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Abstract

The neural architecture search technique is used to automate the engineering of neural
network models. Several studies have applied this approach, mainly in the fields of image
processing and natural language processing. Its application generally requires very long
computing times before converging on the optimal architecture. This study proposes a
hybrid approach that combines transfer learning and dynamic search space adaptation
(TL-DSS) to reduce the architecture search time. To validate this approach, Long Short-Term
Memory (LSTM) models were designed using different evolutionary algorithms, including
artificial bee colony (ABC), genetic algorithm (GA), differential evolution (DE), and particle
swarm optimization (PSO), which were developed to predict trends in global horizontal
irradiation data. The performance measures of this approach include the performance of
the proposed models, as evaluated via RMSE over a 24-h prediction window of the solar
irradiance data trend on one hand, and CPU search time on the other. The results show that,
in addition to reducing the search time by up to 89.09% depending on the search algorithm,
the proposed approach enables the creation of models that are up to 99% more accurate
than the non-enhanced approach. This study demonstrates that it is possible to reduce the
search time of a neural architecture while ensuring that models achieve good performance.

Keywords: dynamic search space; evolutionary algorithms; long short-term memory;
neural architecture search; transfer learning

1. Introduction

Designing and fine-tuning a suitable deep neural network (DNN) architecture has
grown increasingly complex as applications demand ever more sophisticated models [1,2].
The common challenge lies in searching large, high-dimensional design spaces of layer
configurations, hyperparameters, and connectivity patterns [3,4]. Conventional neural ar-
chitecture search (NAS) methods address this problem by exhaustively or semi-exhaustively
exploring candidate models [4]. However, doing so often proves computationally pro-
hibitive [5]. Studies that adopt NAS frequently fail to address search-space redundancy,
inadvertently prolonging search times for candidate architectures that offer only marginal
gains [6,7]. Even more efficient search strategies frequently overlook how to prune un-
productive subspaces or how to leverage knowledge gained from previously trained
candidates [3].
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To overcome these limitations, this work proposes a novel hybrid adaptive NAS
approach which is specifically designed for global horizontal irradiance (GHI) trend fore-
casting. GHI is the total amount of solar radiation received per unit area by a horizontal
surface on Earth, including both direct sunlight and diffuse sky radiation. GHI measures
the solar power available on a flat surface, which is crucial for solar energy production. It
influences the dimensioning of renewable energy systems and is used in solar panels and
energy storage sizing [8]. Accurate prediction of GHI assists in the design and optimization
of solar power systems, ensuring that they are efficient and cost-effective. Historical GHI
data are available from the National Solar Radiation Database managed by the National
Renewable Energy Laboratory and the Modern Era Retrospective Analysis for Research
and Applications, Version 2 (MERRA-2), of NASA. GHI data can also be purchased from
non-governmental sources such as the OpenWeather database [9].

The primary contributions of the proposed method encompass the following:

*  Dynamic adaptation of the search spaces (DSS): In this study, we progressively re-
fine the search space based on interim best models, preventing the exploration of
redundant architectures and speeding up convergence;

*  Reduction of exploration time via transfer learning (TL) and extrapolation techniques
applied to the learning curve: The knowledge gained by high-performing architectures
in initial phases is reused in subsequent generations, thus reducing time and resources,
and training for unpromising candidate models is terminated early;

*  The design of high-performance architectures through intelligent adaptive exploration.

Deep learning techniques are currently used in GHI prediction [10,11]. However,
the effectiveness of these techniques depends on factors such as the neural network struc-
ture and hyperparameter tuning [12]. The selection and tuning of a suitable prediction
model architecture is essential in deep learning applications [1]. Combining adaptive
exploration, transfer learning, and extrapolation, the proposed NAS drastically reduces the
architecture’s search time while maintaining high prediction accuracy. Our contributions
unify multiple techniques into a single framework that accommodates complex, evolving
models with lower computational overhead.

Experiments on historical datasets underscore the advantages of this hybrid approach.
The method balances search efficiency by focusing on the most promising candidate archi-
tectures and predictive performance, as demonstrated by the RMSE score and significantly
reduced NAS runtimes. This study shows that an intelligently curated, adaptive NAS can
deliver high-performing and computationally feasible deep learning solutions.

The remainder of this paper is organized as follows. Section 2 focuses on definitions
of neural architecture search. Section 3 presents the proposed approach. Section 4 presents
the study data and results and discusses them. Section 5 summarizes the conclusions and
offers proposals for future work.

2. Neural Architecture Search

NAS is a type of search technique for refining a predictive model such that it best rep-
resents the training data [2]. Similar to most search techniques, NAS has three components:
(i) a search space containing feasible and unfeasible candidate architectures; (ii) a search
strategy to explore the search space; and (iii) a performance estimation strategy, which
is applied to the candidate architectures to provide feedback to the search strategy [3].
The following subsections provide an overview of these components in the context of
GHI prediction.
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2.1. Architecture Search Space

An architecture search space is used to determine which neural architectures are
represented. A neural architecture can be defined as a three-tuple (a = (L, NL, Ha)), where
L is the set of neural layers, NL is the number of neural layers constituting the architecture,
and H is the set of hyperparameters belonging to neural architectures. Each architecture
can have a different number of neurons, activation functions, dropout rates, learning
rates, and batch sizes. Note that NL is not necessarily equal to the cardinality of the set
L. From the above description, this study considers a search space S as a collection of
neural architectures S = {al,42,...}. Figure 1 provides a conceptual representation of a
search space with NL = 6 neural layers, each having a different number of LSTM cells and
hyperparameters. Part (S) of this figure is the initial state, where each layer can connect
with others. It is a set of possible layers based on the space parameters. Part (a) shows a
possible candidate architecture produced by a sample search strategy.

®) (a)

Figure 1. (S) Search space and (a) a possible candidate architecture.

The definition of a candidate architecture 2 € S depends on the values of its parameters,
which in turn allow for definition of its characteristics.

2.2. Search Strategy

When building a neural architecture, a search strategy is used to explore the
search space. It is responsible for ordering and connecting the layers L and select-
ing the architecture’s hyperparameter values. Given a collection of hyperparameters
H ={Hy,Hy,...,H NL }, we wish to find an architecture that minimizes an objective func-
tion f by selecting the appropriate hyperparameters H € H (Equation (1)),

argmin f(a,H;), i=12,...,Np (1)
a€s
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As in most search-oriented approaches, the function f guides the search strategy when
exploring the search space. Most NAS strategies design a neural architecture by adding
layers sequentially. An effective strategy would both avoid being trapped in local optima
and have a fast execution time. Algorithms such as Bayesian optimization, evolutionary
optimization, and reinforcement learning are currently used as search strategies [13]. In
this context, the use of metaheuristic algorithms was proposed. This approach should
enable the identification of an ideal compromise between exploring new architectures and
leveraging existing ones. Thus, by defining h* as the hyperparameters identifying the best
architecture being sought, the search strategy is defined by Equation (2):

h* = argmin f(a,h*) ()
aes

The objective of the search strategy is to determine the vector of hyperparameters h*,
which minimizes the objective function f (representing the root mean squared error in the
context of this study).

2.3. Performance Estimation Strategy

Computing the objective function in (Equation (2)) represents a significant bottleneck
regarding NAS execution time. The full training of neural architecture during the search
process is computationally expensive and memory intensive [3,14]. Training with a reduced
dataset can shorten execution time and often involves regularization techniques, such as
dropouts and weight decay, to prevent overfitting. This ensures the model generalizes well
to unseen data despite the dataset’s limited size. These methods, among others, enable deep
learning models to achieve significant performance on small datasets [6,15]. Based on the
above observation, this study proposes using transfer learning and learning curve extrapo-
lation techniques to estimate the objective function value. Transfer learning is a machine
learning concept in which a model previously developed for a specific task is reused as the
basis for creating a new model for another task. Initially, this technique is used when the
data labeled for the target task is scarce but abundant for another task. The application of
transfer learning aims to utilize the knowledge of the source domain from the basic model
to enhance learning in a second domain. This knowledge transfer is carried out by transfer-
ring the learned parameters, characteristics, and/or data representations from the original
domain to the present research field [16]. Learning curve extrapolation is a technique that
aims to predict the future performance of a model based on its past performance. It seeks
to optimize the training process by estimating the performance of later stages, thereby
reducing training wait time. This approach allows for learning about the continuation or
cessation of the model’s training [17]. Adriaensen, Rakotoarison et al. [18] employed this
approach to perform Bayesian inferences, predicting posterior distributions more accurately
and efficiently than Monte Carlo methods. Under the same logic, Chandrashekaran and
Lane [19] used learning curve extrapolation for hyperparameter optimization. In their
study, each earlier trajectory is used to predict the next one, thereby eliminating poorly
performing constructions and accelerating the search for hyperparameters. Let W be the
weights of the current best architecture 4 found during a search process. We can estimate
the weights of a new architecture by

W =W+ Aw 3)

where Aw represents the total weight of the new layers added to §. The weight refers to the
parameters within the network (architecture) that are adjusted during the training process
to minimize the error between the predicted output and the observed data. These weights
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are the scalar values multiplied by the input features or the output of neurons from the
previous layer. By assuming x as the input vector, the output vector z can be expressed as

z=Wx+b 4)

with W and b representing the matrix of weights and biases for a given layer. Extrapolating
the learning curve involves adding a stopping criterion during the training phase.

P(a,t) = P(a,t + At) (5)

In Equation (5), P is the learning loss for candidate architecture a € S at a given time t,
and At is the maximum time allowed. If the architecture does not improve, its training
process is stopped because extrapolation will lead to an almost identical value at the end of
its normal training cycle.

3. Proposed Approach of NAS Application

In the proposed approach, the methodology of designing neural architecture by ap-
plying NAS was adopted based on its demonstrated high capacity for hyperparameter
adjustment [20], the model training process for weight adjustment [5], and model de-
sign [21]. Neural architecture design involves the application of various metaheuristics
algorithms, including artificial bee colony (ABC), differential evolution (DE), genetic al-
gorithm (GA), and particle swarm optimization (PSO), due to their unique approaches to
solving optimization problems [22]. These methods have proven to be effective in manag-
ing high dimensionality in other fields. Zhou, Moayedi et al. [20] utilized ABC and PSO
to develop Multi-Layer Perceptron architectures for predicting heating and cooling loads
in residential buildings, achieving significantly greater accuracy than a natural design.
Civicioglu and Besdok [23] evaluated ABC, PSO, Cuckoo-search (CK), and DE for their
numerical problem-solving and found that DE provides more robust and accurate results
than ABC, PSO, and CK. Sossa et al. [24] studied ABC, PSO, and DE to design neural net-
work models for classification and pattern recall. Their work showed that these algorithms
were more accurate in their architectures than non-heuristic approaches. These works
have demonstrated their value in optimizing architectures to address extremely complex
problems. This study combines metaheuristic algorithms with LSTM models, which, unlike
RNN networks, can save information in their memories and, thus, be adapted for the pre-
diction of time series [25]. Metaheuristic algorithms are employed in this research solely to
construct the prediction model, i.e., to determine the optimal number of layers, the number
of units in each layer, the optimal learning rate value, and the optimal dropout rate value.
The model’s training is the sole responsibility of the backpropagation method [26]. This
section starts by presenting the LSTM model architecture, followed by steps that describe
the evolutionary algorithms studied in this research and their adoption in our approach.
This section ends with the application case and the evaluation strategies utilized to validate
the approach.

3.1. LSTM Model

LSTM (Long Short-Term Memory) models are a type of recurrent neural network
(RNN). Originally, RNN models were derived from the Hopfield network for storing and
associating models [27]. Recurrent neural networks are known for their ability to handle
most long-distance prediction problems [28]. However, the disappearance of gradients in
NN is one of the main reasons that led to the development of the LSTM model. This model
introduces internal trigger processes and memories for long-term information backup.
The core component of LSTM is the memory cell, which maintains information over long
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periods. This helps the network to remember important information and forget irrelevant
data. LSTMs use three types of gates to control the flow of information: (i) Input Gate
determines which information from the current input should be added to the memory cell;
(ii) Forget Gate decides what information should be discarded from the memory cell; and
(iii) Output Gate controls what information from the memory cell should be output at each
time step. The cell state acts as a conveyor belt, carrying relevant information through
the sequence. The gates regulate the cell state, ensuring that important information is
retained and irrelevant information is discarded. At each time step, LSTM processes the
input data, updates the cell state, and produces an output. This allows the network to learn
and remember patterns over long sequences. A detailed discussion on LSTM can be found
in [29].

3.2. Metaheuristic Algorithms

This research focuses on four metaheuristic optimization algorithms: ABC, GA, DE,
and PSO, which are described briefly in the following subsections. ABC performs a local
search through cooperative ‘bee’ behaviors, enabling a focused exploration around promis-
ing solutions. DE employs differential mutation, providing robustness and adaptability
in high-dimensional search spaces. GA relies on genetic crossover operators to maintain
an effective balance between diversity and intensification of the search. Finally, PSO uses
particle dynamics to rapidly converge toward the most promising regions of the search
space. The choice of these four metaheuristics covers a wide spectrum of exploration and
exploitation strategies.

3.2.1. Artificial Bee Colony

The ABC swarm intelligence algorithm is a metaheuristic optimization algorithm
inspired by bees’ foraging behavior [30,31]. Proposed in 2005 by Karaboga, the algorithm
consists of three types of bees: employee, following, and scout bees [30]. Each group
plays a crucial role in the search process. Employee bees are responsible for the overall
exploration of the optimization problem, while follower bees are responsible for developing
the best solutions. As for scout bees, their role is to put an end, when necessary, to the
process of developing bad solutions. Applying the ABC algorithm to optimize the LSTM
neural network architecture for predicting solar irradiance data begins with generating a
population of individuals. Each individual or candidate solution I; = {p;1, pio, ..., pip} is
characterized by a set of parameters of dimension D, including the number of neurons on
the input layer and the value of the learning rate, as well as several others. Each worker
bee is then assigned a candidate solution. At each generation, the bees explore the search
space around their current solution by modifying its parameters to discover new potential
solutions pl; = pix + Aik(pix — p]'k), where p’, is the new parameter value (for example,
the learning rate); A;x and pj represent the random coefficient used to update the value of
the parameter and a randomly chosen value of the same parameter different from pj; (the
current value of the parameter), respectively. Next, based on the new candidate solutions
provided by the worker bees, the observer or follower bees select the candidate architectures
that will be used for the next generation, evaluating them according to the fitness function,
in this case, the RMSE criterion. The scout bees’ role is to replace candidate architectures
that fail to improve after a certain number of generations with new, randomly-generated
candidate architectures.

3.2.2. Genetic Algorithm

Genetic algorithms (GAs) can be utilized to design an LSTM neural network architec-
ture for predicting solar irradiance. The genetic process of biological organisms inspires
these algorithms [32,33]. At each step, a genetic algorithm selects individuals from the
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current population to serve as parents and uses them to produce offspring for the next
generation. Over successive generations, the population evolves toward a better solution.

Each individual I¥ = { g’f, g’z‘, cee g}‘ } represents the candidate LSTM architecture to be

evaluated in predicting the solar irradiance data. Each I* is composed of genes gj,and kis
the generation number. The genes specify the values of hyperparameters, such as the num-
ber of neurons in a particular hidden layer, the type of activation function (ReLU, Sigmoid,
or Tanh), the value of the learning rate, and many other factors that define an individual’s
personality. A set of individuals P = {Ilk,i =1,..., n} is randomly generated at the start
of the search. This population of LSTM networks is then improved by applying the genetic
operators of crossover, mutation, and selection. Selection is based on the evaluation results
of the previous generation’s objective function for candidate architectures. For this research,
the objective criterion is represented by the RMSE function over a 24-h prediction window.
After evaluating the population of a given generation, only the architectures that meet a
specific passing condition, in this case, the individuals with a lower RMSE evaluation than
the previous best in memory (for k > 1), or a certain proportion of the best, will be selected.
This process is the selection phase. At the end of the selection phase, the algorithm applies
the crossover operation, which merges the previously selected individuals to form a new
individual. Finally, the algorithm applies the mutation operation to the children resulting
from the crossovers. This may modify the gene values, such as the number of neurons in
the first hidden layer or the learning rate value. The new candidate architecture population
is then formed for the next stage. This process is repeated until the stop condition is met.

3.2.3. Differential Evolution Algorithm

The differential evolution (DE) algorithm is a stochastic optimization method based
on population evolution. Inspired by genetic algorithm operations, including selection,
crossover, and mutation, this optimization method keeps the best particles unchanged from
one iteration to the next. In contrast, other particles are replaced by new ones thanks to
the above-mentioned operations [34]. This algorithm, therefore, implements four phases.
An initialization phase, to create a random population of particles, and selection, crossover,
and mutation phases, which give rise to the family of new particles to be evaluated. The al-
gorithm begins by generating a family of solution vectors x;,i = 1,..., N of dimensions
D, representing the number of parameters to be optimized. In its general context, a DE
algorithm is primarily inspired by the genetic algorithm and focuses particularly on its
mutation and crossover processes. In the context of this research, at each generation, the DE
algorithm creates a mutant vector m§t+1) for each of the individuals I i(t) in the population.
The mutant vector, therefore, represents a set of different values for the various parameters
used to construct the candidate architecture for predicting solar irradiance data. This vector
is created by adding the u-weighted difference between two or more randomly selected
individuals from the population to a final individual, also chosen randomly, thereby intro-
ducing diversity into the population. The process of forming the mutant vector from three
individuals can be described as mEtH) = LE” + X (Ib(t) - Ic(t) ) . By defining a combination
rate, certain parameters are federated with the parameters of the current individual. This
gives rise to a new set of individuals called the trial population. The DE algorithm then
selects individuals by comparing the results of the objective function, i.e., the RMSE results
of the current individual and its resulting trial. This selection defines the population to
be considered for the next iteration. This process is repeated until the stopping condition
is reached.
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3.2.4. Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic search algorithm. PSO is a multi-
agent parallel search optimization technique first presented in 1995 by Kennedy and

Eberhart [35]. This algorithm starts by randomly initializing the particles in the search space.
(0)

Each potential solution is called a particle, and each particle has a random position x;’ and

)
computing its new velocity (Equation (6)) and updating its position (Equation (7)).

velocity ZJZ(O at the start. As the algorithm unfolds, each particle adjusts its parameters by

oD = o) 4 c171(pbest; — xl-(t)) + cprp(gbest; — xft)) (6)

i i

£ () _ ) 4 o0 )

i
As with the previous methods, finding the best LSTM architecture begins with ran-

domly generating a set of individuals, known as particles. Each particle has a position

xi(t) at each time t representing the generation. The position defines the set of parameters

used to build the architecture. In other words, the position includes the number of neurons

()

on the layers and the values of the hyperparameters. The particle also has a velocity v; ’,
which defines the rate of change and the direction as it explores the search space for each
particle. Generation after generation, each particle stores the parameter values for its

(
i
over a 24-h prediction window, represented by pbest;. At each generation, the algorithm

solution x'") that obtains the best value of the objective function, the RMSE evaluation
updates the best position of the set of particles gbest(t ), Using the coefficients of inertia w,
confidence ¢ and ¢, as well as random values 1 and 1, between 0 and 1, the algorithm
defines the adjustments that need to be made to the various parameters, such as the number
of neurons in the input layer, the number of neurons in the hidden layers, the learning rate,
and many others, generation after generation. Ultimately, the final solution is considered
the best among the different particle solutions. Similar to the methods mentioned above,
the objective of the PSO application is to obtain the optimal architecture that strikes the
best compromise between the complexity of the architecture and its performance.

3.2.5. Hyperparameter Encoding and Tuning

In the proposed method framework (ABC, DE, GA, and PSO), each individual
in the population is represented by a “gene” vector encoding the neural network
architecture hyperparameters.

*  Neurons per input, hidden, and output layer (integer value): Governs model capacity
and the bias-variance trade-off;

*  Activation function (categorized as ReLU, Sigmoid, or Tanh): Affects nonlinearity,
convergence speed, and gradient stability;

* Learning rate (continuous value): Controls weight update magnitude, balancing
convergence speed and oscillations;

*  Number of stacked LSTM units (integer): Adjusts temporal depth and sequential
dependency modeling.

These hyperparameters capture the core dimensions of network complexity (capacity,
depth, and nonlinearity) and search strategy (diversification and intensification). Using a
uniform encoding across ABC, DE, GA, and PSO ensures fair comparison while leveraging
their complementary mechanisms.

3.3. Solution Approach

For the proposed approach, the goal is to find a high-performance architecture that
best represents the dataset and that can be achieved in a reasonable amount of time.
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To achieve these dual objectives, this study proposes an approach that dynamically adapts
the search space and then applies transfer learning to reduce the time spent on model
design. The methodology of this approach is illustrated in Figure 2. This study employs four
metaheuristic algorithms—ABC, DE, GA, and PSO—to evaluate the proposed approach.
The architectures are effectively the individuals these algorithms must optimize to obtain
the most suitable architecture. In other words, the design process begins with generating a
set of architectures. This set constitutes the first generation of the heuristic method.

These candidate architectures are then evaluated by applying the performance estima-
tion strategy of the neural architecture approach. Once this evaluation—which assesses the
suitability function of the designated optimization method—is completed, the algorithm
selects the architecture(s) with the best value of the suitability function according to its
evolution process when the stop condition has not been reached. The search policy defines
this stop condition. A new candidate architecture population is generated to produce
new individuals from the previous candidate architectures. The evaluation processes,
verification of the stop condition, and evolution of new populations continue until the
stop condition is met. When the stop condition is reached, the best individual, in this case,
the best architecture obtained, is used as the most representative model obtained by the
metaheuristic optimization method. This process allows these metaheuristic algorithms to
function as the main decision-makers of the architecture by reducing the researcher’s in-
volvement in defining the final size (the number of layers and number of cells in each layer)
of the prediction model to be designed, as well as the values of some hyperparameters
(learning rate and dropout rates). All these processes are presented in Figure 2.

The pseudocode presented in Algorithm 1, along with Figure 2, describes the operat-
ing sequence of the proposed approach. This approach ensures an optimal compromise
between search efficiency and predictive accuracy.

Algorithm 1 Hybrid NAS with Transfer Learning and Dynamic Search Space

0. Input: Initial population size N, training data Dy,in, validation data Dy, test data
Diest, stopping criteria ¢
Initialize: generation counter g < 1
Generate initial population Py
Evaluate Py using validation loss on D4
while stopping condition is not met (e.g., best score < ¢) do
Select useful individuals from P,_; for next generation
Update parameters, boundaries, and search space based on best individuals
Create new population P using evolutionary operations
Transfer learned weights from parent models to offspring models
Evaluate Pg on D4
10. g+ g+1
11. end while
12. Let m* < best individual from final population
13. Train m* on Dyain U Dygap
14. Evaluate final model m™* on Diest
15. Return final trained model m*

00NV LN

Dynamic Search Space (DSS)

The definition of the search space is a crucial aspect in the design of neural architecture
using the neural architecture search method [36]. This approach implements the definition
of a dynamic search space (DSS) around the best solution from one population to another.
In this search, the study defines S as the search space from which all possible candidate
architectures are derived. Each of the candidate architectures a € S is defined by a set of pa-
rameters 77. A fitness function then evaluates each architecture f(a, 7r). The evaluation step
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then identifies the best architecture a*, defined by its parameters 77*. Next, the proposed
approach performs calibration operations around the best 77* parameters to define the new
search space. The search space update expression can be represented by S’ = I'(S, *),
in which I is the adjustment function. This approach enables continuous adjustment of
the search space around the best architectures of previous populations as the search for the
optimal architecture progresses, allowing for the definition of architectures with increasing
numbers of layers while respecting the exploration stop condition. Thus, this process
allows for level-by-level evolution, avoiding the evaluation of highly complex architectures
from 0, which would likely not lead to the definition of the best overall architecture.

Generate initial population

!

Evaluate Population

Yes Stopping condition ?

No
\ 4
Building the model from the best Select useful individuals for the
individual next generation
a l N
Train and validate model on Train- Update Parameters, Boundaries
Validate data and Search Space
J J
l \ l N
Evaluate the model on Test data Create the nev.v set of arc!ntectures
New Population of architectures
J J

!

Transfer Learning from Parents to
Children

Figure 2. Methodology: Presents the steps involved in the metaheuristic algorithms, from defin-
ing the initial population to determining the best architecture. These steps demonstrate the dy-
namic adaptation of the search space and the transfer of learning from parent architectures to new
child architectures.
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3.4. Application and Evaluation

To evaluate and validate this approach, it was applied in the context of the trend predic-
tion of global horizontal irradiance data, and the CPU time required by each approach was
measured. The training sessions were conducted on a computer equipped with a 2.8 GHz
Intel processor and 16 GB of RAM. The computational performance was measured accord-
ing to the execution time of the program, as determined via the process_time() method in
the Python standard library, version 3.12.9. This method enabled the measurement of only
the CPU time consumed by the current process, excluding periods of inactivity. The result
returned is the time in seconds of the system mode. We eliminated the influence of any
irrelevant activity by recording the CPU time just before and just after each algorithm
run. The difference between these two times gives the CPU wait time for the program’s
execution. This measure allows us to show the impact of the proposed solution on search
time. However, to ensure that the time reduction this approach can enact does not have
a strong negative effect on the models” performance, performance measurements were
recorded. The performance evaluation of the candidate architectures was carried out using
the mean absolute error (MAE) and root mean squared error (RMSE). Equations (8) and (9)
(below) express these performance measures.

RMSE = vMSE = i(yi — 1i)? (8)

1
MAE = — } |y; — §il ©)
i=1

where y; and #; are the values of the original (observed) and predicted data, respectively. n
is the number of time series. Evaluation using MAE or RMSE means that the best models
obtain lower values.

4. Results and Discussion

This research focused on three areas, one after the other. The first focus was on grid
searching, with random searches for a high-performance architecture using the available
data. Next, a neural architecture search was conducted, as defined by a non-enhanced
approach using evolutionary algorithms. Finally, this study utilized the enhanced version
of the neural architecture search, incorporating transfer learning (TL) and adapting dy-
namic search spaces (DSSs). The subsections below present the data acquisition, modeling,
and parameters of the study, followed by the results of the three different approaches. This
section concludes with a comparison of the other approaches.

4.1. Data Acquisition and Modeling
4.1.1. Data Acquisition

For this research, we collected historical global horizontal irradiance (GHI) data using
Ecole de technologie supérieure’s main campus (Latitude: 45.4948273 and Longitude:
—73.5649115) as a reference point from the OpenWeather database [9]. The GHI data
ranged from 2010 to 2020, segmented into distinct periods. The portion from 2010 to 2019
was used to train and validate the model, and the portion from 2019 to 2020 was used
for the test phase. These time series data have several components: trend, seasonality,
and residues.

4.1.2. Data Modeling

As an important first step, special attention was invested in data pre-processing.
During this pre-processing phase, the data was cleaned, and the distribution of the missing
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data was carried out. The results of this first step showed that the missing data can qualify
as completely random missing data (MCAR). These missing data were then imputed by the
predictive mean matching (PMM) method [37]. Following the imputation of missing values
and the analysis of outliers, a process of modeling the time series was undertaken [38]. This
step enabled the decomposition of the data into a trend component, along with different
seasonal components of 24 h and 24 h x 7 days, as well as a residual component. This
method of decomposition, called multi-seasonal trend decomposition of time series (MSTL),
is defined by Equation (10) and is inspired by the Loess STL decomposition method. The
modeling method used in this study is the additive method.

N

V=T + 8 +8@ 4. s 4R, (10)

In Equation (10), Y; represents the data series at the moment ¢, Ti and R; represent the
trend and residuals of the series, respectively, and the seasonal components are represented
by SASO). Applying the MSTL multi-seasonal decomposition process to the time-series data
allows the components T, R¢, and SAEi), which compose it, to be obtained. The trend allows
for the representation of a long-term evolution of the series, the seasonality of the periodic
phenomenon within the identified period (day, week), and finally, through the errors or
residuals, the random component of the series. The second phase of data pre-processing
involved data standardization, a step that brings the data back to a uniform value scale.
Standardization is necessary before data analysis by the machine and deep learning models.
Equation (11) presents the standardization operation using the min-max method.

Xscaled = X7 Xmin (max — min) + min (11)
Xmax — X¥min

Calculating xg.,eq ensures that each variable is projected in the same interval of
values, preventing certain characteristics, with their higher amplitudes, from dominating
the learning phase. More precisely, the minimum value xp, is subtracted from each
observation x. The result is then divided by the original range (Xmax — Xmin) to obtain a
normalized value between 0 and 1. Finally, multiplication by (max — min) and the addition
of min rescales the result to the target interval [min, max]. This homogeneous scaling
operation facilitates model convergence and improves the robustness of estimates.

4.2. General Architecture Definition Parameters

This study considered a 12-h observation window (Loopback). The candidate ar-
chitectures were trained to use a batch size of 32, the Adam optimizer, and the Sigmoid
activation function, as outlined in Table 1 below. These specific parameter values were
obtained following a sensitivity analysis involving 6-, 12-, and 24-h loopbacks, batch sizes
of 16, 32, and 64, and two optimizers, Adam and Stochastic Gradient Descent (SGD). This
analysis was conducted to design an architecture best-suited to a portion of the data by
applying a genetic algorithm. This step was conducted in two stages, with the first fo-
cused on designing an architecture for some of the data. For this procedure, different
LSTM layers L = {LSTM(u),u € [32,512]} and varied loop back values were defined
(loopback = {6,12,24}). This stage identified a set of best architectures, which were then
evaluated in the second stage by varying the batch size (batchsize = {16, 32, 64}) and the op-
timizer between Adam and SGD. At the end of these experiments, the values that provided
the best RMSE prediction for 6, 12, 24, and 48 h were retained for the rest of the research
(Table 1).
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Table 1. Architecture training parameters.
Loopback Batch Size Optimizer Activation Function
12 32 Adam Sigmoid

Table 2 presents the different numbers of iterations and population sizes used to
search for the optimal architecture that minimizes the RMSE (root mean squared error).
The studied methods are all metaheuristic searches: artificial bee colony (ABC), differential
evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). During the
metaheuristic optimization, we performed five full search cycles on the initial population
and then reduced this to three cycles for each of the following populations. Each cycle
corresponds to one complete application of the algorithm’s operators (mutation, crossover,
and selection) rather than a training pass through the neural network. For all of the
generations, the population size was kept at 10. We adopted these default values to avoid
a lengthy exploration phase. However, for the grid search (GS), as the process is highly
random, we defined a time limit (At = 100 h) as a constraint, rather than the constraints
on iterations and population size.

Table 2. Search parameters.

Search Time Limit
CPU Time (h)

Metaheuristics 5and 3 10 -
Grid Search - 100

Method Iterations Population Size

Table 3 summarizes the different design parameters optimized by the metaheuristic
algorithms in this study. The learning rate, a crucial factor in weight adjustment during
model training via gradient descent optimization, determines the scale of weight updates.

Table 3. Search parameter boundaries.

Boundaries
Parameters
Metaheuristics Without DSS and TL Metaheuristics with DSS and TL  Grid Search
Number of LSTM layers 1-3 - 1-3
Number of LSTM units 64-128
Learning rate 0.0001-0.01
Dropout rate 0.0-0.5

Simultaneously, the dropout rate, specifying the proportion of randomly dropped
neurons in hidden layers, mitigates overfitting by enhancing the generalization capacity of
deep neural networks. Instead of using fixed values as the sensitivity step, the process used
them as the hyperparameters that metaheuristics should optimize. Additionally, based
on the results of the early phase of the sensitivity analysis, the number of LSTM units in
each layer was added as a constraint, with a range of 64 to 128 for both the metaheuristic
methods and the grid search approach. The proposed metaheuristic search does not restrict
the architecture’s depth; instead, it evolves as a parameter within the metaheuristic method
because the search space is updated step by step. However, for NAS without DSS and TL
and using the grid search approach, the maximum depth of the architecture was set to 3,
as defined in Table 3.
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4.3. Detailed Results of Four Approaches

This subsection presents the results of the various experiments carried out, and we
compare these approaches to demonstrate how the adopted approach can influence
GHI prediction.

4.3.1. Grid Search Results

Grid architecture search (GS) yielded the best architectures in various simulations,
with RMSE values of 0.0005 and 0.0015 for a 24-h prediction in two test cases, as specified
by the parameters listed in Table 4. GS realized these results after a maximum search time
of up to 100 CPU hours. The results of the GS evaluation over different forecast windows,
ranging from 6 to 72 h, are summarized in Table 5.

Although this approach may require a long exploration time, it can provide better
architectures, with an accuracy of 99% when the search intervals are well-defined. This
implies that the researcher has a deep knowledge of the field. Moreover, since this search
is entirely random, Table 5 shows that there is no guarantee of obtaining the same results
from two different runs. The accuracy of two different executions may vary significantly
due to the randomness of the approach.

Table 4. Grid search best models details.

Architecture  Learning Dropout

Method Test Case Depth Rate Rate RMSE-24
1 0.005 0.0 0.0005
GS-LSTM
1 0.0042 0.0 0.0015

Table 5. Grid search results for different forecasting windows.

Forecasting Window (h)

Test Case Criteria P 12 1 18 7
RMSE 0.0002 0.0003 0.0005 0.0008 0.0011
! MAE 0.0002 0.0003 0.0004 0.0007 0.0010
RMSE 0.0006 0.0009 0.0015 0.0027 0.0039
2 MAE 0.0006 0.0009 0.0014 0.0025 0.0035

4.3.2. Metaheuristics Results Without TL and DSS

The search time of the differential evolution (DE) method is considered the reference
time for evaluating other methods. This approach’s estimated time (CPU time) is 875 h,
34 min, and 57.1 s. Table 6 presents the results of the architectural search for the four
different methods adopted. It is clear that the genetic algorithm (GA) method is an optimal
architecture, with a reduction from the DE’s time to 5.66%, i.e., 49 h, 35 min, and 40 s.
However, the best RMSE rating on a 24-h prediction was achieved by the DE method, which
was recorded at 0.0001. The third-ranked method was ABC-LSTM, with an evaluation of
0.0008 over 24 h of prediction and a time of 9.12% compared to that of the DE. PSO-LSTM
scored 0.0010, with an estimated relative time of 23.35% of the DE method. Although GA
has the shortest search time (5.66% of that of the DE method), it remains the method
with the lowest estimated evaluation score of 0.0014. In conclusion, it is essential to note
that, based on an assessment of the prediction, neural architecture search guided by the
evolutionary algorithm (DE) yields better results; however, it requires a significantly longer
search time. Therefore, the choice of algorithm guiding the search is a crucial aspect that
warrants serious attention and consideration of the desired objectives.
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Table 6. Results without TL and DSS.
Methods Evaluation Without Transfer Learning and Dynamic Search Space
Depth Learning Rate Dropout Rate RMSE24h MAE24h Relative CPU Time (%)
ABC-LSTM 3 0.0008 0.02 0.0002 0.0002 9.12
DE-LSTM 3 0.0066 0.3 0.0001 0.0001 100.0
GA-LSTM 2 0.0059 0.36 0.0014 0.0012 5.66
PSO-LSTM 2 0.0049 0.00 0.0010 0.0009 23.35
4.3.3. Metaheuristics Results with TL and DSS

The differential evolution (DE) method was also used as the reference for comparing
exploration CPU times when combined with TL and DSS approaches.

DE is the method that required the longest search time, estimated at 166 h, 16 min,
and 59 s. In this application, DE provides a better depth for a single architecture, with an
estimated RMSE rating of 0.0005 for a 24-h prediction window, as shown in Table 7. Com-
paratively, the best evaluation results in terms of search time were obtained by PSO, GA,
and ABC, in that order. PSO, with an estimated search time of 13.42% compared to that of
DE, had an RMSE of 0.0001, while GA had an RMSE of 0.0003, with an estimated search
time of 25.72%. ABC scored an RMSE of 0.0001, but with an estimated search time of
37.73% of the DE method’s time. Thus, the results indicate that applying the proposed ap-
proach allows for high-performance architectures to be obtained with significantly reduced
search times.

Table 7. Results with TL and DSS.
Evaluation with Transfer Learning and Dynamic Search Space
Methods Depth Learning Rate Dropout Rate RMSE24h MAE24h Relative CPU Time (%)
ABC-LSTM 2 0.0054 0.07 0.0001 0.0001 37.73
DE-LSTM 1 0.0039 0.00 0.0005 0.0004 100.0
GA-LSTM 2 0.0039 0.30 0.0003 0.0003 25.72
PSO-LSTM 1 0.0033 0.00 0.0001 0.0001 13.42

4.3.4. Comparison of the Results

We examined the different applications of grid search versus searches without it,
and then with the application of transfer learning and a dynamic search space in the GHI
trend prediction. The results show that GS scores well without TL and DSS. In a time-based
comparison with DE, GS has the third-lowest search time, at 11.94% compared to DE,
as shown in Table 8. The fourth position is occupied by the PSO method. While GS can
provide a good architecture based on the proposed architecture’s performance, because it
is a completely random process, it can often be less efficient. Moreover, compared to DE,
when transfer learning and the dynamic adaptation of the search space are incorporated,
the results show that the time set as a method stop condition is far higher than that of
the ABC, GA, and PSO methods. In addition, the performances of the models obtained
by using the ABC, DE, and PSO methods all improved with the inclusion of TL and DSS.
Thus, the results indicate that the application of transfer learning, coupled with a dynamic
adaptation of the search space, helps reduce search time and provides the architecture with
improved performance.

Table 9 compares approaches with and without transfer learning and dynamic search
space adaptation for all four methods: ABC, DE, GA, and PSO. It is immediately obvious
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that without TL and DSS, all four methods require the longest computation time. The re-
sults show that even for the GA and ABC approaches, which generally require less time,
the proposed approach reduces search time by 13.75 and 21.44%, respectively. This time
reduction can be significant for the DE and PSO methods at 81.01 and 89.09%, respectively.

Table 8. Comparisons between GS and NAS approaches.

Comparison Between GS Comparison Between GS
Methods and DE Without TL and DSS and DE with TL and DSS
Relative CPU Time (%) RMSE Relative CPU Time (%) RMSE
ABC-LSTM 9.12 0.0002 37.73 0.0001
DE-LSTM 100.0 0.0001 100.0 0.0005
GA-LSTM 5.66 0.0014 25.72 0.0003
PSO-LSTM 23.35 0.0010 13.42 0.0001
0.0005 0.0005
GA-LSTM 11.94 —_— 62.85 —_—
0.0015 0.0015
Table 9. Direct comparison between our approaches and a non-enhanced approach.
Comparison Between Approaches Without TL and DSS and Approaches with TL and DSS
Methods Without with
Reliative CPU RMSE Rel.ative CPU RMSE CPU Time Reduction (%)
Time (%) Time (%)
ABC-LSTM 100.0 0.0002 78.56 0.0001 21.44
DE-LSTM 100.0 0.0001 18.99 0.0005 81.01
GA-LSTM 100.0 0.0014 86.25 0.0003 13.75
PSO-LSTM 100.0 0.0010 10.91 0.0001 89.09

In addition, the results show that, among all the methods, only the DE-LSTM method
achieves an RMSE evaluation result without TL and DSS that is better than when apply-
ing TL and DSS, albeit with a very similar result, as shown in Table 9. Not only does
this approach reduce the search time, but it also yields the best results in evaluations
on the same dataset. Additionally, as presented in Tables 6 and 7 above, the depth of
architectures obtained without TL and DSS applications is greater than or equal to that
of architectures with TL and DSS. However, the complexity of the architecture does not
necessarily imply good adaptability to the data. Then, allowing methods to adapt and learn
from their parents enables rapid convergence and fewer complex architectures without
compromising accuracy.

Figures 3 and 4 (above) show, on the x-axis, the number of candidate architectures
evaluated by each algorithm according to the methodology adopted, and, on the y-axis,
the root mean squared errors (RMSEs) obtained. These figures show that by applying the
proposed TL and DSS approach, the worst RMSE rating obtained was only 0.175, whereas
with the non-enhanced application of the NAS, the worst RMSE rating was 0.660. Moreover,
although ABC achieves a higher number of evaluations of candidate architectures in the
enhanced approach, the overall search time is shorter than with the non-enhanced approach.
This shorter search time is achieved because the enhanced approach effectively controls
the search space for designing candidate architectures. Finally, the results show that,
although DE excels in accuracy with and without TL-DSS, its differential mutation strategy
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involves a high number of fitness assessments, resulting in a longer CPU time. Thus,
the choice of methodology depends not only on the resources available (search time) but
also on the accuracy of the model.

Figures 5-8 illustrate the normal evolution of the search space for the four candi-
date architectures.
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Figure 3. NAS approach WITHOUT TL and DSS: Shows the number of candidate architectures
evaluated per method and the order of magnitude of the RMSE errors obtained.
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Figure 4. NAS approach WITH TL and DSS: Shows the number of candidate architectures evaluated
per method and the order of magnitude of the RMSE errors obtained.
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Figure 5. Proposed ABC candidate solutions’ evolution: Shows the number of candidate architectures
and the order of magnitude of RMSE errors for the candidate architectures with and without TL-DSS.
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Figure 6. Proposed DE candidate solutions” evolution: Shows the number of candidate architectures
and the order of magnitude of RMSE errors for the candidate architectures with and without TL-DSS.

These figures show that the proposed methodology achieves the following:

* Converges more quickly: Most of the error reduction occurs within the first
20-30 iterations for the proposed method. In contrast, the basic method often re-
quires more than 50 iterations or even double that to achieve a comparable level
of performance.

*  Presents reduced variance: The red curves fluctuate much less and have a narrower
envelope, reflecting more controlled and reliable progress. In contrast, the blue curves
(approach without TL-DSS) frequently show declines and peaks of degradation, indi-
cating ineffective evaluation.
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*  Achieves a more reliable final RMSE: In each of the figures, the end point of the red
curve (approach with TL-DSS) is below that of the blue curve (approach without
TL-DSS). This result shows that TL-DSS not only speeds up the search but also
produces a more accurate architecture.

The results presented in these figures confirm that integrating transfer learning and

dynamically adapting the search space leads to more efficient and stable NAS trajectories
than the non-enhanced approach.
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Figure 7. Proposed GA candidate solutions’ evolution: Shows the number of candidate architectures
and the order of magnitude of RMSE errors for the candidate architectures with and without TL-DSS.
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Figure 8. Proposed PSO candidate solutions’ evolution: Shows the number of candidate architectures
and the order of magnitude of RMSE errors for the candidate architectures with and without TL-DSS.
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4.4. Comparison with Other Research

Table 10 presents a comparison of different neural architecture search (NAS) methods,
highlighting the diversity of approaches and application areas covered by current research.
Each method is distinguished by specific innovations tailored to various needs: ESC-
NAS [12] targets the optimization of sound classification on edge devices by integrating
hardware constraints. EGNAS [14] proposes an approach to accelerate architecture search
for graph networks using evolutionary algorithms and weight sharing. Multi-objective
approaches, such as that of [4], promote the discovery of efficient and diverse architec-
tures through weight sharing and advanced evolutionary strategies. TrajectoryNAS [2],
meanwhile, illustrates the importance of end-to-end optimization for real-time trajectory
prediction, balancing accuracy and latency. Although these approaches have proven ef-
fective in their respective fields, none of them address the issue of search space, which
can introduce dimensioning biases. Furthermore, search space optimization remains a
common problem across all application domains. As a result, the method proposed in this
study not only improves knowledge sharing but also dynamically optimizes the search
space as the search evolves. It also avoids evaluation overtime, thanks to its learning curve
extrapolation approach. This approach reduces search time by up to 89% while ensuring
an accuracy of around 99%.

Table 10. Comparison between the proposed approach and other related research.

Article/Method Field of Application NAS Metl}od/Mam Major Innovations Efficiency/Main
Algorithm Performance
85.78% (FSC22),
Classification of NAS o tiriileiie?cl).;:}; dee 81.25%
ESC-NAS [12] environmental hardware-aware, tapkin into accougntl (UrbanSound8K),
sounds on the edge Bayesian search & . compact models
hardware constraints
for edge
Up to 40x faster than
Fast evolutionary SOTA methods,

Graph Neural Evolutionary NAS,

EGNAS [14] Networks (GNN) parameter sharing algonthm, welgl}t better accuracy on
sharing, step training Cora, Citeseer,
PubMed
Weight-sharing
Multi-Objective - Multi-lens supernet, MOEA /D Outperforms SOTA
. Image classification . . . on various datasets,
Evolutionary ) evolutionary NAS, bi-population, ) . . ]
(generalized) . . increasing diversity
NAS [4] supernet inter-population .
o and efficiency
communication
End-to-end o . .
Trajectory prediction optimization +4.8% precision,
. Multi-objective NAS, . ’ 1.1x less latency on
TrajectoryNAS [2] (autonomous L precision/latency
. metaheuristics . NuScenes compared
vehicles) function, NAS on
to SOTA
each component
Dvnamic Search Up to 89.09% of
The proposed , . Enhanced NAS, yn . search time
) Time series . space, learning . o
approach: rediction evolutionary transfer. learnin reduction, up to 99%
ENAS-TL-DSS p algorithms, LSTM ! & prediction accuracy,

curve extrapolation

increasing efficiency
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5. Conclusions

The trend prediction of global horizontal irradiance data was used to validate the
approach proposed in this study, involving the design of LSTM models by neural architec-
ture search (NAS). This approach implements evolutionary methods to explore the search
space using four different algorithms: artificial bee colony (ABC), genetic algorithm (GA),
differential evolution (DE), and particle swarm optimization (PSO). The results show that
using neural architecture search combined with the application of evolutionary algorithms
yields excellent results, achieving an RMSE and MAE evaluation of over 99% within a
24-h prediction window. However, this approach remains very restrictive in terms of
its time requirements. To address this issue, a hybrid learning approach was proposed,
incorporating transfer learning and dynamic adaptation of the research space (TL-DSS).
The results obtained when using this enhanced approach demonstrated that it is possible to
significantly reduce research time while achieving equally efficient models. Incorporating
TL-DSS can reduce the search time previously required for the ABC and GA algorithms by
21.44% and 13.75%, respectively. The reduction in search time reached 81.01% for DE and
89.09% for PSO.

In summary, this study makes three key contributions:

*  Dynamic search space (DSS): Progressively refining the search space based on interim
best models;

*  Speed-up via transfer learning (TL) and learning curve extrapolation: Significantly
reducing the NAS run time;

e  High-performance architecture design through intelligent adaptive exploration: Bal-
ancing speed and predictive accuracy.

These contributions demonstrate the feasibility and effectiveness of the proposed
approach for GHI forecasting while paving the way for future extensions.
Building on these contributions, several promising directions emerge:

e  Extending dynamic NAS to Transformer-based time-series models, leveraging their
self-attention mechanisms for long-range dependencies;

* Investigating conditional NAS for hybrid CNN-RNN or GNN architectures, allowing
the search to jointly select model families and hyperparameters.

The obtained results suggest that exploring these avenues will further optimize the
efficiency of searches and reveal powerful architectures in a wide range of application areas.
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Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep Neural Network
NAS Neural Architecture Search
GHI Global Horizontal Irradiance
TL Transfer Learning
DSS Dynamic Search Spaces
RMSE Root Mean Squared Error
MAE Mean Absolute Error
MSE Mean Squared Error
ABC Artificial Bee Colony
GA Genetic Algorithm
DE Differential Evolution
PSO Particle Swarm Optimization
RNN Recurrent Neural Network
SOTA State Of The Art
MSTL Multi-seasonal Trend decomposition of Time-Series
MCAR Missing Completely at Random
PMM Predictive Mean Matching
SGD Stochastic Gradient Descent
GS Grid Search
MERRA-2 Modern Era Retrospective Analysis for Research and Applications, Version 2
CPU Central Processing Unit
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