5. In this graph, the intensity or thickness of the connections can 
represent the magnitude of the Path VPN, emphasizing critical 
pathways.

For this study, the algorithm’s objective is to reduce the path VPNs, 
which results in the reduction of the function VPNs and improvement of 

the overall model. We defined a set of potential sustainable mitigation 
actions (Table 9), each linked to specific SPCs and associated functions.

For each strategy, we assigned illustrative values for implementation 
feasibility (from easy to difficult), impact weight (from low to high 
improvement), and contribution to sustainability pillars (environ
mental, economic, social – rated from low to high impact). To provide a 
clear perspective on how to use this methodology, the authors base these 
values on their assessment when assigning values to these variables. In a 
practical application, these values would be established through struc
tured workshops with domain experts, leveraging techniques like pair
wise comparison or direct rating scales to ensure consistency and 
justification for the assigned weights (Afnor, 2024; O’Hagan et al., 
2006). Additionally, based on the level of importance for each industry, 
the sustainable aspects can be weighted to demonstrate their signifi
cance for each specific industry (Karevan & Vasili, 2018). However, this 
study assumes equal weight for each aspect.

The FRAM-PSO algorithm was used in an iterative mitigation pro
cess. In the interest of conciseness, the main body of this paper includes 
graphs and figures pertaining only to the first case study. The results 
derived from the other case studies can be found in the Appendix. The 
initial assessment performed showed that the sum of all path functions 
was 8736. The algorithm then starts by identifying the highest path 
VPN. The function with the highest initial path VPN was F-2 (to manage 
resources), which had a value of 1726.

Then, the four-step mitigation process unfolds as follows: 

• Step 1: F-2 (to manage resources) was targeted as the highest path 
VPN. Then the algorithm selected and applied the most suitable 
mitigation strategy across all the options, “Digital inventory 
management”.

• Step 2: F-15 (to receive and analyze data) was identified as the next 
highest path VPN. The “Wearable maintenance program” strategy 
was selected and applied.

Fig. 4. The FRAM model of the third case study.
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• Step 3: F-3 (to calibrate and maintain) emerged as the next target, 
and the “Worker-centric wearable design” strategy was 
implemented.

• Step 4: In the last step, F-8 (to assemble the product) was selected, 
and the “Wellness monitoring and breaks” strategy was applied.

While the Path VPN provides a robust internal metric for quantifying 
systemic risk within the model, its direct managerial relevance can be 
enhanced by linking it to tangible Key Performance Indicators (KPIs). 
The mitigation strategies selected by the FRAM-PSO algorithm can be 
directly mapped to expected improvements in operational metrics that 
decision-makers track.

Table 10 provides an illustrative mapping for the four mitigation 
strategies applied in the first case study. This demonstrates how the 
concept of “risk reduction” can be translated into a practical perfor
mance monitoring plan. For example, the “Worker-centric wearable 
design” strategy, which reduced the Path VPNs, would be expected to 
yield measurable improvements in KPIs such as a lower human error 
rate and a reduction in reported musculoskeletal discomfort 
(Alenjareghi et al., 2025). This translation is a critical step in bridging 
the gap between systemic modeling and practical, data-driven 
management.

After these four mitigation steps, for the first case study, the total 
sum of path VPNs in the methodological prototype decreased signifi
cantly to 6207. This represents an overall risk reduction of approxi
mately 28.9 % within the model’s illustrative scenario. The maximum 
path VPN observed was reduced to 1241. It is critical to note that this 
figure is not a prediction of real-world performance but a demonstration 
of the framework’s mechanics and its ability to quantify the systemic 
impact of targeted interventions. The progression of this risk reduction is 
illustrated in Fig. 6. The second and third case studies showed similar 
improvements within their respective models (see Appendix).

Fig. 7 provides insight into the systemic impact of each applied 
strategy, mapping which functions were affected by each strategy. For 
example, implementing “Worker-centric wearable design” influenced 
the VPNs of six distinct functions (F-1, F-3, F-7, F-8, F-10, F-13). This 
occurs because an ergonomic and intuitive wearable (the mitigation 
strategy) directly improves the physical and cognitive aspects of tasks 
like handling components (F-7) and assembling the product (F-8). It also 
reduces the training burden (F-1) and makes it easier for supervisors to 
monitor work (F-10), a finding consistent with the work of Valdesse 
Eko’ola & Nadeau (2025).

A direct comparison of the initial and final Path VPNs for each 
function is presented in Fig. 8. This figure highlights the percentage 
reduction achieved for each pathway. Notably, while mitigation efforts 
directly targeted only F-2, F-15, F-3, and F-8 in these steps, the 

Table 6 
Functions and their outputs.

Function 
Code

Output Downstream functions

F-1 Trained worker F-8
F-2 Inventory data F-5

Wearables F-3, F-4, F-5, F-6, F-7, F-8, F-10, 
F-15

Components F-7
Devices F-3, F-11

F-3 Calibrated wearables F-5, F-6, F-7, F-10, F-11, F-15
Functional devices F-11

F-4 Programmed wearables F-5, F-6, F-7, F-10, F-15
F-5 Verified stock levels F-8

Stock level monitoring F-2
F-6 Verified instructions F-8
F-7 Precisely selected 

components
F-8

F-8 Assembled product F-11
Assembly data F-9, F-10, F-15

F-9 Product map F-6
Work instructions F-8
Training needs F-1
Supervisor feedback F-8
Calibration instructions F-3

F-10 Real-time production report F-9
System monitoring F-9

F-11 Transferred product F-12
F-13 Hiring a new worker F-1
F-14 Production schedule F-2, F-9

Inventory level F-2
F-15 Wearable feedback F-6, F-7, F-8

Analyzing the wearable 
accuracy

F-3, F-4, F-10

Worker performance data F-1, F-9
Performance reports F-9

F-16 Work instructions F-8
F-17 Available/organized tools F-2, F-7, F-8, F-18

Tool status F-2
F-18 Disassembled product F-11, F-12, F-20

Disassembly data F-9, F-10, F-15
F-19 Hazard alert/notification F-7, F-9, F-20

Hazard data F-9, F-15
F-20 Sorted components F-21
F-21 Bin storage information F-2, F-20

Table 7 
SPC impact definition.

The 
impact of 
SPCs

Value Wearable 
Performance 
(WP)

Worker Condition 
(WC)

Resource 
Availability 
(RA)

No impact 0 Wearables do not 
affect the 
function

The worker’s 
physical and 
cognitive state 
does not 
significantly affect 
the function

Resource 
availability does 
not significantly 
affect the 
function

Moderate 
impact

0.5 Wearables are 
useful but have 
limitations or 
occasional 
malfunctions

The worker’s 
physical and 
cognitive state 
affects 
performance, but 
not critically

Limited 
resources may 
cause some 
delays or 
inefficiencies

High 
impact

1 Wearables are 
critical for 
functional 
success

The worker’s 
physical and 
cognitive state is 
crucial for 
successful 
performance

Lack of 
resources causes 
significant 
delays or 
stoppages

Table 8 
SPC impact on the process.

Function WP WC RA

F-1: To train workers 0 1 0
F-2: To manage resources 0.5 0.5 1
F-3: To calibrate and maintain 1 0 1
F-4: To program wearables 1 0 1
F-5: To verify stock levels 0.5 1 1
F-6: To verify the product map 1 1 0
F-7: To select and handle components 1 1 1
F-8: To assemble the product 1 1 1
F-9: To supervise workers 0.5 1 0
F-10: To monitor and report production in real-time 1 0.5 0
F-11: To move the product using a conveyor/dolly 0 0 0
F-12: Next station 0 0 0
F-13: Human resource planning 0 1 0
F-14: Production and resource planning 0 0.5 1
F-15: To receive and analyze data 1 0.5 0
F-16: To access work instructions (via computer) 0.5 1 0.5
F-17: To manage the tool cabinet 0.5 0 1
F-18: To disassemble the product 1 1 1
F-19: To detect hazardous components 1 1 0
F-20: To sort disassembled components 1 0.5 0.5
F-21: To manage storage bins 0.5 0 1
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interconnected nature of the system led to significant indirect im
provements in other functions. For instance, the path VPN for F-1 (to 
train workers) decreased by 37.3 %, demonstrating the cascading ben
efits of the applied strategies. This significant indirect improvement is 
because the implementation of more ergonomic and easier-to-use 
wearables (a mitigation for F-8) reduces the complexity and duration 
of the required training. Conversely, some functions like F-11 (To move 
the product), which had low initial VPN and weak connections to the 
targeted areas, only improved by 14.9 %.

These results demonstrate the effectiveness of the FRAM-PSO 
approach in identifying critical risk paths and quantifying the system- 
wide impact of targeted, sustainable mitigation strategies. The signifi
cant reduction in overall path VPN, achieved through just four strategic 
interventions, underscores the value of this methodology for enhancing 
system resilience and sustainability.

5. Discussion

Resilience is gaining growing importance in modern manufacturing 
environments (Chari et al., 2023). The resilience engineering commu
nity has successfully applied FRAM as both a retrospective and pro
spective method, explaining that system outcomes are shaped by how 
different functions vary and interact, often leading to unexpected results 

known as functional resonance (Lundblad et al., 2008; Yousefi et al., 
2019; Zheng et al., 2024). However, FRAM is inherently qualitative, 
prompting numerous efforts to enhance its objectivity and quantifica
tion capabilities (Patriarca, Di Gravio, & Costantino, 2017). This study 
directly engages with this challenge within the context of modern in
dustrial systems incorporating smart wearables.

The successful application of this novel FRAM-PSO framework 
resulted in a substantial 28.9 % reduction in the overall system risk 
through four targeted sustainable mitigation steps (first case study). This 
highlights the methodology’s effectiveness in not only modelling vari
ability but also guiding practical interventions. Furthermore, the find
ings illustrate the systemic effects central to FRAM. While mitigation 
directly targeted functions F-2, F-15, F-3, and F-8, significant improve
ments propagated to interconnected functions, such as the 34.1 % risk 
reduction observed in F-5 (to verify stock levels) (Fig. 8). This demon
strates how targeted interventions can yield broader system resilience 
benefits.

Addressing the known challenge of FRAM quantification (Patriarca, 
Di Gravio, & Costantino, 2017), the integration of PSO offers a distinct 
contribution. Unlike other quantification methods (e.g., MCS, BN), PSO 
actively optimizes, allowing the framework not only to quantify vari
ability (VPN) but also to search for and select optimal sustainable 
mitigation strategies to maximize risk reduction. To the best of our 

Table 9 
Sustainable mitigation strategies.

Strategy Description Related functions Related 
SPC

Feasibility 
level

Weight Sustainability aspects
Envi. Econ. Social

Worker-centric 
wearable design

Use wearables with ergonomic features (e. 
g., lightweight, easily adjustable)

F-1, F-3, F-7, F-8. F- 
10, F-13, F-18

WC, RA Difficult High Low 
impact

Medium 
impact

High 
impact

Low-power sensors Use wearables with energy-efficient sensors 
powered by kinetic energy or solar cells

F-2, F-3, F-19, F-21 WP, RA Difficult Medium High 
impact

Medium 
impact

Low 
impact

Wearable 
maintenance 
program

Regular calibration and repair using 
recycled parts

F-3, F-4, F-6, F-9, F- 
11, F-15, F-16, F-18, 
F-19

WP, RA Medium High High 
impact

Medium 
impact

Low 
impact

Wellness 
monitoring and 
breaks

Equip wearables with real-time health 
tracking to trigger mandatory breaks and 
reduce physical strain

F-8, F-9, F-13, F-18 WC Easy High Low 
impact

Medium 
impact

High 
impact

Tool sharing 
optimization

Use wearables to track and optimize tool- 
sharing across workers, reducing idle 
resources

F-2, F-9, F-14, F-17 WP, RA Easy Medium High 
impact

Medium 
impact

Low 
impact

Reusable tool 
systems

Shift to modular, reusable tools with 
wearables for maintenance tracking

F-2, F-14, F-17 RA, WP Medium Medium High 
impact

High 
impact

Low 
impact

Digital inventory 
management

Use wearables to monitor and optimize 
material stock digitally, reducing over- 
ordering

F-2, F-5, F-11, F-14, 
F-17, F-20, F-21

RA Medium High Medium 
impact

High 
impact

Medium 
impact

Fig. 5. Path Graph with VPN-Weighted Connections (first case study).
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knowledge, this combination of FRAM and PSO for risk quantification 
and optimized mitigation represents a novel contribution to the field.

This study also tackles the specific gap concerning systematic risk 
assessment for smart wearables (Karevan & Nadeau, 2023). Moving 
beyond prior qualitative (Mofidi Naeini & Nadeau, 2023) or STPA-based 
analyses (Karevan & Nadeau, 2024a, 2025), the FRAM-PSO approach 
provides a quantitative, systemic, and mitigation-oriented framework 

for these technologies. Another contribution is the explicit integration of 
sustainability (environmental, economic, and social factors) into the risk 
mitigation process. This integration addresses the critical need, high
lighted by Karwowski et al. (2025) in their grand challenges, for human 
factors and ergonomics to contribute towards sustainability, including 
enhancing system resilience and developing ethical principles for sus
tainable futures (Karwowski et al., 2025; Valette et al., 2023). Also, 
achieving sustainable production is a key objective in today’s 
manufacturing industry (Ma et al., 2024; Zhang et al., 2024). By 
adopting Industry 5.0 principles, this work introduces an integrated 
approach to understanding risk that fills a gap we identified in existing 
systemic risk frameworks through a literature review.

An additional contribution is the framework’s alignment with 
emerging regulatory and reporting standards for sustainability. Global 
frameworks, such as the International Sustainability Standards Board 
(ISSB) standards, the European Sustainability Reporting Standards 
(ESRS), and the Global Reporting Initiative (GRI) standards, increas
ingly require organizations to implement robust processes for identi
fying, assessing, and mitigating sustainability-related risks (Elidrisy, 
2024; Krivogorsky, 2024). Our FRAM-PSO model provides a tangible, 
operational-level methodology to meet these requirements. By system
atically linking system functions to environmental, social, and economic 
impacts, the model makes sustainability risks traceable and mitigation 
efforts transparent. This strengthens its utility for decision-makers who 
must navigate evolving regulatory landscapes while managing opera
tional risk.

While the results are promising, limitations must be acknowledged. 

• The findings are based on three specific case studies, necessitating 
further applications for broader generalizability. While the meth
odology is designed to be adaptable, its performance and the specific 
critical functions identified might differ in other industrial contexts 
or systems with different structures and technologies. The method
ology can be generalized to other complex socio-technical domains 
such as aerospace, healthcare, and logistics by redefining the system 
functions, performance variabilities, and SPCs to match the specific 
operational context.

Table 10 
Illustrative Mapping of Selected Mitigation Strategies to Managerial KPIs.

Mitigation 
Step

Primary Path 
VPN Reduction

Selected 
Mitigation 
Strategy

Illustrative Managerial 
KPIs to Monitor

Step 1 F-2 (to manage 
resources)

Digital Inventory 
Management

• Reduction in line 
stoppages due to part 
shortages

• Improvement in 
inventory turnover rate

• Decrease in ordering 
errors

Step 2 F-15 (to receive 
and analyze 
data)

Wearable 
Maintenance 
Program

• Reduction in wearable 
failure rate

• Decrease in maintenance 
costs

• Improvement in data 
accuracy from wearables

Step 3 F-3 (to 
calibrate and 
maintain)

Worker-Centric 
Wearable Design

• Reduction in human 
error rate

• Decrease in reported 
musculoskeletal 
discomfort

• Reduction in task 
completion time

Step 4 F-8 (to 
assemble the 
product)

Wellness 
Monitoring and 
Breaks

• Decrease in fatigue- 
related incidents

• Improvement in 
employee satisfaction 
scores

• Increase in adherence to 
mandatory break 
protocols

Fig. 6. Mitigation Progress: Risk Reduction Over Steps (first case study).
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• The initial assessment of SPC impacts and the characterization of 
mitigation strategies (feasibility, weight, and sustainability impacts) 
relied on illustrative values. This approach was intentionally chosen 
to demonstrate the mechanics and viability of the FRAM-PSO 
framework as a methodological prototype. As is common in foun
dational studies that propose new models, the primary goal is to 
establish the framework’s internal logic and potential before un
dertaking extensive, context-specific empirical validation. We fully 
acknowledge that for a real-world application, gathering these data 
and inputs from domain experts and empirical assessments is crucial 
for ensuring the practical reliability and robustness of the results.

• Furthermore, the assessment of sustainability contributions remains 
at a semi-quantitative level. To increase its practical utility, the 
framework would need to be enhanced to operationalize these di
mensions with fully quantitative metrics, such as measured energy 
savings, specific cost reductions, or validated changes in worker 
satisfaction surveys.

6. Conclusions

This paper addresses the need for semi-quantitative, systemic risk 
assessment in complex industrial systems, particularly those utilizing 
smart wearables, while simultaneously integrating sustainability 

Fig. 7. Functions Affected by Each Applied Strategy (first case study).

Fig. 8. Path VPN Comparison: Initial vs. Final Mitigated (first case study).
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considerations. We developed and demonstrated a novel methodology 
integrating the FRAM with PSO. FRAM-PSO model applied in three case 
studies of the assembly and disassembly systems, which use smart gloves 
and smart glasses. We demonstrated that this is a powerful model to 
systematically identify, quantify, analyze and mitigate the risks with 
sustainable strategies. The results demonstrate that applying this model 
can improve the system by reducing the risk of the model by more than 
22 % after four steps of mitigation for all three case studies.

The core contributions of this research are the synergistic integration 
of FRAM and PSO for quantitative risk analysis and optimized mitiga
tion, and the pioneering incorporation of multi-dimensional sustain
ability criteria (environmental, economic, social) directly within this 
systemic risk management process. This work represents a valuable 
advancement towards building more resilient, efficient, and responsible 
industrial operations, in line with the goals of Industry 5.0. This method 
equips practitioners with a structured tool to identify vulnerabilities, 
quantify risks, and prioritize sustainable mitigation investments in 
complex, wearable-integrated systems. Theoretically, it advances 
quantitative FRAM approaches and pioneers the integration of sustain
ability within systemic operational risk management.

Future research should prioritize broader application and validation 
across diverse industrial contexts, along with refining methods for 
robust input elicitation. Specific directions for future work include: 

• Validating the model using real-time operational data from indus
trial partners to confirm its predictive accuracy and practical utility. 
This would also involve refining input elicitation methods through 
structured expert judgment or fuzzy logic techniques.

• Exploring the integration of alternative optimization algorithms to 
compare their effectiveness and computational efficiency in identi
fying optimal mitigation strategies.

• Developing a software-based decision-support tool to facilitate the 
practical application of the FRAM-PSO framework enabling industry 
practitioners to conduct systemic risk assessments more easily and 
effectively.
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Appendix 

I. Case study 2 results

Fig. 9. Path Graph with VPN-Weighted Connections (second case study)
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Fig. 10. Mitigation Progress: Risk Reduction Over Steps (second case study)

Fig. 11. Functions Affected by Each Applied Strategy (second case study)
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Fig. 12. Path VPN Comparison: Initial vs. Final Mitigated (second case study)

II. Case study 3 results

Fig. 13. Path Graph with VPN-Weighted Connections (third case study)
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Fig. 14. Mitigation Progress: Risk Reduction Over Steps (third case study)

Fig. 15. Functions Affected by Each Applied Strategy (second case study)
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Fig. 16. Path VPN Comparison: Initial vs. Final Mitigated (third case study)

Data availability

The data that support the findings of this study are openly available 
on GitHub at: https://github.com/Alikarevan-code/FRAM-PSO- 
Sustainability-Risk-Framework/blob/main/README.md.
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