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ABSTRACT

The growing demand for self-powered electronics, such as touch sensors and wearable devices, highlights the need for relia-
ble and efficient triboelectric systems. However, performance inconsistencies frequently originate from uncontrolled material

morphology and processing conditions. This study explores the processing-structure-performance relationships in polymer-

based triboelectric systems, focusing on poly(vinylidene fluoride) (PVDF). Through controlled experiments incorporating aux-
iliary materials, poly(3-hydroxybutyrate) (PHB) and carbon nanotubes (CNTs), and characterization via Differential Scanning
Calorimetry (DSC), polarized optical microscopy (POM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction
(XRD), and scanning electron microscopy (SEM), we demonstrate that triboelectric performance is primarily driven by crystal

size reduction rather than increased crystallinity. Additionally, optimized surface morphology, achieved through electrospin-

ning, significantly enhances output by balancing fiber diameter and defect density. This work establishes a systematic framework

for interpreting triboelectric behavior, emphasizes the need for standardization and morphological transparency, and provides

guidelines for designing high-performance devices via scalable fabrication methods.

1 | Introduction

Electronics are increasingly small, portable, and versatile,
driving a need for compact, low-power sensors for widespread
functions like navigation, motion tracking, and environmental
monitoring. However, powering these extensive sensor net-
works solely with batteries presents significant challenges re-
lated to cost, maintenance, and environmental impact [1]. To
address this, energy-harvesting sensors capable of converting
ambient energy into electrical signals are gaining attention.

Self-powered sensing has driven interest in energy-harvesting
technologies, with mechanical energy harvesting standing out
due to its abundance in daily environments [2-8]. Among these,
triboelectric sensors have gained attention for their simplicity,

low cost, and efficiency in converting mechanical stimuli into
electrical output [3-13]. These devices rely on contact electrifi-
cation, also known as triboelectricity, which arises from contact
or sliding between materials with different surface proper-
ties [6, 14-17].

Triboelectric devices can be simply built using a metal and a
polymer [18, 19]. Among various polymers, poly(vinylidene
fluoride) (PVDF) is particularly promising for triboelectric ap-
plications because of its strong electroactive behavior, often at-
tributed to its -phase conformation, and its high ranking in the
triboelectric series [6, 19-22].

Most polymers, including PVDF, are semicrystalline. While
the B-phase is frequently associated with enhanced charge
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generation in piezoelectric applications [23-33], its role in tri-
boelectric performance remains unclear. The influence of crys-
talline properties such as crystal size, crystalline phase (e.g., «
or 8), and degree of crystallinity has not been systematically ex-
plored in triboelectric systems.

In addition to crystalline properties, many studies incor-
porate fillers such as zinc oxide (ZnO), barium titanate
(BaTiO,), graphene, or multi-walled carbon nanotubes (CNT)
[21, 24, 34-39]. These are typically selected for their dielec-
tric properties or their ability to promote electroactive phases.
However, it remains unclear whether the filler addition influ-
ences fundamental material behavior or simply varies structural
changes.

Surface engineering strategies such as chemical etching, tem-
plating, and electrospinning have also been shown to enhance
charge generation by increasing surface area and roughness
[40-46]. Electrospinning, in particular, enables control over sur-
face morphology, making it a promising technique to tune tri-
boelectric behavior [44]. However, morphological defects such
as beads and irregular fibers, which are often overlooked, can
significantly reduce charge generation by disrupting uniform
charge distribution.

While surface morphology plays a critical role, its effect cannot
be fully understood without considering its interaction with the
underlying crystalline structure, especially in electroactive poly-
mers like PVDEF. Although PVDF's electroactivity is commonly
attributed to its S-phase in piezoelectric applications, this rela-
tionship may not directly translate to triboelectric systems. A
comprehensive understanding requires evaluating the 3-phase
in conjunction with other structural factors, such as crystal size
and surface morphology.

Although interest in triboelectric devices is growing, the rela-
tionships between processing, microstructure, and triboelec-
tric performance remain poorly defined. Fillers like CNTs are
widely used [47-56], yet their fundamental effects on material
structure and electrostatic behavior are often not isolated from
changes in morphology or crystallinity. While the triboelectric
effect has been known for centuries, its application in energy
harvesting and sensing technologies is relatively recent com-
pared to the more established use of piezoelectric devices [57].

This study aims to address these gaps by systematically inves-
tigating the effects of crystallinity, crystal size, and surface
morphology on the triboelectric response of PVDF in a single-
electrode mode device [58]. PVDF samples were processed
under controlled conditions to decouple these variables and to
isolate the influence of CNT addition.

The results show that crystallinity has minimal impact on out-
put, whereas smaller crystal sizes significantly enhance perfor-
mance. CNTs contributed only indirectly by acting as nucleating
agents. Surface morphology, on the other hand, was capable of
altering the triboelectric response by up to an order of magni-
tude. These findings establish a direct relationship between pro-
cessing conditions, microstructural features, and triboelectric
performance, providing valuable guidance for the development
of high-efficiency triboelectric sensors.

2 | Materials and Methods

The study was divided into three main experiments to evaluate
the effects of crystalline structure, filler addition, and surface
morphology on the generated voltage of a polymer.

The first experiment focused on the influence of crystalline
properties. Crystallinity and crystal size were independently
varied to assess their individual contributions to triboelectric
performance. This was first examined using a model polymer,
polyhydroxybutyrate (PHB), processed by compression molding,
and subsequently verified for polyvinylidene fluoride (PVDF).

The second experiment investigated the impact of filler addition
on generated voltage. Multi-walled carbon nanotubes (CNT)
were incorporated into PVDF composites to assess both the in-
trinsic effect of the filler and its role in further reducing crys-
tal size.

The third experiment explored the influence of surface morphol-
ogy. Electrospinning was used to fabricate polymer fibers, and
solution concentration was systematically varied to tune fiber
morphology and evaluate its effect on triboelectric performance.

2.1 | Materials

Pristine PHB was supplied by PHB Industrial under the trade
name Biocycle; PVDF was provided by Arkema as Kynar 741.
All polymers were used without additives to ensure that intrin-
sic material properties were isolated. CNTs were provided by
Nanocyl under the brand name NC7000. The solvents used for
electrospinning were N,N-dimethylformamide (DMF) supplied
by Fisher Chemical, with a purity of 99.8% and acetone from
LabChem, with 99.5% purity. For device assembly, conductive
copper tape and Kapton film were used as the electrode and sub-
strate, respectively.

2.2 | Experimental
2.2.1 | Compression Molding

Compression molding PHB and PVDF was conducted at 200.0°C
under 0.8 MPa for 10.0min, followed by 10.0MPa for an addi-
tional 10 min. Isothermal crystallization was carried out using
two procedures to independently vary crystallinity and crys-
tal size.

To isolate the crystallinity effect on the generated voltage, PHB
and PVDF crystal sizes were kept constant by quenching in a
5.0°C ice bath for 30.0min. Then, they were annealed for dif-
ferent durations as shown in Table 1. To isolate the crystal size
effect, PHB and PVDF samples with varying crystal sizes were
prepared via isothermal crystallization at varying times and
temperatures as shown in Table 2. To keep crystallinity consis-
tent, an annealing step was applied.

The distinct crystal sizes, ranging from the smallest
(Figure 1a) to the largest (Figure 1b) for PHB, and similarly
for PVDF (Figure 1c,d), were achieved through the isothermal
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TABLE1 | Isothermal crystallization and annealing parameters for evaluating the generated voltage as a function of crystallinity.

Crystallization Crystallization Annealing Annealing

Material temperature (°C) duration (min) temperature (°C) duration (min)
PHB 5.0 30.0 N.A. N.A.

5.0 30.0 120.0 0.5

5.0 30.0 120.0 1.0

5.0 30.0 120.0 24.0
PVDF 5.0 30.0 N.A. N.A.

5.0 30.0 145.0 1.0

5.0 30.0 145.0 6.0

5.0 30.0 145.0 24.0

TABLE 2 | Isothermal crystallization and annealing parameters for evaluating the generated voltage as a function of crystal size.

Crystallization Crystallization Annealing Annealing
Material temperature (°C) duration (min) temperature (°C) duration (min)
PHB 5.0 30.0 120.0 24.0
30.0 30.0 120.0 3.0
70.0 15.0 120.0 1.0
90.0 15.0 120.0 0.5
110.0 45.0 120.0 0.5
130.0 60.0 120.0 0.5
PVDF 5.0 30.0 145.0 24.0
30.0 30.0 145.0 12.0
140.0 30.0 145.0 0.5
150.0 15.0 145.0 0.5
150.0 60.0 145.0 0.25
150.0 120.0 145.0 0.25

crystallization protocols presented in Tables 1 and 2. The
smallest and largest crystal size of PHB ranged from 13.0pum
to 8.4mm. For PVDF, the crystal size ranged from 9.0 to
155.0 um.

2.2.2 | Carbon Nanotube Dispersion

CNTs were sonicated in acetone for 1h (Q700, Qsonica, USA,
ice bath), then mixed with dissolved PVDF. After solvent evapo-
ration, the solution was adjusted to a 7.0:3.0 (wt./wt.) DMF/ace-
tone ratio, with varying CNT concentrations (0.0-3.0wt.%). The
final mixture (18.0wt.% PVDF/CNT, 82.0wt.% solvents) was ei-
ther dried for compression molding or used for electrospinning.

To evaluate the intrinsic effect of CNT in the generated voltage,
the crystal size of the PVDF/CNT composites with different
CNT content was quenched to maintain a constant crystal size
(approximately 1um). To refine the crystalline structure, CNTs
were used to promote heterogeneous nucleation and reduce

crystal size. PVDF/CNT composites were prepared with varying
CNT concentrations and crystallized isothermally at 150.0°C for
120.0min to promote crystal growth.

2.2.3 | Electrospinning

To investigate the effect of surface morphology on generated
voltage, PVDF and PVDF/CNT were electrospun at concentra-
tions listed in Table 3. PVDF was dissolved in a 7.0:3.0 (wt./wt.)
DMF/acetone mixture. The PVDF/CNT solution obtained from
the previously described dispersion protocol was electrospun
as prepared. All solutions were stirred at 60.0°C for 3.0h and
cooled to room temperature before electrospinning.

Electrospinning was performed using a Fluidnatek LE-100
(Bioinicia, Spain) with a 27G needle emitter and a rotating drum
collector (1000.0rpm, 10.5m/s), covered with parchment paper
[59]. Key parameters are listed in Table 3. Nanofibers for device
fabrication were carefully detached from the substrate.
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FIGURE1 | Micrographs showing the effect of varying isothermal crystallization conditions on PHB: (a) 5.0°C, 30.0min; (b) 130.0°C, 60.0 min;
and on PVDF: (c) 5.0°C, 30.0min; (d) 150.0°C, 120.0 min. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 | Electrospinning parameters for the studied polymers.

Applied
Solution CNT concentration voltage Distance Flow rate Spinning
Material concentration (%) (%) (kv) (cm) (rLh™1) time (h)
PVDF 10.0, 12.0, 14.0, 16.0, 0.0 22.0 20.0 1500.0 3.0
18.0, 20.0, 22.0,
24.0, and 26.0
PVDF/CNT 18.0 0.0, 0.25, 0.5, 0.75, 22.0 20.0 1500.0 3.0

1.0, and 3.0

Fiber morphology was assessed based on defects and diameter
variation. Defects were defined as features exceeding the average
fiber diameter, such as oversized fibers or beads. Figure 2 presents
a typical image of electrospun fibers obtained from an 18.0wt.%
PVDF solution, with an average diameter of 258.0nm. We ana-
lyzed these images to identify fiber diameters and quantify de-
fects. Defects were defined as fibers with diameters significantly
above the average for their respective solution (e.g., 850.0nm in
Figure 2a) and the presence of beads (e.g., 5.1 um in Figure 2b).

2.2.4 | Triboelectric Device Assembly

Triboelectric devices were assembled in single-electrode mode,
where only the bottom electrode is connected to the measuring
system [2, 4, 33, 58]. These devices consist of a conductive sub-
strate attached to the electroactive polymer (bottom electrode),
while the top electrode may be absent or composed of a metal-
coated substrate.

D49  x1.0k 100 um

FIGURE 2 | Typical morphologies of bead (a) and large fiber (b).
[Color figure can be viewed at wileyonlinelibrary.com]
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A schematic design and photograph of the assembly are pre-
sented in Figure 3. It consisted of two electrodes: a Kapton film
with copper tape (top electrode) and a Kapton film with cop-
per tape, as well as an electroactive material, PHB, PVDF, and
PVDF/CNT (bottom electrode). Aluminum wires connected the
device to the circuit. The geometry included a 10.0 X 10.0 mm ac-
tive area, 2.0mm electrode spacing, and sample thicknesses of
1.0mm (compression-molded) and 0.1 mm (electrospun).

2.3 | Characterization
2.3.1 | Differential Scanning Calorimetry: Crystallinity

Crystallinity of PHB and PVDF was measured using a DSC 2500
(TA Instruments, Newcastle, DE, USA). The samples were en-
capsulated in standard aluminum pans and lids. Under nitrogen
atmosphere, the samples were heated from 40.0°C to 200.0°C at
a rate of 10.0°C min~!. The crystallinity was calculated based
on the sample melting enthalpy. Crystallinity [ y., Equation (1)]
was calculated from the first-heat enthalpy (AH;) using refer-
ence values for 100.0% crystalline materials (AH}) of: 146.07 gt
for PHB and 104.5Jg~! for PVDF [60, 61].

_ AH;
~ AH;

e % 100.0 % @

2.3.2 | Polarized Optical Microscopy: Crystal
Morphology of Compression-Molded Samples

The crystal morphology of the compression-molded sam-
ples was analyzed using polarized optical microscopy (POM)
with an Olympus BX51 microscope from Olympus Co., Japan,
equipped with a hot stage. Crystal sizes were measured using
Image]J software.

2.3.3 | Fourier Transform Infrared Spectroscopy:
B-Phase Fraction

Fourier transform infrared spectroscopy (FTIR) was performed
on PVDF and PVDF/CNT samples, processed via compression
molding and electrospinning, to assess $-phase fraction. Spectra
were acquired using a Spectrum Two FTIR spectrometer from
PerkinElmer, USA.

(@)

2.0 mm
0.1&1.0mm

SR Kapton Film
€ Copper tape
NNNSSS . plectroactive Material

__________________________

FIGURE 3 | (a) Device schematic; (b) Image of assembled device.
[Color figure can be viewed at wileyonlinelibrary.com]
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The (-phase fraction F(f) (Equation 2) was calculated by com-
paring the absorption peak intensities at 763.0cm™ (a-phase,
A,) and 840.0cm™ (f-phase, Ay), using an absorption coeffi-
cient ratio (K, / K,) of 1.26 [62].

Ay

Fp)= %

@

2.3.4 | X-Ray Diffraction: Crystal Morphology
of Electrospun Fibers

X-ray diffraction (XRD) was performed on electrospun fibers to
determine crystal size. Measurements were carried out using
an XRDynamic 500 diffractometer from Anton Paar, Graz,
Austria. Equipped with Cu Ka radiation, a step size of 0.01°, and
a 26 range of 10.0 to 45.0°. The average crystal size (D) was cal-
culated using the Scherrer equation (Equation 3) [63].

__09-4
p - cos@ &)

where D is the average crystal size (nm), A is the Cu Ka wave-
length (1.544), B, is the full-width at half-maximum (FWHM)
in radians, and 6 is the Bragg angle in radians.

2.3.5 | Scanning Electron Microscopy: Surface
Morphology of Electrospun Fibers

Electrospun fibers morphology was analyzed using scanning
electron microscopy (SEM) with a TM3000 microscope from
Hitachi, Japan. Samples were gold-coated, mounted on conduc-
tive carbon tape, and grounded with copper tape.

Fiber diameters and defect densities were quantified from
SEM images using ImageJ software. At least 100 measure-
ments were taken for fiber diameter analysis. Defect density
was quantified from SEM micrographs at 1000.0x magnifica-
tion. An initial control analysis across different regions indi-
cated less than 5% variation in defect counts, so subsequent
measurements were taken from a single representative micro-
graph per sample. Given the constant working distance used,
depth-of-field effects were negligible, and all samples were
collected after identical electrospinning durations to ensure
consistency.

2.3.6 | Oscilloscope: Triboelectric Response

The triboelectric response was measured using an InfiniiVision
DSOX3014T oscilloscope (Keysight, USA) with a 1.0MQ input
impedance. Measurements were conducted in open-circuit
mode. A force of 0.2N was repeatedly applied at 0.5 Hz by drop-
ping a weight from a height of 5.0cm onto the triboelectric de-
vice, inducing contact-separation cycles. This force is above the
minimum threshold for human touch detection (>0.1N), as re-
ported in previous studies [64-68]. For each sample, at least 10
measurements were done under ambient conditions (21.0°C and
40.0% humidity) and subsequently averaged to determine the
triboelectric response.
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3 | Results and Discussion

It is important to note that all measurements in this study were
performed under controlled conditions (21.0°C, 40.0% relative
humidity, 0.2N load). While this approach enabled isolation of
crystalline and morphological effects, environmental humidity
and repeated cycling are known to significantly influence tri-
boelectric response.

Previous studies have shown that high humidity can reduce
charge retention and stability [69, 70]. The present results should
therefore be interpreted within the controlled environment
used, and future work will systematically examine performance
under varying humidity (20%-80%) and long-term cycling to as-
sess sensor durability in practical conditions.

The applied load of 0.2 N is above the typical threshold for human
touch (>0.1N) [64-68], ensuring that the measurements approx-
imate practical tactile sensing scenarios. While implemented via

a controlled weight drop to maintain reproducibility, real finger
interactions may involve more complex dynamics, which could
be explored in future studies.

3.1 | The Impact of Crystalline Properties in
Triboelectric Response

When presenting the triboelectric series, the literature rarely
addresses how processing conditions and crystalline properties
influence triboelectric response [9, 71-74]. To investigate this,
PHB was selected as a model polymer due to its tunable crystal-
line properties and later compared with PVDF, a common elec-
troactive material.

Figure 4 shows the triboelectric response of PHB as a function of
crystallinity, with crystal size held constant at 13.0um. No sig-
nificant change in voltage was observed as crystallinity varied
from 65.0% to 79.0%, indicating that crystallinity alone does not
influence charge generation when crystal size is fixed.

In contrast, Figure 5 illustrates a strong dependence on crystal
size: at constant crystallinity (77.8%), the triboelectric response
increased significantly as crystal size decreased, rising from
11.0mV at 8.4mm to 229.2mV at 13.0um. This result confirms
that crystal size is a key factor in triboelectric performance
for PHB.

A similar trend was observed for PVDF. When crystal size
(8.2 um) and B-phase fraction (30.0%) were held constant, vari-
ations in crystallinity from 44.0% to 60.5% had minimal im-
pact on the generated voltage. However, reducing crystal size
from 155.0 to 9.0 um, while maintaining constant crystallinity
(59.6%) and -phase fraction (35.7%), led to a fivefold increase
in generated voltage (from 34.7 to 171.3mV). These results
further reinforce the conclusion that crystal size, rather than
crystallinity, governs triboelectric performance in semicrys-
talline polymers.

While direct correlations between crystal size and triboelectric
response are rare, comparable behavior has been reported in
electret studies. For example, smaller crystal sizes in polypropyl-
ene enhanced charge retention [74, 75]. This is consistent with
theoretical models suggesting that smaller crystals, by introduc-
ing more grain boundaries, reduce charge mobility and facilitate
interfacial charge trapping [9, 76-78].

3.2 | Influence of CNT Concentration on
the Triboelectric Response of PVDF/CNT
Composites

Many CNT-based triboelectric devices reported in the literature
attribute performance enhancements solely to the presence of
CNTs, often without accounting for morphological or structural
variations introduced during processing [36, 49, 79, 80]. This
makes it difficult to isolate the intrinsic contribution of CNTs to
triboelectric behavior.

To address this, CNT concentration was varied while keeping crys-
tal size constant by quenching the samples. As shown in Figure 6a,

6 of 12

Journal of Applied Polymer Science, 2025

B5UB17 SUOLILLIOD SAIERID 3(ded! dde au) Aq pauLBA0B 88 s3I YO B8N JO S3IMU 10J A1q 1T 8UIIUO A1 UO (SO NIPUD-PUR-SLUIBY/WI0D A8 | 1M Ae1q 1 U IUO//:SaNY) SUONIPUOD PUe WS L L) 89S *[G202/TT/ET] uo ARiqiauluo As|im ‘e vedns a1fojouyss | 8@ 81093 Aq 52085 dde/z00T 0T/10p/wod A 1M Afe.q 1 jpu Juo//SdiL Wouy papeoiumoq ‘0 ‘829v.60T



400 10°
---M--- Voltage p 102
---W--- Crystal size 3
300 1
a 1
é T ---------------------- E ................................... 2 10°
&, 200
S 1
° 410
> e
................................... 102
100 | 3
4107
0 1 1 1 1 1 L 1 ] 10—-1
0.0 0.5 1.0 15 20 25 3.0

(a)

CNT Concentration (%owt.)

Crystal size (um)

400
300
-
g,200 -
£
;g 1%CNT
3%CNT | e 05%CNT
100 P 2
0.75% CNT
* 025% CNT 0% CNT]
0 ol " " a2 ool " " P T | "
(b) 1 10 100
Crystal size (um)

FIGURE 6 | PVDF/CNT generated voltage as a function of (a) CNT concentration; (b) crystal size. [Color figure can be viewed at wileyonlineli-

brary.com]

the generated voltage remained nearly constant (136.0mV), as did
the crystal size (1.2 um), across all CNT concentrations tested. This
indicates that CNTs have no direct intrinsic effect on triboelectric
performance when surface morphology is controlled.

In contrast, when crystallization happened under favorable con-
ditions (150°C, 120min), CNTs promoted nucleation and altered
the crystalline structure. Figure 6b shows that increasing CNT
content from 0.0 to 1.0wt.% reduced crystal size from 155.0 to
1.2um, while the triboelectric response increased from 34.7 to
135.0mV.

This trend is similar to the behavior observed for both PHB and
PVDF, further confirming that the performance enhancement
results from crystal size reduction rather than CNT content it-
self. Beyond 1.0wt.% CNT, changes in crystal size and generated
voltage were minimal, reinforcing the conclusion that CNTs in-
fluence triboelectric performance indirectly through nucleation
effects.

3.3 | Surface Morphology and Generated Voltage
in Electrospun Fibers

Processing conditions, particularly those affecting surface
morphology, have a strong influence on triboelectric perfor-
mance, as highlighted in previous studies where electrospun
PVDF/graphene outperformed spin-coated films by over 100%
[49, 81, 82]. To further explore this, the effects of defect density
and fiber diameter were investigated in electrospun PVDF and
PVDF/CNT composites, while controlling for microstructural
variables. Crystal size and §-phase fraction were kept constant
at 52.5nm and 82.8%, respectively, across PVDF and PVDF/
CNT samples to isolate morphological effects.

As shown in Figure 7, reducing defect density led to a sub-
stantial increase in generated voltage. For neat PVDF, voltage
increased from 55.3mV at 10.1x10? defects mm~2 (10.0wt.%)
to 764.4mV at 0.4x10° defects mm~2 (18.0wt.%), representing

a 14-fold enhancement. However, at higher concentrations
(20.0-22.0wt.%), defect density dropped, and the response de-
clined to 147.6 mV. A similar trend was observed in PVDF/CNT
composites, where increasing CNT content (0.25-3.0wt.%) at
fixed PVDF concentration (18.0wt.%) raised defect density and
reduced output voltage from 299.0mV (2.3 x 103 defects mm~2)
t0 107.9mV (6.4 X 103 defects mm~2).

As previously shown, the intrinsic effect of CNTs can be de-
coupled from performance, confirming that the observed trend
in Figure 7 arises solely from changes in surface morphology.
These results indicate that both systems are highly sensitive to
surface defect density, and optimal performance is achieved at
intermediate levels where defects are minimized but not entirely
eliminated.

Fiber diameter also critically affects performance. As provided
in the Supporting Information, Figure S1 shows that for pure
PVDF samples, the fiber diameter increases with increasing
polymer concentration. In contrast, for the PVDF/CNT compos-
ite, fiber diameter decreases as the CNT concentration rises, as
shown in Figure S2. This variation, however, is not as signifi-
cant as that observed for the pure polymer.

Using the same samples analyzed for defect density, Figure 8
shows that generated voltage increased with fiber diameter,
peaking at 764.4mV for 258.0nm (18.0wt.%), and then declined
to 147.6mV at 815.0nm (22.0wt.%). PVDF/CNT composites
followed a similar trend, with a maximum output of 299.0mV
at 155nm (0.25wt.% CNT). This behavior suggests an optimal
fiber diameter range exists. Within this range, increased surface
area enhances charge transfer while minimizing defect-induced
charge loss.

A plausible explanation for the peak in triboelectric response
at intermediate concentrations relates to the effective crystal-
line surface available for charge transfer. At low concentrations
(10.0wt.%), the high defect density of 10.1x10° defects mm~2
limits charge uniformity and reduces the functional crystalline
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area, resulting in a low generated voltage of 55.3mV. At high
concentrations (22.0wt.%), although defect density decreases to
0.0 defects mm~2, the accompanying increase in fiber diameter
to 815.0nm lowers the total number of fibers per unit area. This
reduction in accessible crystalline domains corresponds to a
decline in generated voltage to 147.6 mV. The maximum perfor-
mance is observed at 18.0wt.% PVDF, where a defect density of
0.4 x 103 defects mm~2 and an average fiber diameter of 258.0 nm
combine to generate 764.4 mV.

Previous studies have attributed enhanced triboelectric per-
formance to increased $-phase content, particularly in P(VDF-
TrFE) copolymers or nanoparticle-modified PVDF composites
[47, 49, 52, 53, 83]. However, in those studies, $-phase varia-
tions were generally accompanied by changes in morphology
or crystal size, making it difficult to isolate their effects. In
the present work, the -phase fraction was intentionally kept

TABLE 4 | Comparative analysis between existing triboelectric
devices.

Generated  Voltage
Material voltage increase References
Silica gel/silver From 80.0 28.7% [50]
nanoparticles to 103.0V
PVDF/graphene  From 1087.0 39.0% [49]
to 1511.0V
PVDF/MosS, 75.0 and 60.0% [83]
120.0V
PVDEF/graphene  From 140.0 221.4% [53]
oxide to 450.0V
P(VDF-TrFE)/ 35.0 and 28.6% [47]
BTO 45.0V
PVDF From 34.7 2102.9% This study
to 764.4mV

constant across processing conditions, allowing the roles of
crystal size and morphology to be decoupled. Under these con-
ditions, variations in triboelectric response were independent
of B-phase content, highlighting that crystal size and surface
morphology are the primary factors influencing response in
this system.

Table 4 summarizes studies investigating modifications and
their impact on triboelectric performance. The studies were se-
lected based on the relevance of the structural changes exam-
ined. Although structural modifications were reported, they
were generally not identified as the primary cause of increased
generated voltage.

While changes in filler content, filler size, and surface morphol-
ogy have all been explored in studies presented in Table 4, the
trends indicate that surface morphology has the most signifi-
cant impact on triboelectric performance. In this study, when
comparing the two processing techniques, compression mold-
ing and electrospinning, the generated voltage ranged from 34.7
to 764.4mV, corresponding to a 2100% increase. This dramatic
enhancement, by more than an order of magnitude, further em-
phasizes the critical role of surface morphology in controlling
triboelectric response.

Together, these results demonstrate that optimal triboelectric
response arises from a balance between minimizing defects
and maintaining small fiber diameters, conditions that maxi-
mize the effective crystalline surface available for charge gen-
eration. This confirms that electrospun morphology, rather
than filler effects, is the dominant factor controlling device
performance.

4 | Conclusions
This study demonstrates that the generated voltage of semicrys-

talline polymer systems is primarily governed by crystal size
and surface morphology, rather than filler content alone. By
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isolating crystal size and morphology from the influence of the
B-phase, we observed that at the S-phase fractions investigated,
no direct correlation with triboelectric response was observed.
Instead, performance enhancement was dominated by crystal
size and morphology. CNTs contributed only indirectly, by pro-
moting nucleation and thereby reducing crystal size.

For the semicrystalline polymers studied, achievable crystal-
linity was limited to 44.0%-60.5% for PVDF and 65.0%-79.0%
for PHB to preserve consistent crystal morphology. The thermal
protocols explored this practical range while isolating crystal-
linity effects from crystal size. These results do not exclude the
possibility of different triboelectric behavior at lower crystallini-
ties (<40.0%), which should be investigated in future work.

In electrospun fibers, morphology emerged as a dominant factor.
Thin fibers (< 200.0 nm) formed at low concentrations exhibited
high defect densities (>0.8 x 103 defects mm~2 and > 500.0nm),
reducing performance. At high concentrations, fibers became
too thick (> 600.0 nm), also lowering the output despite minimal
defects. Optimal generated voltage was achieved at intermediate
fiber diameters with low defect density, emphasizing the impor-
tance of balancing these parameters.

These results indicate that maximum triboelectric output occurs
when the effective crystalline surface available for charge trans-
fer is maximized, which requires simultaneously minimizing
surface defects and avoiding excessively large fiber diameters.
This highlights that processing-controlled morphology, rather
than bulk crystallinity or chemical composition, is the critical
determinant of performance.

Overall, these findings highlight the critical role of processing—
structure-performance relationships in optimizing triboelectric
devices and the limitations of interpreting results based solely
on chemical composition or triboelectric series rankings with-
out accounting for microstructural context.
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