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Abstract  Thermochemical energy storage (TCES) 
is a method of storing energy by using reversible 
chemical reactions to absorb and release heat. TCES 
materials generally possess the highest volumet-
ric energy density and negligible heat losses dur-
ing cyclic charging/discharging when compared 
with sensible and latent heat storage materials. The 
controllable charging/discharging processes in the 

TCES materials make them suitable for long-term 
or seasonal thermal energy storage, which can help 
improve the resilience of the existing energy system 
and built environment. In recent years, there has been 
a growing number of studies on the use of cementi-
tious materials as low-cost and low-carbon thermo-
chemical energy storage materials, including ettrin-
gite, calcium aluminate cements, and geopolymers. 
In this study, the state-of-the-art development using 
cementitious materials for thermo-chemical energy/
heat storage applications is reviewed and systemati-
cally compared in terms of their compositions, energy 
storage operating conditions, and energy storage per-
formance. Technical recommendations are proposed 
for standardised characterisation and testing protocols 
of these cementitious (composite) materials used for 
thermochemical heat storage. The current research 
challenges and future research needs in this field are 
also discussed.
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1  Introduction

Solar energy can provide more than three times the 
total primary energy supplied globally, as estimated 
by the International Energy Agency (IEA) [1]. Under 
clear-sky conditions at solar noon, the intensity 
of solar radiation on the Earth’s surface can reach 
approximately 1000 W/m2 [1]. However, this value 
fluctuates significantly depending on weather condi-
tions, geographic location, and time of year. Moreo-
ver, it is difficult to match the peak energy consump-
tion hours (mostly after sunset) related to human 
activities with the peak solar energy hours, or to 
cover energy needs during wintertime when sunlight 
is limited. Therefore, there is a need for energy stor-
age systems that can effectively utilise this abundant 
solar energy by storing it for interseasonal energy 
supply. Long-term energy storage is also needed for 
lower-grade thermal energy sources such as the waste 
heat that occurs from various industrial processes and 
which cannot always be utilised on-site [2, 3].

Thermochemical energy storage (TCES) describes 
the process by which thermal energy is stored in a 
material and can be released from it at a later time 
through reversible physical–chemical reactions [4]. 
Thus, two main cycles are distinguished in the pro-
cess; the charging cycle, during which the material 
is heated and thermal energy is stored in the bonds 
of the material through an endothermic reaction of 
decomposition, and the discharging cycle during 
which the reversible exothermic reaction is favoured 
under certain conditions and the stored energy is 
released. The process is summarised in (1 [5], where 
AB represents a solid reactant that decomposes to 
phases A and B upon heating (charging cycle); A is 
the solid phase in which the heat is stored, B is the 
released phase, most commonly a gas, and nA, nB, nAB 
are the stoichiometric coefficients). In the reverse 
reaction, heat is released when A and B come in con-
tact (discharging cycle).

The energy remains stored in the material until the 
conditions for the activation of the exothermic reac-
tions that will initiate the discharging process are met. 
This process is characterised by sorption phenomena 
during which a gas (sorbate) is absorbed into the bulk 
or adsorbed on the surface of a solid or liquid mate-
rial (sorbent) [3]. The molecules of the sorbate gas 
are bound to the sorbent by physical intermolecular 
forces (mainly Van der Waals and hydrogen bonding) 
and/or by stronger chemical bonds, the formation of 
which results in the heat release [6].

Water vapour is the most common gas used in 
thermochemical sorption reactions, especially for 
domestic interseasonal thermal energy storage, as it 
permits operation at low charging and discharging 
temperatures [7, 8]. Thus, for water sorption/desorp-
tion reactions, the AB in Eq.  1 normally represents 
hydrated salts, minerals, zeolites, and other ther-
mochemical energy storage materials, while A indi-
cates their dehydrated form and B the released water 
vapour. Figure 1A illustrates the working principle of 
water sorption TCES, where with the supply of heat, 
i.e. waste heat in hot dry air form, the thermochemi-
cal energy storage materials release water and store 
the heat within them as chemical energy; with the 
supply of water, i.e. cold moist air, the dehydrated 
thermochemical energy storage materials react with 
the water and discharge part of the stored heat as the 
reaction proceeds. The application of this mechanism 
in domestic heat storage/release is shown in Fig. 1B.

Apart from long-term thermal energy storage, 
TCES also entails higher energy density per volume 
of material and negligible heat losses compared to 
sensible and latent heat storage, which suggests that 
a lower volume of materials can be used to achieve 
similar energy storage capacity [10–12]. The con-
trollable charging/discharging processes in TCES 
materials make them suitable for long-term/seasonal 
thermal energy storage, improving the resilience and 
efficiency of the existing gas-centred and the emerg-
ing fully electric energy in buildings [13]. Although 
the thermochemical capacity of certain materials has 
been known since the 1960s [3], a growing interest 
in this research field has primarily emerged over the 
past decade due to the pressing need for decarbonisa-
tion of the energy and heat sector. This is reflected in 
the increasing number of publications on TCES since 

(1)nAB ∙ AB(s) + heat ↔ nA ∙ A(s) + nB ∙ B(g)
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2010, as shown in Fig.  2. It also demonstrates that 
this heat storage pathway is newer and less explored 
considering the overall research in thermal energy 
storage, which mainly concerns the more traditional 
methods of sensible and latent heat storage.

Often in the literature, the term sorption energy 
storage is used to describe the energy storage pro-
cesses during which physical sorption rather than 
chemical phenomena prevail [14], while in other 
cases, the term is used interchangeably with the 
term thermochemical energy storage. In this review, 
the term thermochemical energy storage is used to 
describe both the sorption and the chemical storage 
processes. In addition, different classifications of 
the TCES have been proposed in the literature over 

the past decade, the variations of which led Solé, 
Martorell [15] to the conclusion that further studies 
are needed to establish a clearer classification. The 
prevailing tendency is to categorise TCES based on 
the reactions that enable the thermal energy stor-
age and release. In this direction, [16] distinguished 
two broad categories of TCES, the first of which 
involves sorption phenomena, including adsorption 
and absorption, whereas the second involves chemi-
cal reactions. However, as noted by [17], adsorp-
tion concerns both physical and chemical bonding, 
known as physisorption and chemisorption respec-
tively, therefore, this categorisation might not draw 
an accurate distinction between the different TCES 
systems.

Fig. 1   A Working principles of water sorption TCES (top) and heat storage (top). B Domestic heat storage: heat release (bottom) [9]
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A categorisation of TCES based on the type of 
sorbent material has also been proposed [14, 18]. 
According to this, solid sorbents such as silica gel, 
zeolites, activated carbon and natural rocks are 
mainly involved in adsorption phenomena during the 

charging/discharging cycles, therefore, the energy 
in this case is stored and released through gas–solid 
reactions. On the other hand, in the case of liquid 
sorbent/sorbate pairs, such as the LiBr/H2O, KOH/
H2O, and CaCl2/H2O absorption is the prevailing 
mechanism and hence gas–liquid reactions take place. 
Salt hydrates/water vapour and ammoniates/ammonia 
pairs make up the third category of chemical sorbents 
according to [18] and [14], Although these sorbent/
sorbate pairs are also governed by solid/gas reactions, 
in this case, the chemical reactions that also take 
place outweigh the physical sorption processes, and 
due to the higher reaction enthalpies of the former 
higher heat storage density is achieved [14]. Finally, 
the fourth category concerns composite sorbents, 
which consist of solid sorbent materials (silica gel, 
zeolites etc.) loaded with chemical sorbents (i.e., salt 
hydrates). These composites combine the mechanical 
and chemical stability of the solid and the high stor-
age capacity of the chemical sorbents resulting in sta-
ble TCES materials with high energy storage density 
[19]. Scapino et  al. [20] further extended the previ-
ous classification, by distinguishing the chemical 
sorption reactions in weak chemisorption occurring 

Fig. 2   Publication progress on the research of thermochemi-
cal energy storage (TCES) compared to the overall research on 
thermal energy storage (TES). Source: Scopus, search “ther-
mal energy storage, and “thermochemical energy storage” for 
TES and TCES curves respectively. Database last accessed on 
11/11/2024

Fig. 3   Proposed classification of the TCES processes and materials. The materials highlighted in red are (related to) cementitious 
materials that are of interest for this review and are discussed in more detail
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when salt hydrates or ammoniates are the sorbents, 
and in strong chemisorption including metal hydride, 
redox and oxide-hydroxide or oxide-carbonate reac-
tions [20]. The gas–solid phenomena taking place in 
the latter are characterized by the breakage and for-
mation of stronger chemical bonds, entailing higher 
energy storage density compared to the decomposi-
tion (hydration/dehydration) reactions that occur in 
the salt hydrate and ammoniate sorbents.

Based on the above, a classification of the existing 
TCES systems is proposed in Fig. 3, which is devel-
oped by combining different sources from the litera-
ture [3, 14, 19–22], as each of them focused on one 
category or one part of the presented processes. The 
main materials of each category that have been used 
to date are also given as examples in Fig. 3.

Cementitious materials have been well-explored 
and applied in sensible and latent heat storage appli-
cations due to their low cost and durability at rela-
tively high temperatures. In recent years, their use 
in TCES has emerged as a response to the need for 
low-cost, low-embodied carbon and easy-to-operate 
TCES materials [3, 23]. Such technical requirements 
are not fully met by more common TCES materials 
such as salt hydrates [24, 25], zeolites [26], carbon-
ates [27], and hydroxides [28], despite their high 
energy density. Ettringite minerals [29–31], alkali-
activated geopolymer materials [32, 33], and cement-
based composites containing salt hydrates [2, 34] are 
the main examples of cementitious materials that 
have been investigated for TCES applications. Water 
vapour is commonly the gas phase in the gas–solid 
reactions that take place during the low-temperature 
charging/discharging of these materials. At the same 
time, limestone [10, 35], a widely used supplemen-
tary cementitious material (SCM), has been known 
for its TCES capacity through carbonation/decarbon-
ation reactions, which take place at high temperatures 
(600 °C) with CO2 as the main gas involved.

Different functional thermochemical heat stor-
age materials and physicochemical mechanisms are 
involved in these novel cementitious energy storage 
materials, resulting in diverse energy storage per-
formance and optimal application conditions. This 
review paper provides a summary of the technical 
background of the thermochemical energy storage 
technology, commonly used materials, and prototype 
designs. The state-of-the-art research development 

using cementitious materials for thermochemical 
energy/heat storage applications is reviewed and sys-
tematically compared in terms of their compositions, 
working conditions, energy storage performance, and 
durability/longevity. Technical recommendations are 
proposed for standardised characterisation and testing 
protocols of cementitious (composite) materials used 
for thermochemical heat storage. The current research 
challenges and future research needs in this field are 
also discussed.

2 � Cementitious materials for thermochemical 
heat storage

In this section, the design of cementitious materials 
for TCES, including their operating conditions and 
heat storage performance, as well as the design of 
prototypes for different types of cementitious mate-
rials is systematically reviewed and compared. The 
sample preparation, materials characterisation, and 
energy performance evaluation methods applied to 
the thermochemical cementitious materials are also 
reviewed and discussed in this section. The cementi-
tious materials include Portland cement-based mate-
rials, cementitious minerals, geopolymers, as well as 
source materials that exhibit hydraulic or pozzolanic 
behaviour, such as fly ash, blast furnace slag, and 
hydraulic lime. Table 1 summarises the performance 
of cementitious composites designed for TCES.

2.1 � Ettringite‑based materials

In ettringite-based materials, the heat is stored when 
ettringite is dried at a temperature below 100 °C. As 
a result of the drying process, water is lost leading 
to the transformation of ettringite to meta-ettringite, 
a material with much lower water content (endother-
mic process), as shown in Eq.  2. When combined 
again with water, physical adsorption of capillary 
water takes place at the start of the hydration (Van der 
Waals bonds), and meta-ettringite rehydrates to form 
ettringite (Eq.  3). Both these physical and chemi-
cal processes lead to the release of heat (exothermic 
processes) [30]. At temperatures higher than 100 °C, 
ettringite is commonly converted to monosulphate 
and sulphate hemihydrate, or hydrogarnet [39], thus 
the dehydration stage should take place at the temper-
atures below this threshold.
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As seen from Table  1, ettringite-based materials 
have the lowest operating temperatures among the 
cementitious materials (50–60 °C) [30, 39, 49], which 
makes them a particularly cost-effective heat stor-
age system. However, since ettringite can be decom-
posed at temperatures above 100  °C, its application 
in environments where higher temperatures might 
occur (e.g., utilisation of waste heat from industrial 
processes) is limited. The volumetric energy density 
of the ettringite-based materials, referring to the heat 
released during the discharging cycle, varies between 
61 and 176 kWh/m3 [29, 30, 37–40].

The susceptibility of ettringite-based heat stor-
age systems to decomposition and carbonation under 
humid conditions and in the presence of CO2 has 
been emphasized by many studies as the main dis-
advantage of these materials [39, 50]. One possible 
approach to improve the durability performance is via 
compositional optimisation. Blending calcium alumi-
nate cement with OPC (around 20wt.%) has shown 
improved resistance to carbonation under humid CO2 
conditions, thereby preserving storage capacity over 
multiple cycles [50]. Compared to common energy 
storage materials like zeolites that have very fast 
sorption kinetics and achieve instantaneous sorption 
equilibrium within microseconds, due to their low 
thermal conductivity and thermal diffusivity [30], the 
sorption and desorption kinetics of ettringite-based 
materials are slow, which becomes more significant at 
large-scale applications where large quantities of the 
material are used [39].

Finally, there is a hysteresis (difference between 
the enthalpy of desorption and sorption) noticed in 
all studies where ettringite was used. Honorio et  al. 
[31] studied the hysteresis of meta-ettringite sorption 
and found that the newly formed H-bonds contribute 
to the cohesion of the dried material, which made it 
difficult for water molecules to penetrate the struc-
ture upon rewetting, limiting its cyclic performance. 

(2)�������� ∶

Ettringite
(

30H2O
)

+ Heat → Metaettringite
(

12 H2O
)

+Water
(

18 H2O
)

(3)
����������� ∶

Metaettringite
(

12 H2O
)

+Water
(

18H2O
)

→ Ettringite
(

30H2O
)

+ Heat

However, using aerated or foamed calcium sulfoalu-
minate (CSA) cement can enhance water vapour dif-
fusion and thermal transport, improving hydration/
dehydration response times [51]. Since the devel-
opment of ettringite-based thermochemical energy 
storage materials is still at an early stage, innovative 
approaches, such as incorporating thermally conduc-
tive additives and combining them with fast-response 
water sorbents, could further enhance their practical 
viability.

2.2 � Cement composites with salts

Salt hydrates are largely studied due to their high 
energy density. However, they are prone to deliques-
cence and lose mechanical stability, leading to low 
cyclability [34]. Also, it has been shown that salt 
powders can easily agglomerate during hydration and 
therefore a host matrix is needed to minimise agglom-
eration and swelling [25, 42]. Overall, when it comes 
to salt hydrates for thermochemical energy storage, 
chemical and mechanical stability seem to be the 
main technical challenges that need to be investigated 
[42].

The key features for the host material are poros-
ity, mechanical stability, thermal conductivity, and 
economic viability [42]. The porous host matrix can 
be active or inactive in the thermal storage processes. 
Solid microporous sorbents, such as zeolites or silica 
gels, are characterised by a high level of hydrother-
mal stability, with higher power outputs and cycla-
bility, but lower energy density and higher cost [34]. 
Cementitious materials are generally porous enough 
to host a considerable amount of salt but their poros-
ity is not high enough to avoid problems with the 
water vapour flow during the charging cycle [34]. 
An improvement in the moisture diffusion can be 
achieved through the inclusion of thermally conduc-
tive inert materials such as expanded natural graphite 
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(ENG) [25], which can increase the thermal conduc-
tivity of the composite cementitious material at the 
same time. It has been shown that thermal conduc-
tivity is positively correlated with the reaction rate. 
Therefore, the inclusion of ENG would enable faster 
release and transfer of the stored heat during the dis-
charging process.

The salt-containing cement paste exhibits fast 
setting behaviour [34]. The salt-cement storage 
systems (Eq.  4) operate at low temperatures. The 
charging temperature changes according to the salt 
used: for example for SrCl2 it is 128 °C [42] and for 
MgSO4∙7H2O it is 80–140  °C [34]. Richter, Haber-
mann [52] analysed the performance of 308 salts 
with a hydration temperature above 150 °C, and con-
sidered CaSO4 and SrBr2 the most promising with 
SrBr2 performing the best in terms of cyclability 
[25]. There are also salt hydrate based waste materi-
als, like carnallite and bischofite, which are promising 
as they both contain the well investigated salt hydrate 
MgCl2•6H2O, so they could offer a promising alter-
native to the current concern regarding cost when 
using pure salt hydrates [25]. Almost all the studies 
devoted to low-temperature chemical energy storage 
(i.e., building applications) use salt hydrates [3, 6].

It is worth noting that, although the structural 
integration of salts into porous cementitious matri-
ces may appear similar to strategies used in shape-
stabilised phase change materials [53], the underly-
ing mechanisms differ significantly. In the systems 
discussed here, energy is stored and released through 
reversible chemical reactions, mostly via salt hydra-
tion/dehydration, rather than through latent heat stor-
age via phase changes.

2.3 � Geopolymers

The use of geopolymer composite materials for ther-
mochemical heat storage is an emerging new field that 
has recently attracted attention from academics. The 
main component of geopolymer materials, alkali alu-
minosilicate hydrate (N-A-S–H gels) has the capacity 
to undergo cyclic dehydration-rehydration processes 
at a temperature below 200 °C, enabling the release 
and storage of heat as chemical potential [32]. Dur-
ing these processes, an energy storage capacity of 

(4)Salt ⋅ xH2O(s) + Heat ⇄ Salt(s) + xH2O(g)

350 kW∙h/m3 (218 Wh/kg) at the charging tempera-
ture of 120 °C can be achieved [32]. The atomic-level 
investigation of the alkali-activated metakaolin using 
the neutron pair distribution function (nPDF) analysis 
also revealed that dehydration below 400 °C does not 
cause structural change to the aluminosilicate frame-
work [54], suggesting that geopolymer materials 
might also be suitable for medium-to-high tempera-
ture thermal energy storage.

The thermochemical energy storage performance 
of geopolymers is largely governed by their chemical 
composition and porous structures. Alkali alumino-
silicate hydrate gels with a lower Si/Al ratio result in 
higher maximal water uptake capacities (at equilib-
rium under RH 95%), while using sodium-based acti-
vators achieves a higher water uptake capacity when 
compared with activators with mixed alkalis (i.e., a 
mixture of sodium and potassium based activators) 
[32]. The use of siliceous activators could result in 
higher overall moisture diffusion coefficients, but may 
also lead to significant dehydration hysteresis between 
20 and 40% RH conditions due to complex pore con-
nectivity [32]. However, the delayed dehydration per-
formance could be overcome by optimising the charg-
ing (dehydration) conditions and choosing relative 
humidity conditions below 20%. Balancing between 
the maximal water uptake capacity and the hydration/
dehydration kinetics, sodium-based geopolymer gels 
with a bulk Si/Al ratio of around 1.5 exhibited prom-
ising performance as a standalone thermochemical 
energy storage material.

Thermochemical salt (i.e., CaCl2, MgSO4, K2CO3) 
impregnation might also have the capacity to further 
improve the thermochemical energy storage capac-
ity of geopolymer composites [33], similar to the salt 
impregnated zeolite [55], expanded clay [56], and 
metal–organic framework (MOF) [57]. Better chemi-
cal and thermal stability during the energy storage 
processes has also been observed in these composite 
materials. When comparing the energy storage capac-
ity and embodied carbon of commonly used materials 
for thermochemical energy storage, the plain geopol-
ymers can achieve heat storage capacity comparable 
to zeolite-13X and MOFs, but only possess 10% and 

(5)

Na2O ⋅ xAl2O3 ⋅ ySiO2 ⋅ nH2O(s)

+ Heat ⇄ Na2O

⋅ xAl2O3 ⋅ ySiO2(s) + nH2O(g)
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7% of the embodied carbon (compared to zeolite-13X 
and MOFs). In comparison with some of the com-
monly used thermochemical salt hydrates for domes-
tic heat storage (i.e., MgSO4, CaCl2 and K2CO3), 
the geopolymers exhibited similar storage capac-
ity to CaCl2 and higher capacity than K2CO3, but 
lower embodied carbon per unit mass. The very-low 
embodied carbon and satisfactory heat storage capac-
ity of the geopolymer materials make them extremely 
promising for high-performance, low-cost, thermally 
stable, carbon–neutral novel TCES composite mate-
rials. However, the fundamental understanding of 
the effects of intrinsic physical and chemical proper-
ties of the geopolymer materials on controlling their 
thermochemical heat storage performance is yet to be 
fully understood.

2.4 � Carbonates

The reversible reaction of calcium looping (CaL) has 
attracted more attention due to its high heat storage 
density (theoretically up to 3180 kJ⋅kg−1), high work-
ing temperature (650–1000  °C), non-toxic and low 
cost of heat storage materials such as limestone and 
dolomite [47, 58]. Due to the high operating tempera-
tures, these calcination/carbonation reactions have 
been primarily considered for applications in con-
centrating solar power (CSP) plants in which solar 
energy up to 1000 °C is directed by the heliostat mir-
rors to the receivers [59].

During the decomposition of CaCO3 particles 
(calcination), CaO and CO2 are produced and stored 
separately. It should be noted that part of the endo-
thermic energy that occurs during the decomposition 
translates into sensible heat energy in both reaction 
products, which can be instantly utilised with heat 
exchangers [60, 61]. The thermochemical energy is 
recovered by the exothermic carbonation reaction that 
occurs when bringing the stored CaO into contact 
with CO2, as described by Eq. 6.

The temperature at which the calcination/carbon-
ation reactions take place, and their duration vary in 
the literature. According to Ortiz, Tejada [61], cal-
cination temperatures above 930  °C are necessary 
for initiating decarbonation reactions in short resi-
dence times. However, harsh calcination conditions, 

(6)
CaO(s) + CO2(g) ⇄ CaCO3(s)ΔH = −178 kJ∕mol

with high temperatures and/or prolonged times may 
result in the sintering and agglomeration of the 
produced CaO particles, which would significantly 
reduce their surface area and as a result their reac-
tion potential with CO2 during carbonation [60]. 
The pore clogging effect that takes place during 
carbonation and results from the deposition of the 
CaCO3 layer on the CaO particles is another key 
parameter to consider in the calcination/carbona-
tion reactions, as the diffusivity of the CO2 in the 
CaO particles for their full carbonation is strongly 
dependent on this layer [62]. Therefore, mild condi-
tions (relatively low temperature) are suggested dur-
ing calcination, leading to more porous CaO parti-
cles, whereas fast carbonation kinetics are required 
for the maximum conversion of CaO to CaCO3 to 
take place before the reaction is controlled by the 
CO2 diffusion [60]. Similar observations were made 
by Setoodeh Jahromy, Jordan [10], where lower-
ing the decomposition temperature from 1150  °C 
to 880  °C resulted in improved fly ash-CO2 reac-
tions. While the calcination reaction of CaCO3 
proceeds at above 900  °C in pure CO2 it can take 
place at 700–750  °C in pure He or a mixed CO2/
He gas atmosphere [58]. The integration of He in 
the calciner enhances the thermal conductivity of 
the gas mixture and enhances the diffusivity of the 
produced CO2 in the mixture gas [60].

Benitez-Guerrero, Sarrion [60] found that the par-
ticle size of the natural carbonates can affect the pore 
structure of the CaO particles formed during calci-
nation, and consequently the plugging of the pores 
with CaCO3 during carbonation. In CaCO3 systems 
(limestone and marble) with particle sizes larger than 
45  μm larger pores were formed and were prone to 
clogging, while pores < 50 nm were formed in parti-
cle sizes below 45 μm, since sintering was reduced, 
allowing the diffusion of CO2. The study also found 
that the presence of the inert MgO in the natural 
carbonate materials, such as in dolomite, hindered 
the sintering and aggregation of the CaO particles, 
allowing for better CO2 diffusion even in larger par-
ticles [60]. On the other hand, particle sizes lower 
than 45–40 μm could result in cohesive powders with 
reduced flowability, which is important at the reactor 
scale [59]. Thus, the operating parameters must be 
optimized to reach a higher particle conversion and 
to avoid CaO-CO2 recombination into CaCO3 at the 
reactor outlet.
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Apart from the presence of MgO inert domains, 
an arrest of sintering and agglomeration was also 
noticed in the presence of silicate impurities in CaO 
and MgO particles derived from natural dolomite, 
resulting in better cyclability of the reagents [47]. The 
same principle is followed with the addition of Al2O3 
in CaO composites [63], while the injection of steam 
during calcination and carbonation reactions has also 
been shown to alleviate the sintering of CaO particles 
[64]. Recently, the possibility of direct solar absorp-
tion of Ca-based materials for their calcination has 
been explored, switching the focus on the solar radia-
tion absorbance capacity of the materials [35, 48]. 
For further improvement of this property the doping 
of the carbonate materials with dark inert additives, 
such as sludge and SiC [35], MnFe2O4 [65], and car-
bide slag [58] has been investigated in conjunction 
with their counter-sintering effect.

2.5 � Hydroxides

The hydration/dehydration of metal oxide and hydrate 
pairs such as CaO/Ca(OH)2, (7), and MgO/Mg(OH)2, 
(8), is a TCES pathway that demands lower tem-
peratures than the previously examined calcination/
carbonation process, as charging temperatures (dehy-
dration) are around 300–400  °C and discharging 
(hydration) close to 100–170 °C [46].

Schmidt and Linder [45] presented the energy bal-
ance in the oxide/hydroxide system during the charg-
ing and discharging processes, showed that approxi-
mately one-quarter of the heat released during CaO 
dehydration is sensible heat, with the remainder being 
thermochemical energy suitable for long-term stor-
age. The low particle size of the raw CaCO3, approxi-
mately 5 μm, can cause problems regarding the flowa-
bility of the particles at the reactor scale and various 
approaches have been proposed for improving the 
reactor conditions [66]. To address the flowability 
and handling challenges of hydroxide-based materi-
als in practical systems, recent research has explored 
pelletisation and granulation techniques to improve 
mechanical strength and reduce dust formation 
[11]. Further adaptation and optimisation of reactor 

(7)
CaO(s) + H2O(g) ⇌ Ca(OH)2(s) + ΔH = −104.4 kJ∕mol

(8)
MgO(s) + H2O(g) ⇌ Mg(OH)2(s) + ΔH = −81.02 kJ∕mol

designs could also help minimise the risk of agglom-
eration or segregation during thermal cycling [15]. 
However, a detailed discussion of reactor engineering 
is beyond the scope of this review.

3 � Test methods and conditions

Characterisation of the thermochemical storage mate-
rials can be examined at three different scales, at 
materials-level (small quantities of few milligrams), 
at reactor-level (larger quantities of few kilograms) 
and at system-level (full-scale projects) [16]. In this 
review, characterisation and evaluation methods for 
TCES materials from materials and reactor levels are 
reviewed and summarised.

3.1 � Material level

The experimental testing methods and testing param-
eters for characterising thermochemical energy stor-
age materials are summarised in Table 2.

3.1.1 � Material composition

At material level characterisation techniques such as 
XRD, FTIR and Raman spectroscopy are commonly 
applied for determining the composition of the raw 
and the synthesised materials used for TCES. These 
methods can allow the monitoring of the poten-
tial changes in the material composition, providing 
insights into the degree of decomposition or recom-
position of the materials during the charging and dis-
charging phases.

3.1.2 � Microstructure and pore characteristics

In addition to the composition, the microstructure 
of the materials, including their surface and pore 
structure properties, is crucial in the study of sorp-
tion phenomena. SEM images provide a view of the 
microstructure of materials, offering information on 
material density, pore structure, and connectivity, 
both of which can affect the kinetics of the gas sorp-
tion in the material and consequently the kinetics of 
the energy storage and release. More advanced imag-
ing techniques such as CT-scanning can also provide 
information about the inner structure of the material 
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without destroying it, as well as changes caused by 
repetitive cycles.

The pore structure of the bulk material is also stud-
ied and quantified with mercury intrusion porosimetry 
(MIP), which provides information on the size of the 
pores and their respective volume present in the mate-
rial. It is considered that higher porosity will result in 
improved vapour sorption performance, and conse-
quently higher energy efficiency of the TCES [40, 68]. 
However, the presence of voids in the material is also 
expected to lead to the reduction of thermal transfer 
properties such as thermal conductivity, thus leading 
to lower charging/discharging rates [69]. In addition 
to MIP, which focuses on the mesoscale pores range 
(Fig.  4 left), N2 sorption provides information for 
the porosity of the material at the nanoscale (Fig.  4 
right). This includes calculating the specific surface 
area using the Brunauer–Emmett–Teller (BET) mul-
tipoint method [47] and determining pore size distri-
bution and volume in the macropore (> 50  nm) and 
mesopore (2–50 nm) ranges [47]. In [35], the average 
absorptivity (%) was also calculated.

The high temperatures of the CaL process affect 
the textural properties of the Ca-rich materials, and 
there is an expected relation between the CaO car-
bonation conversion and SBET and pore volume, 
i.e., the lower values of SBET and pore volume were 
observed for the materials with lower CaO carbona-
tion conversion [35]. In addition, repeated carbona-
tion cycles can result in textural (surface) changes of 
the material (a reduction in SBET observed after 10 
cycles) meaning that pore blocking may be responsi-
ble for the decrease of CaO carbonation [35].

3.1.3 � Water vapour sorption

The vapour sorption kinetics of the material can be 
monitored with the dynamic vapor sorption (DVS) at 
given relative humidity and selected temperature. Since 
the method utilises water vapour to determine the sorp-
tion capacity of the material under certain conditions, 
it is not commonly used for studying the carbonation/
decarbonation and hydroxylation/dehydroxylation pro-
cesses. Ke and Baki [32] used DVS to study to study 

Table 2   Experimental testing methods and testing parameters for characterising thermochemical energy storage materials (all in 
powders)

Examined properties Charac-
terisation 
methods

Testing parameters References

Thermal analysis TGA​ Charging: from room temperature to the calcination tempera-
ture (725 °C), at 300 °C/min under helium atmosphere

Discharging: carbonation at 850 °C (temperature increase at 
300 °C/min) under pure CO2 atmosphere for 5 min

Benitez-Guerrero, Sarrion [60]

Charging: calcination at 750 °C under pure N2 for 5 min
Discharging: rise of temperature up to 883 °C and carbonation 

under pure CO2 at atmospheric pressure

Ortiz, Valverde [27]

Charging (calcination): 850 °C under a pure N2 atmosphere for 
10 min (1 L/min)

Discharging (carbonation): 850 °C under a pure CO2 atmos-
phere for 10 min (1 L/min)

Yang, Li [58]

DSC-TGA​ 50–410 °C under N2 atmosphere (40 L/min) at 10 K/min Ogorodova, Gritsenko [67]
25–80 °C for 5 h, 10 K/min under N2 flow (50 mL/min) Chen, Horgnies [50]
DSC analysis, two heating ramps
25 °C for 30 min, then ramped from 25 °C to 395 °C at 10 K/

min, held at 395 °C for 15 min and then cooled down to 
25 °C, then held at 25 °C for another 15 min and ramped to 
395 °C again at the same heating rate (second ramp)

Ke and Baki [32]

Water sorption DVS RT up to 400 °C and relative pressures from 0 up to 0.95 Lavagna, Burlon [34]
Samples pre-dried at 200 °C, then RH 0%–95% at 25 °C Ke and Baki [32]
Multiple cyclic swing between 0%RH and 95%RH, for evalu-

ating stability
Skevi, Ke [33]
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water sorption/desorption kinetics, such as water uptake 
capacity and diffusion coefficient, in addition to their 
cyclic sorption/desorption capacity (Fig. 5A). Addition-
ally, the method of producing water vapour and recov-
ering condensation energy significantly influences the 
maximum energy efficiency [3, 6].

3.1.4 � Thermal stability and activation energy

Thermogravimetric analysis (TGA) is commonly used 
to study carbonation and decarbonation reactions, as 
it enables clear identification of mass changes associ-
ated with calcination and carbonation processes in the 
material [60]. For other cementitious materials, TGA is 
widely applied to determine water content [42], and in 
the case of ettringite, which is particularly susceptible 
to carbonation, it is also used to evaluate thermal stabil-
ity [41]. To assess thermal energy storage density, dif-
ferential scanning calorimetry (DSC) is typically used 
in combination with TGA, providing complementary 
information on heat flow and mass change during ther-
mal cycling [32].

The activation energy of dehydrated thermochemical 
energy storage materials can be determined using both 
the Kissinger method [70] and the Ozawa method [71], 
as expressed by the Eqs. 9 and 10:

(9)Eactivation = R

d
(

ln
(

�∕T2
p

))

d
(

1∕Tp
) (Kissinger method)

where β, Tp, and R are heating rate (K/
min,) peak temperature (K) and gas constant 
(R = 8.314  J⋅K−1  mol−1). Figure  6A illustrates the 
differential thermogravimetric (DTG) results of geo-
polymer samples (primarily consist of N-A-S-H gels) 
under three different heating rates and the determined 
peak temperature (Tp) values. Figure 6B demonstrate 
an example of a typical two-cycle DSC measurement, 
where both the sensible heat capacity (at dry state) 
and the heat of hydration can be determined [32]. 
The activation energy of dehydration then can be cal-
culated using the linearisation curves of Kissinger 
method or the Ozawa method (Fig. 6C).

3.2 � Reactor level

3.2.1 � Reactor systems

Chemical reactors are used to perform thermochem-
ical energy storage. A recent review conducted by 
Solé et  al. critically assessed the different types of 
chemical reactors for thermochemical energy stor-
age [15], including packed bed reactors, fluidised 
bed reactors, open and closed reactors. The effec-
tive design of suitable reactors depending on the 
kinetic and thermochemical data of the chosen 
feedstock materials, as well as the working tem-
perature range, associated cost, and durability of the 

(10)

Eactivation = −0.4567 × R
d(log (�))

d
(

1∕Tp
) (Ozawa method)

Fig. 4   (left) pore volume of hydrated and dehydrated ettringite-based thermochemical energy storage materials measured by MIP 
[40]; (right) pore volume of different geopolymer-based thermochemical energy storage materials [32]
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materials. Two large groups of reactor systems can 
be distinguished, namely the open and closed reac-
tors [3, 73]. In the first one, the reactant material 
is not isolated from the environment [74, 75]. Fig-
ures 7 and 8 illustrate the lab-scale thermochemical 

energy storage reactor [37] and a pilot-scale proto-
type reactor system [76].

The efficiency of the packed bed reactor strongly 
depends on the heat transfer rate (Schaube et  al., 
2011), which can be improved with higher effective 

Fig. 5   A A typical two-cycle water sorption–desorption isotherm of geopolymer-based thermochemical energy storage materials, B 
powdered geopolymer samples in DVS sample holder for characterisation
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thermal conductivity of the reactant particles [46]. 
Fluidized bed reactors promise much larger heat 
transfer coefficients. However, the fluidization of the 
material also requires large gas volume flows, which 
reduces the energy efficiency of the storage process 
[45]. Current research in reactor design for the cal-
cium oxide/hydroxide system is mainly focused on 
moving and fluidised bed concepts, in preference to 

packed bed concepts, due to the necessity to reduce 
reactor cost [77].

3.2.2 � Particle size of the reactant

Increasing the material-fluid exchange surface area 
in the thermochemical reactor can improve the effi-
ciency of heat exchanges and the storage performance 

(A) (B)

(C)

Fig. 6   A Thermogravimetric results of a typical geopolymer 
N-A-S-H gel at three different heating rates, Tp refers to the 
peak decomposition temperature, from [32]. B DSC results a 
typical geopolymer N-A-S-H gel during two heating ramps as 

a function of time, from [32]. C An illustration of the lineari-
sation curves of Ozawa method and Kissinger method used to 
determine the activation energy of dehydration of the assessed 
samples, from [72]
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of the ettringite material [30]. Thus, the particle size 
of the bed material in the reactor plays a major role 
in the efficiency of the process by facilitating maxi-
mum gas diffusion [42]. Figure 6 shows the examples 
of zeolite and SrCl2-cement composite particles. The 
smaller the particle size, the higher sorption rate and 
hence the higher energy generation rate [42]. The 
same was also noted by N’Tsoukpoe, Restuccia [78], 
while [79] found that the wider particle size range 
significantly improved the thermal response of the 
materials, through improved packing. Similarly, the 
diffusion of CO2 molecules through the pores of the 
CaO particles has also been found to influence the 
efficiency of the carbonation reactor systems, as intra-
particle pore diffusion hinders carbonation for parti-
cles larger than about 300 µm, with the ideal particle 
size to capture CO2 being 100–300 µm [60]. In other 
studies 50  μm was considered the threshold [59]. 

In [46] the average size of the Mg(OH)2 used was 
240 μm, similarly to the 250 μm reported in [10]. On 
the other hand, pore-plugging is an important phe-
nomenon that can limit gas–solid reactions, particu-
larly if the pore size is not sufficiently large [60]. This 
is more pronounced when carbonation/decarbonation 
reactors are used, as carbonation conditions lead to a 
very fast buildup of a thick CaCO3 product layer on 
the surface of the CaO particles [60].

3.2.3 � Gas flow rate

In the thermochemical energy storage reactor, the 
gas flow rate also plays a crucial role in determining 
the energy storage performance by controlling the 
water adsorption kinetics in thermochemical salts and 
composites [40, 41, 68]  (Fig.  9). For cement-based 
composites with porous microstructures, their pore 
structures and pore tortuosity also play important 
roles. At high gas flow rates, the water molecules in 
the gas flow can reach the surface of thermochemical 
energy storage materials more quickly due to reduced 
external mass transfer resistance, generating a steeper 
surface concentration gradient. These phenomena 
can provide a stronger driving force for adsorption 
but may also reduce the overall degree of hydration 
if the humid gas flow is allowed to pass through the 
materials too quickly [25, 40, 68]. A slower flow rate 
of the humid gas can promote even water adsorp-
tion onto the thermochemical energy storage materi-
als within the reactor but might result in lower water 
adsorption kinetics and therefore lower heat release 
rate and slower temperature rise. To achieve optimal 

Fig. 7   A lab scale reactor for initial determination of the opti-
mal testing conditions [37]

Fig. 8   Schematic representation of a prototype TCES reactor system designed for ettringite-based thermochemical energy storage 
materials [51]
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thermochemical energy storage performance at the 
reactor level, optimising the gas flow rate through 
experimental trials is necessary.

4 � Recommendations and future research

To advance the field of thermochemical energy stor-
age (TCES) using cementitious materials, several key 
areas require further research. First, multi-scale mate-
rial characterization and examination are essential for 
designing and optimizing cement-based TCES mate-
rials. This involves not only understanding fundamen-
tal thermochemical properties at the material level, 
such as reaction kinetics, energy storage capacity, and 
cyclic stability, but also investigating the performance 
of these novel composite materials at the small reac-
tor level. Comparing results from both material and 
small reactor levels will provide valuable insights 
into the practical energy storage performance and 
efficiency. Moreover, while significant progress has 
been made at the material and small reactor scales, 
future research should also focus on evaluating the 
performance of cementitious TCES materials under 
real-world, dynamic environmental conditions. This 
includes conducting system-level measurements 
and evaluations, such as the energy consumption of 
the operating system (i.e., electric heater, hot water 
pump, humidifier) [80], heat loss during operation, 
overall energy efficiency [81], and estimated cost of 
electricity [82], etc. Investigating the effects of fluc-
tuating temperatures, humidity, and varying thermal 
loads is also crucial for translating laboratory suc-
cesses into reliable, scalable, and resilient energy 
storage solutions for practical applications. Addition-
ally, the optimisation of material synthesis and design 
processes will benefit from comprehensive analysis 
across all scales, including system-level evaluations.

Secondly, standardised testing programs and proto-
cols are vital for ensuring consistency and compara-
bility of results, which in turn supports the sustained 
development in this research area. This includes 
guidelines for sample preparation, testing conditions, 
and performance metrics, which can enable direct 
comparison between research carried out by differ-
ent researchers. The standardised lab-scale reactor 
designs can also facilitate reproducibility and scal-
ability of the TCES materials developed at the lab 
scale. The advancements in these areas can signifi-
cantly advance the understanding and practical appli-
cation of TCES using cementitious composites, con-
tributing to more efficient and reliable energy storage 
systems.

Finally, in order to gain a full picture of the sus-
tainability benefits of using cement-based materials 
for thermochemical energy storage, comprehensive 
life cycle assessment (LCA) studies of cementitious 
TCES materials should be conducted in future work. 
This includes comparing the sustainability of differ-
ent TCES materials, such as ettringite, calcium alu-
minate cements, and geopolymers, taking into consid-
eration their embodied carbon, operational lifespan, 
cyclability, and energy storage capacity. The com-
parative LCA studies can also support the selection 
of TCES material designs with the lowest life cycle 
environmental effects, enhancing energy resilience 
and sustainability in the built environment.

5 � Conclusions

This review highlights the significant progress and 
potential of cementitious materials, mainly ettring-
ite, calcium aluminate cements, and geopolymers, 
for thermochemical energy storage (TCES) applica-
tions. These materials offer high volumetric energy 

Fig. 9   Zeolite (left) and 
SrCl2-cement composite 
(right) particles [42]
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density and minimal heat losses during charging and 
discharging cycles, making them ideal for long-term 
and seasonal energy storage. A multi-scale examina-
tion approach is crucial for advancing this field. At 
the material level, mineralogy characterisation and 
microstructure analysis are commonly used. The 
basic energy storage performance, the energy storage 
density, can be characterised by combining thermo-
gravimetric analysis and differential scanning calo-
rimetry. The dynamic water vapour sorption test can 
provide insights into the energy storage kinetics of the 
material, including the reaction kinetics and energy 
efficiency, which helps to close the gap between the 
material-level and reactor-level performance. How-
ever, in order to gain a better picture of the energy 
storage performance at the system-level, systematic 
experiments investigating the effect of reaction condi-
tions (i.e., gas flow rate, inlet–outlet gas temperature 
and relative humidity) are also necessary. For future 
studies, standardization of testing techniques is neces-
sary to ensure consistency and comparability across 
studies. Establishing standardized protocols for the 
characterising and testing of TCES materials will 
facilitate the advancement of this research area.
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