Proceedings of the Canadian Society for Mechanical Engineering International Congress
32nd Annual Conference of the Computational Fluid Dynamics Society of Canada
Canadian Society of Rheology Symposium
CSME-CFDSC-CSR 2025
May 25–28, 2025, Montréal, Québec, Canada

HYDROGEN PRODUCTION WITH CO2 CAPTURE: A THERMODYNAMIC ANALYSIS OF SORPTION ENHANCED WGS REACTION USING Li4SiO4/MgO SORBENT

Muhammad Zubair Shahid¹, Ahmad Salam Farooqi¹, Mohammad Mozahar Hossain^{1,3,4}, Medhat Ahmed Nemitallah^{1,2*}

¹Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

²Aerospace Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia ³Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia ⁴Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

ABSTRACT

Hydrogen is primarily produced from methane reforming and coal gasification, but these processes generate significant CO₂ emissions. The sorption-enhanced water-gas shift (SE-WGS) reaction is a promising technology that enables in-situ CO₂ capture during methane reforming while enhancing H₂ production through equilibrium shifts. The choice of sorbent plays a critical role in the performance of the SE-WGS reaction. This study evaluates different Li₄SiO₄/MgO sorbent combinations in a WGS reaction environment over a pressure range of 1–40 bar using the Gibbs free energy minimization method to assess CO₂ removal efficiency, CO conversion, H₂ yield, and sorbent regeneration enthalpy. The results indicate that increasing the Li₄SiO₄ concentration in the sorbent improves CO₂ removal efficiency, CO conversion, but also increases the energy required for sorbent regeneration. Therefore, an optimal Li₄SiO₄/MgO ratio was determined to maximize CO conversion while minimizing energy consumption. The study found that a sorbent composition of 30 mol% Li₄SiO₄ in the Li₄SiO₄/MgO mixture is optimal for achieving maximum CO conversion with minimal sorbent regeneration energy requirements.