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Abstract

In this study, a novel comparison between single phase 7-Level Packed U—Cell (PUC)
inverter and single phase 9-Level Cross Switches Cell (CSC) inverter with Model Predictive
Controller (MPC) for solar grid-tied applications is presented. Our innovation introduces
a unique approach by integrating PV solar panels in PUC and CSC inverters in their two
DC links rather than just one which increases power density of the system. Another key
benefit for the proposed models lies in their simplified design, offering improved power
quality and reduced complexity relative to traditional configurations. Moreover, both
models feature streamlined control architectures that eliminate the need for additional
controllers such as PI controllers for grid reference current extraction. Furthermore, the
implementation of Maximum Power Point Tracking (MPPT) technology directly optimizes
power output from the PV panels, negating the necessity for a DC-DC booster converter
during integration. To validate the proposed concept’s performance for both inverters,
extensive simulations were conducted using MATLAB/Simulink, assessing both inverters
under steady-state conditions as well as various disturbances to evaluate its robustness
and dynamic response. Both inverters exhibit robustness against variations in grid voltage,
phase shift, and irradiation. By comparing both inverters, results demonstrate that the CSC
inverter exhibits superior performance due to its booster feature which relies on generating
voltage level greater than the DC input source. This primary advantage makes CSC a
booster inverter.

Keywords: multilevel converters; PUC inverter; CSC inverter; MPC; MPPT; grid connected
PV applications; booster inverter

1. Introduction

As world’s energy demand keeps growing tremendously due to fossil fuels finite
nature and their harmful emissions, the transition to clean energy won't be just a decision or
choice, but also a must and a necessity for building a sustainable energy future with a robust,
resilient and equitable global ecosystem. Shifting to clean energy sources means integrating
Renewable Energy sources such as solar and wind. Using Renewable Energy sources over
all carbon emission sources contributes to climate changes mitigation, greenhouse emissions
reduction, and finite natural resources conservation. This transition will absolutely resolve
one of the most pressing issues facing the world.
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Solar energy has become the fastest-growing renewable energy source globally due
to its low maintenance requirements and lack of noise emissions, among other benefits.
Worldwide, the annual demand for photovoltaic (PV) systems, solar energy system, is
on the rise, with approximately 522 GW of new PV installations anticipated between
2019 and 2022 [1]. However, connecting PV systems to power grids presents several
challenges, including choosing the appropriate grid node voltage level based on the capacity
of the PV system, ensuring power quality management, and developing effective control
systems [1,2].

Due to the urgent need for energy alternative transition and since inverters are tasked
with converting the DC power generated by Renewable Energy systems into AC power
that can be fed into the grid, researchers are focusing more on efficient power electronics
inverters for energy conversion for high power applications. Therefore, improvement of
power electronics inverters will facilitate renewable energy sources to integrate into the
grid, and consequently helping in supplying high power loads to wide range of consumers.

Inverters can be categorized into two main families: 2-Level Inverters and Multilevel
Inverters (MLIs). 2-Level inverters are characterized by their high switching frequency
and low voltage amplitude accompanied with high harmonic contents which calls for big
inductance for filtering it out [3]. These characteristics limit the use of 2-Level Inverters
in medium-voltage-high-power applications [4]. To overcome these obstacles, MLIs are
introduced to be integrated in power conversion stage. MLIs were first introduced by Baker
and Lawrence in 1975 [5]. MLI minimizes voltage distortion leading to better power quality,
decreases harmonic distortion allowing for a smaller filter size, decreases stress on switching
devices, lowers detrimental effects, decreases switching losses, lowers electromagnetic
interference and supports higher power ratings (increases voltage amplitude) [6].

MLIs are made up of advanced power semiconductors and DC voltage source(s) which
generate an alternating output of distinct voltage levels from lower DC voltage levels.
The output step voltage level is produced by the inverter between its output terminal
and neutral reference node. The number of these output step voltage levels defines the
inverter’s level number; for example if the inverter generates three distinct voltage levels
then it is called three-level inverter and if it generates five distinct voltage levels then it
is called five-level inverter. Thus, at least three voltage levels should be generated by the
inverter, in each phase, in order to be classified as MLI. Although, higher number of voltage
levels improves the output waveform’s voltage and current quality (resulting in more
sinusoidal, smoother waveforms with reduced total harmonic distortion), it also results
in more complex and expensive system. Consequently, indicating the suitable number of
an inverter’s voltage levels relies on cost, size, and its intended use [7]. As a result, MLIs
continue to outperform conventional 2-level inverters by overcoming their shortcomings
and drawbacks [8-10].

MLIs represent an appealing advancement for medium to high voltage and high-
power applications, including high-power AC motor drives, active power filters, aerospace
applications [11] ventilation applications [12], hybrid electric vehicles [13], and the integra-
tion of renewable energy sources into the grid [14].

Contemporary research on voltage source MLIs mainly categorizes them into three
conventional types. Cascaded H-Bridge (CHB) was introduced in 1975 by grouping single-
phase inverters in series [5,15], followed by the Neutral Point Diode Clamped (NPC)
inverter which was introduced in 1981 [16], and the Flying Capacitor Inverter (FCI) [8]. With
advancements in power electronics, several MLIs have been introduced and developed,
including the Active Front-End Rectifier (AFE Rectifier), Matrix Converters, Packed U-Cell
(PUC) [17,18], and Packed E-Cell (PEC) [19].
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The CHB inverter, which requires multiple separate DC sources, is utilized in high-
power applications, while the NPC inverter, using a single separate DC source, like the FCI,
is suitable for medium and high-power applications. CHB and NPC are primarily utilized
in motor drives. The FCI is particularly proposed for medium voltage applications. AFE rec-
tifiers are employed in AC-DC power conversion, offering advantages over diode rectifiers
in terms of sinusoidal input currents, bidirectional power flow capability, and controllable
power factor. The Matrix Converter serves as an alternative to back-to-back configurations
and is preferred in applications where size and volume are critical considerations.

In comparison to the aforementioned MLI topologies, PUC produces more voltage
levels with superior power quality while utilizing fewer DC sources, utilizing just a single
DC source, and fewer passive and active components [20-27]. Thus, PUC inverter can
generate up to seven output voltage levels using six switches, one DC source, and one DC
capacitor. However, NPC and FCI require a significant number of clamping diodes and
flying capacitors respectively to achieve a higher number of output voltage levels [28,29].
Besides, in NPC inverter, other factors, like load power factor, can cause imbalances in the
DC capacitor voltages [30]. Modified CHB topologies have been also proposed to enhance
output voltage quality and decrease circuit components’ number [31]. However, these
modifications necessitate different values for the DC sources. Consequently, PUC inverter
is regarded as the most reliable and dependable among the above-mentioned MLI that is
more compact and cost-effective.

Recently, a Cross Switches Cell (CSC) inverter, which is a modified version of PUC
topology, was introduced in [32]. By incorporating two crossover bidirectional switches
into the PUC design, it can generate 9 voltage levels. Thus, its maximum output voltage
level exceeds the DC source voltage letting CSC of having boost capability. As a result,
the CSC inverter produces 9 voltage levels while requiring fewer DC sources, capacitors,
and switches compared to the CHB (symmetric/asymmetric), FCI, NPC, PEC, and PUC
MLIs [32-35]. This reduction in components and sources lowers manufacturing costs,
making the CSC ideal for applications where minimizing the number of DC sources and
components is essential.

Given that MLIs are composed of multiple internal power semiconductors, various
well-established modulation techniques have been developed and proposed for their
control over the past few decades. The most commonly suggested and used techniques
include Pulse Width Modulation (PWM) [36,37] and Space Vector Modulation (SVM) [38].
Other modulation techniques such as Space Vector Control (SVC) and Selective Harmonic
Elimination (SHE) have been also reported [39-41]. Moreover, several control methods
have been presented in literature to control MLIs” switches such as Hysteresis Control,
Model Predictive Control (MPC),and Artificial Intelligence-Based Methods [42—44].

The MPC method has been successfully utilized across various MLI topologies discussed
in the literature, including 3-level NPC, 4-level FCI, CHB MLIs, 7-level PUC, and matrix
converters [45,46]. The FCS-MPC directly implements control actions on the inverter without
needing a modulation process [45]. Additionally, FCS-MPC is a multi-objective control strategy
that optimizes a specified cost function based on the application’s requirements.

This paper presents a comparison between a single phase 7L-PUC grid-tied inverter
and single phase 9L-CSC grid tied inverter, in which the contribution of this paper is
demonstrated by replacing both the input battery source and DC link capacitor with solar
panels (PV panels) in the two proposed inverters to increase the power density of the
system, as illustrated in Figures 1la and 2a. Both proposed inverters undergo the same
control topology in which both inverters utilize a Finite Set Model Predictive Controller
(MPC), incorporating a Maximum Power Point Tracking (MPPT) technique to ensure
maximum power output from the PV panels. The control topology proposed for both
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inverters is characterized by reduced complexity. The paper discusses the PUC converter
in Section 2, followed by an elaboration on CSC inverter in Section 3. Section 4 provides an
introduction to the MPC configuration for the grid-connected 7L-PUC inverter and 9L-CSC
inverter. Then, Section 5 presents simulation results for PUC inverter while Section 6
presents simulation results for CSC inverter using MATLAB/Simulink for both inverters.
Finally, Section 7 concludes the work through comparing both proposed topologies.
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Figure 1. (a) Proposed and (b) conventional PUC converter.
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Figure 2. (a) Proposed and (b) conventional CSC converter.

2. Packed U-Cell Converter Topology

The PUC converter was developed and introduced by Ounejjar and Al-Haddad [17,18].
It is an adapted version of the CHB, notable for having fewer switches while achieving a
high number of output voltage levels. The PUC converter features six active switches and
two DC links, as depicted in Figure 1b. Operating in inverter mode, it utilizes an isolated
DC source as the primary DC link and a capacitor as a secondary, auxiliary DC link. The
voltage of the capacitor is regulated based on the DC source voltage. The switches are
considered ideal, operating in only two states: ON or OFF. They function in complementary
pairs, with S, paired with Sy, S, with S, and S¢ with S¢. As illustrated in Figure 1b, each
complementary pair connects to a DC link, forming a U-cell configuration. The PUC setup
generates eight switching states, as detailed in Table 1, with each state creating a specific
current path through the circuit, involving the DC sources and the load. The number of
output voltage levels varies based on the voltage ratio between the DC links.
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Table 1. PUC Inverter all Possible Switching States.

Vin
States Sa Sp Sc (Output Voltage)
1 1 0 0 Vi
2 1 0 1 Vl - VZ
4 1 1 1 0
5 0 0 0 0
7 0 1 0 V) =V

PUC inverter achieves its maximum output of seven voltage levels when V| = 3V, as

illustrated in Table 2. When V1 = 2V,, PUC inverter generates five voltage levels, as shown

in Table 3. Additionally, when V; = V,, PUC inverter generates three voltage levels, as
indicated in Table 4.

Table 2. Voltage Levels Values Produced by 7-Level PUC Inverter. (V, = E & V; =3V, = 3E).

Vin Vin
States Sa Sp Se (Output Voltage)  (Output Voltage Value)
1 1 0 0 Vi +3E
2 1 0 1 Vi -V, 3E — E = 42F
3 1 1 0 A +E
4 1 1 1 0 0
5 0 0 0 0 0
6 0 0 1 —V, _E
7 0 1 0 V, — Vy E—3E=—2F
8 0 1 1 v, _3E

Table 3. Voltage Levels Values Produced by 5-Level PUC Inverter. (V, = E & V; =2V, = 2E).

Vin Vin
States Sa Sp Sc (Output Voltage)  (Output Voltage Value)
1 1 0 0 Vi +2E
2 1 0 1 Vi—-V, 2E — E=+E
3 1 1 0 Vs +E
4 1 1 1 0 0
5 0 0 0 0 0
6 0 0 1 -V, —E
7 0 1 0 Vo — V4 E—-2E=-E
8 0 1 1 —Vi —2E
Table 4. Voltage Levels Values Produced by 3-Level PUC Inverter. (V; =V, =E).
Vin Vin
States Sa Sp Se (Output Voltage)  (Output Voltage Value)

1 1 0 0 Vi +E
2 1 0 1 ViV, E-E=0
3 1 1 0 Vs +E
4 1 1 1 0 0
5 0 0 0 0 0
6 0 0 1 =V —E
7 0 1 0 Vy = V) E-E=0
8 0 1 1 —Vi —E




Energies 2025, 18, 5116 6 of 26

It is important to mention that the novelty here is to modify the PUC topology by
replacing both the input battery source and DC link capacitor with PV panels as shown in
Figure 1a. Therefore, the considered circuit for our study in this section is the one illustrated
in Figure 1a.

3. Crossover Switches Cell Converter Topology

Single phase 9-level grid tied CSC inverter is depicted in Figure 2b. This CSC system
includes one DC source and one capacitor, with their voltage levels designated as V; and
V,, respectively. The system comprises eight switches, labeled S; to Sg, among which S, and
S5 only function as bidirectional switches. The switches S; and Sy, as well as S3 and Sg, are
operated in a complementary manner, while one switch only from the group (Sy, Ss, Sy, Sg)
is activated ON at any given time. The CSC setup generates sixteen switching states, as
detailed in Table 5.

Table 5. Voltage Levels Values Produced by 9-Level CSC Inverter (V2 = E & V1 = 3V2 = 3E).

Vin Vin Capacitor
States S1.52 83 Sa S5 S S7 S (Output Voltage) (Output Voltage Value) Chargr,;ng State

1 1 0 0 0 O 1 1 o0 Vi+V; 3E+E=4E Charged
2 1 0 0o 0 1 1 0 O Vi 3E By passed
3 1 0o 1 0 0 0 1 O Vi 3E By passed
4 1 0 1 0 1 0 0 O Vi—-V, 3E —E=2E Discharged
5 o 0 0 1 0 1 1 O V, E Charged
6 11 0 0 0 1 0 O V, E Charged
7 o 0 1 1 0 0 1 O 0 0 By passed
8 11 1 0 0 0 0 O 0 0 By passed
9 o 0o 0o 1 1 1 0 O 0 0 By passed
10 1 0 0 0O O 1 0 1 0 0 By passed
11 o 0 1 1 1 0 0 O -V, —E Discharged
12 1 0 1 0 0 0 0 1 -V; —E Discharged
13 0 1 0 1 0 1 0 0 Vi1 +Vy —3E+E=-2E Charged
14 o o0 o0 1 0 1 0 1 -Vi —3E By passed
15 o 1 1 1 0 0 0 O —-Vi —3E By passed
16 o 0 1 1 0 0 0 1 -V -V, —3E —E=—4E Discharged

Adding two crossover switches (S; and Sg) between DC link and capacitor to the PUC
inverter results in two extra output voltage levels of £(V; + V). This adjustment also
enhances the stability of the DC voltage by creating additional paths for the charging and
discharging of the capacitor [32,47]. Thus, to achieve a 9-level output voltage, the capacitor
voltage V, must be regulated to V3.

It is important to mention that the novelty here is also to modify the CSC topology by
replacing both the input battery source and DC link capacitor with PV panels as shown in
Figure 2a. Thus, PV solar panels are connected in parallel with a capacitor replacing the
DC battery input and also PV solar panels are connected in parallel with a capacitor in the
second DC link as well. Therefore, the considered circuit for our study in this section is the
one illustrated in Figure 2a.

4. Model Predictive Control Design

This paper employs MPC to manage PUC and CSC inverters, utilizing its ability to
forecast the future behavior of variables [48,49]. MPC controller is distinguished from
traditional controllers due to its flexibility in managing and controlling various variables
with constraints. This approach eliminates the need for a cascaded control structure for
controlling system’s parameters. Thus, MPC features two loops in its control architecture:
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a fast inner loop and a slower outer loop. In each switching state, the MPC assesses the
controlled variable x(k) and predicts its future value x(k + 1) using the predictive control. It
then evaluates a cost function, in which the minimum cost function is selected by MPC.
The switching state that corresponds to the selected cost function is regarded as the optimal
switching state, which is consequently applied to the inverter through switching pulses.

4.1. Model Predictive Control Design for PUC

In [50,51], both load current and capacitor voltage V; are controlled by the MPC.
However, in this study, we focus on controlling load current, the output voltage of the PV
in the primary DC link and the output voltage of the PV in the secondary auxiliary DC link.
To simplify calculations, we introduce two new variables, S; and S,, which are derived
from S,, Sp, and S, as indicated in Equations (1) and (2).

S1=Sa—S (1)

S2 =5p =S¢ ()

By inserting (1) and (2) into the switching states of Table 1, we derive the simplified
switching states presented in Table 6.

Table 6. Simplified Switching States.

Vin
States S1 52 (Output Voltage)
1 1 0 Vi
2 1 -1 Vi -V,
3 0 1 Va
4 0 0 0
5 0 0 0
6 0 -1 -V,
7 ~1 1 Vo= Vi
8 -1 0 -Vi
PUC inverter produces voltage vector Vi, that is generated using (3).
Vin = 51V1 + 5,V (3)

Load current dynamics is represented in (4) using vector differential equation:

dis

Vin = vs + Rig + La 4)
Using Euler Forward Approximation, Load current can be expressed as shown in
Equation (5).
dis  is(k+1) —is(k)
T Ve— (5)
Replace (5) in (4) to derive (6).
. RTs . T
is(k+1) = (1—LS>15(1<)+LS(Vm(k)—VS) (6)

Once the predicted load current is obtained, the cost function g is formulated as shown
in Equation (7).

g(k) = L(is(k +1) —is*)> + Dy (V1 — Vpy1)*4+D2 (Va2 — Vpya)? (7)
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As previously mentioned, the cost function g is calculated for each switching state,
and the MPC selects the minimum cost function. Consequently, S; and S, are determined
based on this minimum cost function, which then identifies the corresponding switching
state number using Table 6. The switching states for S,, Sy, and S, are then selected from
Table 1 to be implemented on the PUC inverter switches.

At instant k, the load current or grid current is measured, and based on these readings,
is(k 4 1) is generated and predicted using Equation (6). The cost function is then calculated at
instant k using Equation (7). is* in the cost function represents the grid reference current where
V1 represents the Vinppt of the PV in the primary DC link, Vpy; represents output voltage of
the PV in the primary DC link, V; represents Vippt of the PV in the secondary auxiliary DC
link, and Vpy; represents the output voltage of the PV in the secondary auxiliary DC link.

Grid reference current depends on grid voltage, for which a PLL block is utilized to
extract the phase angle, ensuring that the grid reference current is in phase with the grid
voltage. To adjust the power factor between the grid voltage and the grid reference current,
a phase shift is applied to the angle generated by the PLL block. If the phase shift is set to
zero, the grid voltage and grid reference current are in phase, achieving unity power factor
operation. Otherwise, reactive power will be exchanged with the grid.

Regarding the amplitude of the grid reference current, if PUC operates in its standard
configuration, as shown in Figure 1b, the amplitude is chosen arbitrarily to match the
required power to be injected into the grid. In this study, however, PUC topology is
modified as depicted in Figure 1a, with PV solar panels connected in parallel with a
capacitor replacing the DC battery input. Additionally, solar panels are connected in
parallel with a capacitor in the second DC link. This modification necessitates deriving the
amplitude of the grid reference current from the PV solar power or using a PI controller
to minimize the voltage differences between the reference and actual DC link [52]. In our
proposed control strategy, the grid reference current amplitude is generated from the PV
solar power, calculated by dividing the PV solar power by V.

It is essential to highlight that the cost function in Equation (7) should ideally include
weighting factors if there are more than one variable parameter to control. Weighting
factors are typically used to mitigate coupling effects between multiple controlled variables
in the cost function. Accordingly, weighting factors in this study are chosen as follows;
L=10,D;=5and D, =5.

Figure 3 illustrates the flow chart of the proposed MPC topology applied to the single
phase 7-level PUC inverter. As noted, MPC consists of two loops: an inner loop and an outer
loop. The outer loop measures the grid current at instant k, is(k), at each sampling time.
Meanwhile, for each possible state, the inner loop calculates the predictive grid current value
is(k+ 1) and generates the corresponding cost function to store the optimal values. The inner
loop is executed eight times to account for the eight possible switching states in the PUC.
After completing the executions for eight possible states, the minimum cost function value is
selected, and its related switching state is applied to the PUC’s six switches.

To incorporate PV solar applications in our work, an MPPT algorithm is necessary
to enhance PV efficiency, achieve accurate and rapid tracking performance, and reduce
oscillations around the MPP. MPPT methods can be categorized as on-line or off-line. The
on-line method regulates the PV voltage at the MPP voltage, while the off-line method is
based on models techniques. Perturbation and Observation (P&O) is a common on-line
method and is widely used among MPPT techniques due to its simplicity. P&O technique
is implemented in our work, and its detailed operational method is described in [51]. The
P&O technique directly manages and controls the power output, in which the need for
a DC-DC boost converter will be eliminated when integrating PV solar panels with the
PUC inverter.
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Figure 3. MPC algorithm flowchart applied on 7L-PUC inverter.

The complete system model demonstrating MPC applied on the single-phase 7L-PUC
inverter is illustrated in Figure 4.

4.2. Model Predictive Control Design for CSC

By applying Kirchhoff’s laws, DC source voltage V1(t), capacitor voltage V;(t), grid
current ig(t), grid voltage Vs(t), output voltage Vi, (t), and the eight switches S; {I=1... 8}
can be formulated as follows:

Capacitor voltage is represented in (8).

dVy (S35 —Sy)is
dt C ®)
Using Euler Forward Approximation, Voltage capacitor can be expressed as shown in
Equation (9).
dvy ~ Va(k+1) - Va(k)
dt T
Compare (8) and (9) to derive (10).

©)

Ts(S3 — Sy — Sy)is(k)

Va(k+1) = Vy(k) + C

(10)
CSC inverter produces voltage vector Vi, that is generated using (11).

Vin = (Sl —S; — Sg)Vl + (Sz —S;+ S7)V2 (11)
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Figure 4. Schematic control model applied on the proposed inverters.
Load current dynamics is represented in (12) using vector differential equation:

Vi = vo + Rig + 1L (12)
dt
Using Euler Forward Approximation, Load current can be expressed as shown in
Equation (13).
dis  is(k+1) —is(k)
A A S A A 1
dt T (13

Replace (13) in (12) to derive (14).

is(k+1) = <1 — RLTS>15(1<) + %(Vm(k) —Vs) (14)

Once the predicted load current is obtained, the cost function g is formulated as shown

in Equation (15).
g(k) = L(is(k +1) —is*)* + Dy (V1 — Vpy1)? (15)

As previously mentioned, the cost function g is calculated for each switching state and
the MPC selects the minimum cost function. Consequently, S1, Sy, S3, S4, S5, Sg, S7, and Sg
are determined based on this minimum cost function.
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The same control strategy that is applied for PUC inverter is also applied for CSC
inverter in which at instant k, the load current or grid current is measured, and based on
these readings, is(k 4 1) is generated and predicted using Equation (14). Cost function is
then calculated at instant k using Equation (15). is* in (15) represents the grid reference
current where V; represents the Vippt of the PV in the primary DC link, Vpy; represents
output voltage of the PV in the primary DC link, V; represents Vpmppt of the PV in the
secondary auxiliary DC link, and Vpy, represents the output voltage of the PV in the
secondary auxiliary DC link.

As for Grid Reference Current, a PLL block is utilized to extract the phase angle from
the grid voltage, ensuring that the grid reference current is in phase with the grid voltage.
To adjust the power factor between the grid voltage and the grid reference current, a phase
shift is applied to the angle generated by the PLL block.

Regarding the amplitude of the grid reference current, it is derived from the PV solar
power, calculated by dividing the PV solar power by V.

As for the weighting factors, they are also chosen as follows; L =10, D; =5 and D, = 5.

Figure 5 illustrates the flow chart of the proposed MPC topology applied to the single
phase 9-level CSC inverter. As mentioned previously, MPC consists of two loops: an inner
loop and an outer loop. The outer loop measures the grid current at instant k, i5(k), at each
sampling time. Meanwhile, for each possible state, the inner loop calculates the predictive
grid current value is(k 4+ 1) and generates the corresponding cost function to store the
optimal values. The inner loop is executed sixteen times to account for the sixteen possible
switching states in the CSC. After completing the executions for sixteen possible states, the
minimum cost function value is selected, and its related switching state is applied to the
CSC’s eight switches.

Startup

'

————— Measure is(k) and Vs.

'

x=0

v

x=x+1

A

Wait for next
sampling instant Vii=(81=-8:=S8Ss) Vi +(5,-8:+S) V>

1 iy(k+l) = (I-(RTY/L) isk) + T/L (Viu(k)-V)

v

gk =L ix(k+1)—i;)2 +D;(V,—- VPV1)2+D2( VZ-VPV2)2

v

x=15
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Minimum g and apply the optimal
switching

Figure 5. MPC algorithm Flowchart applied on 9L-CSC inverter.
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MPPT algorithm is necessary to be applied in the control strategy due to the PV solar
incorporation in our work. P&O technique is also implemented here. P&O technique
directly manages and controls the power output, in which the need for a DC-DC boost
converter will be eliminated when integrating PV solar panels with the PUC inverter.

The complete system model demonstrating MPC applied on the single-phase 9L-CSC
inverter is illustrated in Figure 4.

5. Simulation Results and Analysis for PUC

To assess the effectiveness and reliability of our proposed approach, we conducted sim-
ulations of the entire system using MATLAB/Simulink. The sampling time was configured
to Ts = 20 ps. Irradiance and temperature were set at 1000 W/m? and 25 °C, respectively.
Table 7 displays the parameters of the system utilized in the simulations.

Table 7. System’s Parameters for PUC Inverter.

Sampling Time 20 ps
DC bus voltage (PV panels) 300-315 V (9 panels in series)
DC link voltage (PV panels) 99-105 V (3 panels in series)
DC capacitor C 1000 pF
Line inductor L 25 mH
Parasitic Resistor (r) 010
AC grid voltage (Vims) 300V
Frequency 60 Hz

Figures 68 display the results during steady-state operation. Figure 6 shows the
inverter’s 7-level output voltage (Vi,). Figure 7 confirms that the inverter’s output current
(is) and grid voltage (Vs) remain in phase during steady-state operation. Also, it illustrates
that the current (is) consistently tracks the grid reference current (is*). Additionally, a
harmonic distortion level (THD) of about 2.8% has been achieved, as show in Figure 8§,
demonstrating that the injected current aligns well with grid connectivity standards and
requirements, which specify a limit of less than 5%.

023 024 025 026 027 028 029 03 031

Time

Figure 6. Inverter 7-level output voltage in steady state operation—PUC inverter.
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Figure 7. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and Vs (V) in steady
state operation—PUC inverter.
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Figure 8. AC Grid current harmonic spectrum in steady state operation—PUC inverter.

Figures 9 and 10 present the voltage and current waveforms during changes in grid
voltage. Grid voltage was modified from 300 V to 270 V (phase-to-phase Vims) to 270 V
(phase-to-phase Vims), reflecting a 10% change in grid voltage. It is clear from Figure 9 that
these changes do not affect the inverter’s voltage. Figure 10 indicates that the grid current
continues to meet the desired values, even though the grid voltage experiences a slight
drop. It also demonstrates that the current (is) continues to track the grid reference current
(is™) despite disturbances caused by variations in grid voltage. Furthermore, a harmonic
distortion level of roughly 2.6% has been obtained, confirming that the injected current
adheres to the grid connectivity standards and requirements.

To further evaluate the system’s robustness, an additional test was conducted aimed
at exchanging reactive power with the grid. This resulted in a sudden shift in the phase
angle between the grid voltage and current from 0° to 30°, altering the power factor (PF)
from 1 to 0.85. Figures 11 and 12 illustrate the simulation results of this change. As shown
in Figure 11, the inverter’s voltage remains unaffected. Figure 12 demonstrates that the
grid voltage and current are initially in phase but later exhibit a phase shift of 71/6 when
the delay is adjusted, indicating the generation of reactive power. It also reveals that the
current (is) continues to track the grid reference current (is*) during the reactive power
variation disturbance. It has also been confirmed that the injected current satisfies the grid
connectivity norms and regulations, with a THD level of around 2.6%.
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Figure 9. Inverter 7-level output voltage during 10% grid voltage variation—PUC inverter.
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Figure 10. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and Vs (V) during 10%
grid voltage variation—PUC inverter.
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Figure 11. Inverter 7-level output voltage during reactive power variation—PUC inverter.



Energies 2025, 18, 5116

15 of 26

Vs, is, & is*
o

200
Dluurbanco\
A4
100
~100
-200
1 1.01 1.02 1.03

1.04 1.05 1.06 1.07 1.08
Time

Figure 12. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and V; (V) during
reactive power variation—PUC inverter.

A test on irradiation variation was also conducted on the proposed system. This
involved a sudden change in irradiation levels, ranging from 500 W/m? to 1000 W/m?.
Figures 13-17 illustrate the simulation results of this operation. As shown in Figure 13, the
inverter’s voltage remains unaffected during the irradiation variation. Figure 14 indicates
that while the grid current values fluctuate slightly, the grid voltage remains constant. It also
demonstrates that the current (is) continues to track the grid reference current (is*) during
the disturbance caused by the irradiation variation. Figure 15 confirms the increase in power
output from the PV solar panels as irradiation levels rise. Figure 16 demonstrates the well
tracking voltages of Vpc and Vippypcry during irradiation variation. Whereas, Figure 17
illustrates the well balanced and tracked voltages of Vpcy and Vinppt(Dc2) Moreover, THD
level varies from 5.3% to 3.4%.
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Figure 13. Inverter 7-level output voltage during irradiation variation—PUC inverter.
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Figure 14. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and V; (V) during

irradiation variation—PUC inverter.
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Figure 15. PV power during irradiation variation—PUC inverter.
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Figure 16. Vpc1 and Viyppype) during irradiation variation—PUC inverter.
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Figure 17. Vpc and Viyppype) during irradiation variation—PUC inverter.

6. Simulation Results and Analysis for CSC

To evaluate the effectiveness and reliability of our proposed method, we did for
the CSC topology the same procedure as we did for PUC topology, thus we performed
simulations of the entire system using MATLAB/Simulink, with a sampling time set to
Ts = 20 ps. Irradiance and temperature were set at 1000 W/m? and 25 °C, respectively. The
parameters used in the simulations are shown in Table 8.

Table 8. System’s Parameters for CSC Inverter.

Sampling Time 20 pus
DC bus voltage (PV panels) 200-210 V (6 panels in series)
DC link voltage (PV panels) 66-70 V (2 panels in series)
DC capacitor C 1000 uF
Line inductor L 2.5 mH
Parasitic Resistor (r) 010
AC grid voltage (Vims) 300V
Frequency 60 Hz

Figures 18-20 present the results observed during steady-state operation of the CSC
inverter. Figure 18 illustrates the inverter’s 9-level output voltage (Vin). Figure 19 confirms
that the inverter’s output current (is) and grid voltage (Vs) remain in phase during steady-
state conditions. It also shows that the current (is) consistently follows the grid reference
current (is*). It is important to mention that a harmonic distortion level of about 3.12% has
been achieved, as shown in Figure 20, indicating that the injected current satisfies the grid
connectivity criteria and standards, which call for a threshold of less than 5%.

Figures 21 and 22 display the voltage and current waveforms during variations in
grid voltage. The grid voltage was adjusted from 300 V (phase-to-phase Vims) to 270 V
(phase-to-phase Vims), representing a 10% change. As seen in Figure 21, these adjustments
do not impact the inverter’s 9-level output voltage. Figure 22 shows that the grid current
continues to meet the target values, even though the grid voltage experiences a slight
decrease. It also indicates that the current (is) remains aligned with the grid reference
current (is*) despite the disturbances caused by changes in grid voltage. Furthermore, THD
level of approximately 2.7% has been reached.



Energies 2025, 18, 5116 18 of 26

300F » ‘ ‘ 4 ‘ * ‘

200 -

100

Vin

=100

=200

=300 1 1 1 I 1 I i 1 1 1 1
0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85
Time

Figure 18. Inverter 7-level output voltage in steady state operation—CSC inverter.
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Figure 19. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and V; (V) in steady
state operation—CSC inverter.
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Figure 20. Grid current harmonic spectrum in steady state operation—CSC inverter.
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Figure 21. Inverter 7-level output voltage during 10% grid voltage variation—CSC inverter.
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Figure 22. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and Vs (V) during 10%
grid voltage variation—CSC inverter.

To further assess the system’s robustness, an additional test was performed to facilitate
the exchange of reactive power with the grid. This led to a sudden change in the phase angle
between the grid voltage and current from 0° to 30°, which modified the power factor (PF)
from 1 to 0.85. Figures 23 and 24 depict the simulation results of this adjustment. As indicated
in Figure 23, the inverter’s voltage remains stable. Figure 24 shows that while the grid voltage
and current start off in phase, they later display a phase shift of 7t/6 when the delay is modified,
signifying the generation of reactive power. It also demonstrates that the current (is) continues
to follow the grid reference current (is*) during the disturbance caused by the variation in
reactive power. Additionally, a THD level of about 2.94% has been attained.

A test was also performed on the proposed system to assess irradiation variation,
which involved a sudden change in irradiation levels from 500 W/m? to 1000 W/m?.
Figures 25-29 present the simulation results of this experiment. As depicted in Figure 25,
the inverter’s voltage remains unchanged during the irradiation variation. Figure 26 shows
that while the grid current values experience slight fluctuations, the grid voltage stays
constant. It also illustrates that the current (is) continues to follow the grid reference current
(is*) despite the disturbances caused by the changes in irradiation. Figure 27 assures an
increase in power output from the PV solar panels corresponding to the rise in irradiation
levels. Figure 28 demonstrates the well tracking voltages of Vpc1 and Viyppypcr) during
irradiation variation. Whereas, Figure 29 illustrates the well balanced and tracked voltages
of Vpcz and Viyppype2) Moreover, THD level varies from 5.2% to 3.7%.
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Figure 23. Inverter 7-level output voltage during reactive power variation—CSC inverter.
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Figure 24. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and Vs (V) during
reactive power variation—CSC inverter.
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Figure 25. Inverter 7-level output voltage during irradiation variation—CSC inverter.
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Figure 26. AC waveforms is (A) (multiplied by 10), is* (A) (multiplied by 10), and Vs (V) during
irradiation variation—CSC inverter.

T
|

1200

1000 - a

800 - n

P(PV)
3
o
1

H
(=]
o
T
1

| | | | | | | | |

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Figure 27. PV power during irradiation variation—CSC inverter.
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Figure 28. Vpcy and Viyppypet) during irradiation variation—CSC inverter.
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Figure 29. Vpcs and Viyppype2) during irradiation variation—CSC inverter.

7. Conclusions

In conclusion, the transition to renewable energy sources is imperative for addressing
global energy demands and mitigating climate change. In this study, we explored the
advancements in MLIs with a specific focus on the PUC inverter and the newly introduced
CSC inverter. Both inverters serve the critical function of converting DC power from
renewable energy sources into AC power for grid integration.

This paper is contribution for [53] in which it provides a detailed comparison between
a new design for the 7-Level PUC inverter and the 9-Level CSC inverter for solar grid-
tied application, both utilizing a MPC as a control strategy with Maximum Power Point
Tracking (MPPT). The novelty of this paper is represented in integrating PV solar panels in
both PUC inverter and CSC inverter in their two DC links and not only in one DC link like
the one discussed in [47,51]. This novelty will increase the power density of the system.

The PUC inverter, with its configuration of six active switches and ability to generate
up to seven distinct output voltage levels, offers a compact solution that minimizes compo-
nent count while maintaining high power quality and minimizes harmonic distortion while
maintaining cost-effectiveness. It effectively balances the trade-offs between performance
and complexity, making it suitable for a variety of medium to high-power applications.

On the other hand, the CSC inverter represents a significant leap forward, functioning
as a booster inverter that not only generates nine output voltage levels but also offers
voltage levels greater (equals to 4E) than the DC input (V; = 3E). This boost capability,
achieved through the integration of two crossover bidirectional switches to PUC inverter
design, allows for flexibility and efficiency in various applications while reducing the
number of required DC sources and components. This enhancement not only improves
output voltage quality but also reduces manufacturing cost and complexity, positioning the
CSC inverter as an attractive option for applications where minimizing system complexity
and costs is essential.

The design solely relies on the MPC to control both inverters, PUC and CSC, elimi-
nating the need for additional controllers such as PI controllers to extract grid reference
current. Also, the applied strategy eliminates the need for a separate DC-DC booster
converter while integrating PV solar panels to PUC and CSC inverters since the used P&O
technique is directly employed to manage power delivery, ensuring efficient operation
without added complexity.
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Both inverters were subjected to simulations using MATLAB/Simulink to validate
their performance, demonstrating robustness under various conditions, including steady
state, grid voltage fluctuations, phase shift variation and changes in solar irradiation. The
results confirm that the proposed designs maintain stability and efficiency, making them
suitable for future integration of renewable energy sources into the grid.

Overall, while both inverter topologies provide significant advantages for renewable
energy integration, the CSC inverter stands out for its superior output boosting capability
and reduced component requirements as provided in Table 9. This comparison highlights
the ongoing innovation within power electronics, underscoring the importance of selecting
appropriate inverter technologies to facilitate a sustainable and resilient energy future.
As the world moves toward cleaner energy solutions, these advancements will play a
crucial role in ensuring efficient energy conversion and maximizing the utilization of
renewable resources.

Table 9. Comparison between PUC inverter and CSC inverter.

Comparison Criteria

Packed U-Cell (PUC) Inverter

Cross Switches Cell (CSC) Inverter

e  Number of Voltage Levels

e  Number of DC Sources

e  Number of DC busses

e  Number of Switches

e  Number of Switching States

e Number of PV panels for the
same AC grid Vips

e  Total Harmonic Distortion

e Voltage Gain

e  Power Boost Capability

e  Output Voltage Quality

e  Application Suitability

e Advantages

Up to 7 levels
Single DC source

Two: isolated DC source
functions as the primary DC link
and a capacitor functions as a
secondary, auxiliary DC link

Up to 9 levels
Single DC source

Two: isolated DC source
functions as the primary DC link
and a capacitor functions as a
secondary, auxiliary DC link

Six Switches e  Eight Switches
Eight Switching Sates e  Sixteen Switching States
For the primary DC link: e  For the primary DC link:

9 panels in series and

1 parallel string

For the secondary DC link:
3 panels in series and

1 parallel string

Almost 2.8% at steady stat

Almost 1/Limited to
input voltage

No

High, with reduced
harmonic distortion

Medium to high power
applications, grid-connected
PV systems

Cost-effective, reliable, compact,
fewer components

Simple topology

Simple control

6 panels in series and

1 parallel string

For the secondary DC link:
2 panels in series and

1 parallel string

Almost 3.12% at steady state

Almost 1.3/ Generate voltages
greater than the input DC
(boost feature)

Yes, can generate output voltage
levels greater than the DC input
(boost feature)

Very high, with improved
waveform due to increased
voltage levels

Similar but with enhanced
performance due to
boost feature

Higher voltage levels, boost
capability, fewer switches for
higher levels

Simple topology

Simple control
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