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A B S T R A C T

In a context where Machine Learning (ML) is reshaping the construction industry and where normative frame
works such as ISO 19650 govern BIM data management, this paper aims to automate the filtering of true and 
false clashes in 3D models coordination process, using machine learning (ML). A metadata extraction plug-in is 
developed to gather the necessary data for training ML models. Tests are conducted on BIM models to evaluate 
the plug-in’s ability to identify and classify clashes, followed by a reimplementation of the solution within an 
existing BIM software environment. Validation, carried out through both technical testing and feedback from 
industry professionals, demonstrates the plug-in’s functionality and its ability to replicate the decision-making 
process of a BIM coordinator in clash filtering. Intended for construction professionals this paper highlights 
the potential of AI to enhance BIM quality control while complying with regulatory standards and meeting the 
practical needs of the industry.

1. Introduction

The construction industry is undergoing an unprecedented digital 
transformation driven by the growing adoption of Building Information 
Modeling (BIM) [1], which centralizes data management and facilitates 
coordination throughout the project lifecycle [2]. Clash detection is a 
critical component of 3D multidisciplinary coordination, as it enables 
project teams to identify and resolve spatial conflicts between building 
components early in the design phase. By ensuring that architectural, 
structural, and MEP systems are compatible within a single coordinated 
model, clash detection supports constructability reviews, enhances 
collaboration among disciplines, and contributes directly to overall 
project quality and efficiency [3,4].

While automated clash detection tools such as Navisworks can 
identify thousands of conflicts, the sheer volume—often unprioritized 
and including a high proportion of false positives (up to 60 %)—creates 
a significant burden for coordination teams [5–7]. Manual classification 
and prioritization of these clashes is time-consuming, prone to error, and 
often relies on subjective judgment, which may compromise the effec
tiveness of model reviews [4,7].

Recent research has explored hybrid approaches that combine geo
metric and semantic data extraction, business rule–based filtering, and 

user validation interfaces [7–10]. These approaches improve prioriti
zation of critical clashes, reduce cognitive load, and standardize sorting 
criteria. However, most solutions remain limited to laboratory experi
ments or require extensive manual intervention, lacking direct integra
tion into operational BIM platforms [9,11]. The integration of Artificial 
Intelligence (AI) and Machine Learning (ML) into clash management 
offers a promising path forward, allowing models to learn from previ
ously classified conflicts and predict the relevance of new ones based on 
geometric and contextual attributes [12–15].

This study focuses on leveraging ML to automatically classify and 
filter clashes within Navisworks, targeting both interdisciplinary and 
intradisciplinary conflicts in public building projects. Unlike previous 
work, the proposed solution is fully integrated into a professional BIM 
environment, capable of extracting relevant data, processing it auto
matically, and presenting actionable results to end-users [10,11]. The 
objectives are to reduce the time required for clash review, improve 
detection accuracy, and ensure compliance with international standards 
such as ISO 19650 [16]. By aligning technological innovation with 
practical industry requirements, this work contributes to both the sci
entific literature on AI-assisted BIM and the professionalization of digital 
coordination practices, representing a significant step toward intelli
gent, reliable, and sustainable automation of quality control in 
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construction projects.
The remainder of this article is organized as follows: Section 2 re

views the literature, including the digital transformation in the con
struction industry, the control quality assessment of BIM models and the 
need for automation and intelligent clash sorting. Section 3 details the 
research approach while Section 4 presents the main results, in partic
ular the issues and contextualization and the development of the arti
fact. Section 5 presents the evaluation of the artifact through tests 
conducted in Navisworks, evaluation by practitioners and criteria-based 
evaluation. Section 6 discusses the key findings including a comparative 
analysis with previous work and the formulation of recommendations. 
Section 7 concludes the paper.

2. Literature review

Multidisciplinary coordination in Building Information Modeling 
(BIM) projects remains a complex process, primarily due to the large 
number of irrelevant clashes generated during model integration. 
Recent research efforts have increasingly focused on automating the 
clash detection and classification processes to enhance efficiency and 
decision-making. This section reviews the main advances in this field 
and positions the present study within the broader context of BIM-based 
coordination research.

2.1. Need for automation and intelligent clash sorting

The clash detection process is a fundamental component of BIM- 
based design validation and multidisciplinary coordination [3]. It al
lows project teams to identify and address spatial conflicts between 
building components early in the design phase, thus reducing errors 
during construction [4]. Integrated into BIM workflows, clash detection 
enhances collaboration among disciplines, supports constructability 
reviews, and contributes to overall project quality and efficiency [3,4]. 
As such, it plays a key role in ensuring that the digital model reflects a 
coordinated and buildable design.

The increasing complexity of BIM projects has led to an over
whelming number of clashes detected automatically by tools such as 
Navisworks. This abundance of clashes, often unprioritized, creates a 
burden for coordination teams. Bitaraf et al. [7] highlight that this 
overload compromises the ability of stakeholders to focus on the truly 
critical clashes, thus undermining the effectiveness of model reviews. 
Minor or non-critical clashes take time to analyze, detracting attention 
from issues with significant technical or functional impacts. This situa
tion forces BIM coordinators to manually filter clashes or rely on sub
jective prioritization methods, which introduces biases and 
inconsistencies in problem resolution. In large-scale projects, this 
approach becomes unsustainable without automated sorting tools. To 
address these limitations, several studies suggest integrating business 
rules into the clash filtering process. These rules help evaluate the 
relevance of a clash based on contextual criteria, such as the nature of 
the elements involved (structural or technical), the location of the 
conflict (e.g., circulation or technical zones), or the volume of objects in 
interaction. For example, a clash between a ventilation duct and a light 
partition has a different impact compared to a clash between a load- 
bearing beam and a staircase. Integrating such rules into a filtering en
gine enables better prioritization of clashes. Harode et al. [8] propose a 
weighting method based on attributes such as the object’s criticality, its 
function within the project, and the density of nearby interferences. This 
approach helps make coordination processes more efficient by reducing 
the cognitive load on users and standardizing sorting criteria.

Given the limitations of fully manual methods and the complexity of 
total automation, the current trend is moving toward hybrid workflows. 
These approaches combine automatic extraction of geometric and se
mantic data, the application of business filtering rules, and a user 
interface dedicated to validation or adjustment. Bitaraf et al. [7] illus
trate this trend with a Navisworks plugin that incorporates a multi- 

criteria weighting system to classify clashes based on their impor
tance. Their work demonstrates that such an approach significantly re
duces the number of irrelevant clashes while improving processing 
speed. Additionally, Hu and Castro-Lacouture [9] emphasize the need to 
design systems adaptable to different types of projects, disciplines, and 
use contexts. This requires configurable filtering systems based on 
adjustable parameters, such as technical, functional, or regulatory 
criteria.

The prospects offered by Artificial Intelligence (AI) for the con
struction industry are promising. One major development is the emer
gence of intelligent digital twins: virtual representations of 
infrastructure capable not only of replicating the physical state of 
structures but also of learning and adapting based on real-time data 
[12]. The concept of Construction 5.0, advocated by Bassir et al. [13], 
focuses on the integration of AI, robotics, and advanced automation to 
enhance not only efficiency but also the sustainability and customization 
of built assets. The progressive integration of artificial intelligence into 
the construction industry not only enables the automation of certain 
design and coordination tasks but also enhances decision-making 
through predictive analysis and intelligent content generation. In 
particular, generative AI models, such as large language models (LLMs), 
are identified as promising tools for supporting professionals in docu
ment creation, resource planning, and error detection, while adapting to 
the specific needs of individual projects [14]. In the longer term, experts 
foresee AI evolving into fully integrated decision-support systems 
capable of autonomously proposing optimized scenarios for the design, 
construction, operation, and decommissioning of infrastructure [12]. 
While significant challenges remain, the progressive and controlled 
integration of AI promises a profound transformation of the AEC sector, 
making projects safer, faster, more cost-effective, and more sustainable.

2.2. Positioning and relevance of the research work

Navisworks is one of the most widely used tools for BIM coordination 
and interference detection. It offers extensive compatibility with stan
dard formats such as IFC, as well as a powerful geometric clash detection 
engine. However, its capabilities in semantic analysis and conflict pri
oritization remain limited. The tool relies solely on geometric criteria 
and does not offer intelligent ranking based on criticality or business 
impact. Mehrbod et al. [4] highlight that the lack of direct integration of 
business rules or logic in the clash detection engine hinders its effec
tiveness in decision-making. Additionally, the manual export of reports 
and external management, often via Excel or BCF [17], complicate the 
utilization of the results.

Integrating a plug-in into the Navisworks environment paves the way 
for a more dynamic use of data from interference detection. Kazado et al. 
[10] demonstrated that it is possible to enrich Navisworks with an add- 
in developed with the .NET API, capable of extracting real-time data, 
structuring it, and visualizing it in 3D, while remaining non-intrusive to 
the original model. The principle is based on creating a modular inter
face composed of several functions: displaying general information, 
searching for objects by category/type, colorimetric visualization of 
parameters (such as temperature or CO₂ concentration in the initial 
example), and most importantly, reading external databases containing 
classified information (e.g., conflict criticality level). The link between 
the data and the model objects is ensured by unique identifiers, such as 
part or element numbers. This architecture allows for the integration of 
project-specific business rules (such as clearance zones or critical 
element types) directly into the visualization process. Through dynamic 
coloring and adaptive transparency of 3D objects, the user can quickly 
identify priority areas without modifying the model. The system relies 
on Excel databases that can be queried via OLE DB, ensuring flexibility 
in adapting to different data sets. This solution offers several advantages: 
reduced human error risks, the ability to integrate multiple software 
(Revit, Archicad, Allplan, etc.), non-destructive 3D visualization, and 
real-time updates via direct data reading. By integrating this logic into a 
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plugin, Kazado et al. [10] show that it is possible to overcome the lim
itations of Navisworks’ native functions and create a business-oriented 
interface tailored to the real needs of BIM coordinators, which can 
also include intelligent solutions such as Machine Learning.

Machine Learning (ML), and particularly supervised learning, rep
resents a promising solution for automating the sorting of conflicts based 
on their relevance. Unlike static rules, ML models can learn from pre
viously classified conflicts (labeled data) and predict the criticality level 
of new conflicts based on geometric and contextual features. In this 
project, several supervised models were tested, including Random For
est and Multi-Layer Perceptron (MLP). These models were trained using 
a dataset of conflicts extracted from several projects. Input variables 
included attributes such as the type of conflicting elements, their vol
ume, their originating discipline, or their position within the model. The 
results showed that these models could categorize conflicts into relevant 
categories (critical, moderate, negligible) with promising accuracy 
rates. Gupta et al. [15] emphasize that the choice of model strongly 
depends on the quality of the data and the relevance of the labels used. 
Indeed, supervised learning relies on labeled data, which implies a prior 
data preparation phase for training the dataset. These data can be 
gradually obtained through the accumulation of project data over time. 
Ultimately, this approach can be integrated into a broader intelligent 
coordination process, where ML could assist BIM coordinators by help
ing them focus on the truly priority conflicts.

The project stands out in the literature for its aim to bridge algo
rithmic research and industrial application in an operational tool that 
can be directly integrated into business processes. Several previous 
works have demonstrated the potential of machine learning for classi
fying BIM conflicts, notably using textual metadata, as seen in the study 
by Hu and Castro-Lacouture [9], or from images, as in the work by 
Ahmadpanah [11]. However, these studies typically stop at laboratory 
experimentation or validation outside of operational contexts, without 
offering a solution that can be directly used on professional coordination 
platforms. This project fills that gap by offering an all-in-one solution 
integrated into Navisworks, capable of extracting relevant data, pro
cessing it automatically using supervised learning, and presenting the 
results in a clear and actionable way for end-users. The importance of 
this approach is emphasized by Mehrbod [4], who stresses the need for 
interoperable, modular tools compatible with existing BIM ecosystems 
to ensure real-world adoption. Moreover, the project is structured in 
alignment with the ISO 19650 standard, further enhancing its relevance 
in the context of the progressive structuring of digital practices around 
common frameworks. By automating conflict management while 
adhering to the principles of traceability, standardization, and docu
ment management promoted by this standard, the project contributes to 
aligning AI tools with institutional and industrial expectations regarding 
information governance. Thus, it contributes both to enriching the sci
entific literature on AI-assisted BIM and to the professionalization of 
digital coordination practices. Through its integrated approach, 
normative alignment, and operational focus, the project represents a 
significant step forward in the intelligent, reliable, and sustainable 
automation of quality control in construction projects.

3. Research approach

This project adopts a Design Science Research (DSR) approach [18], 
complemented by action research principles [19] in its experimental 
aspect, to design, develop, and evaluate a technological tool aimed at 
optimizing the quality control process within Building Information 
Modeling (BIM). The DSR methodology provides a structured frame
work to develop solutions to practical problems, focusing on iterative 
creation and validation of an artifact [20]. The intended artifact is a 
software plug-in integrated into a BIM environment, designed to auto
mate conflict classification, thus reducing the time and resources 
required compared to manual processes, which are often prohibitive. 
The methodology is organized into five phases: Initial problem analysis 

and contextualization, research, solution development, and evaluation. 
Each phase builds on the previous one, in collaboration with industry 
stakeholders and in compliance with the ISO 19650 standard for BIM 
data management. The steps of the methodology are presented in Fig. 1.

3.1. Step 1: Initial problem analysis and contextualization

This phase, consistent with the DSR principle of problem relevance, 
defined the project’s context by examining existing BIM quality control 
processes and establishing preliminary criteria. Current practices for 
conflict detection and classification were analyzed through workflow 
mapping and professional interviews that included targeted questions 
(Table 1). Three experts—a BIM service director, an MEP coordinator, 
and a generalist BIM coordinator—provided complementary perspec
tives on the challenges and limitations of prevailing methods.

An initial set of evaluation criteria was then established, aligned with 
the ISO 19650 standard, to guide the subsequent phases. These criteria 
include both qualitative metrics (e.g., ease of use) and quantitative 
metrics (e.g., potential time savings).

3.2. Development of a theoretical framework

The artifact developed in this study is a software plug-in integrated 
into Navisworks 2025, designed to automate the classification and pri
oritization of clashes, addressing a critical component of 3D multidis
ciplinary coordination. The primary goal was to develop an efficient, 
user-friendly tool compatible with industry workflows [21].

An iterative agile methodology was adopted, combining artifact 
design, model development, and user-centered prototyping [22,23]: 

• Data Extraction: Labeled BIM data, including geometric and se
mantic metadata, were extracted via software interfaces. These data 
represented conflicts previously annotated by coordination teams.

• Model Selection and Training: Machine learning models (both su
pervised and unsupervised) were selected and trained on the 
extracted dataset. Iterative adjustments were made to optimize 
predictive performance and ensure relevance to real-world coordi
nation tasks.

• Prototyping: A functional prototype with an intuitive user interface 
was developed to visualize and filter clashes. The prototype was 
tested in a controlled environment to validate usability and align
ment with professional workflows.

The development environment included Navisworks 2025, Visual 
Studio Enterprise 2022, Visual Studio Code, and Google Colab Pro for 
parallel model training. The artifact was developed using C# and Py
thon, and the workstation configuration is detailed in Table 2. This setup 
ensured compatibility with industrial BIM environments while allowing 
scalable and reproducible training of machine learning models.

3.3. Evaluation and validation

In accordance with the principles of Design Science Research (DSR), 
the evaluation phase aimed to assess both the effectiveness and practical 
utility of the developed artifact [18,24]. Evaluation is a critical 
component of DSR, as it allows researchers to verify whether the artifact 
achieves its intended goals and provides meaningful contributions to 
practice and theory [20].

The Navisworks plug-in was evaluated through tests on real projects, 
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Fig. 1. Synthesis of the steps of the research approach.
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comparing automated and manual coordination against criteria such as 
efficiency, usability, and workflow integration. A workshop and 
demonstration confirmed its ability to filter conflicts, prioritize issues 
with machine learning, and comply with BIM standards [21,23]. Feed
back from professionals, collected via a structured questionnaire1

(Table 3), and combined with quantitative and qualitative measures, 
provided a robust validation aligned with DSR best practices, ensuring 
both methodological rigor and practical relevance [20,22]. The artifact 
was tested iteratively through technical validation within Navisworks, 
practitioner assessment, and predefined criteria-based evaluation. This 
multi-method approach aligns with DSR best practices by combining 
relevance (addressing an actual coordination problem), rigor (using 
systematic data collection and measurable indicators), and design 
evaluation (empirical validation of the artifact in real project contexts). 
The process also emphasized communication and reflection, as profes
sional feedback directly informed the refinement of the plug-in and the 
formulation of improvement strategies for future iterations.

4. Main results

In this section, we present the main results, including the issues and 
contextualization, the development of the artifact, and its testing.

4.1. Issues and contextualization

The following subsections contextualize the research by examining 
the current BIM-based coordination process and the challenges it pre
sents in practice. They outline the key issues that motivated the devel
opment of the proposed approach and discuss opportunities for 
improving coordination efficiency and reliability. The section also in
troduces the quality criteria that guided the design and evaluation of the 
proposed plug-in.

4.1.1. Process under study
This workflow, involving discipline-specific BIM Managers and BIM 

Coordinators, begins with an interference detection request initiated by 
the BIM Manager, who transmits the Revit models to the BIM Coordi
nator via a common data environment (CDE) or email. A CDE refers to a 
centralized digital space that enables all stakeholders to collect, manage, 
validate, and share project data throughout its entire life cycle [25,26]. 
The coordinator receives these models and exports them in NWC format 
for federation in Navisworks, where a global model is created. Clash 
detection tests are then carried out using Navisworks’ Clash Detective 
tool, followed by a manual grouping of clashes by density zones to 
facilitate their analysis. A crucial step involves separating relevant 
conflicts (unintentional) from false or irrelevant ones (intentional in
tersections, such as unexecuted reservations), before exporting the real 
conflicts to Newforma Konekt for collaborative tracking. An interference 
report is generated in PDF format and shared via Microsoft Teams, 
Autodesk Construction Cloud (ACC), or email, before the corrected 
models are returned to the BIM Manager via the CDE or email, 
completing the cycle. The analyzed projects concerned public buildings 
(schools, hospitals), generating an average of 10,000 conflicts during the 
initial detection. The primary tools identified include Navisworks’ Clash 
Detective for interference detection and Newforma Konekt for conflict 
tracking. Interviews also highlighted technical constraints, such as the 
need to maintain the alignment of primary fire alarm conduits and the 
prioritization of disciplines according to the General BIM Plan and the 
BIM Execution Plan.

Thus, within the scope of this study, the classic quality control 

Table 1 
Questionnaire used during the preliminary meeting.

No. Question Purpose / Objective of the 
Question

1 Can you give me an overall description of 
the current process for detecting and 
managing conflicts in your BIM projects?

Understand the general 
workflow to guide the response.

2 How are Revit models transmitted 
between different stakeholders (BIM 
Manager, BIM coordinators)?

Identify the modes of 
communication and file 
exchange.

3 What tools do you use to detect clashes 
and monitor conflicts (e.g.: Navisworks, 
Newforma Konekt)?

Identify the main software tools 
used.

4 Once conflicts are detected in 
Navisworks, how are they analyzed, 
grouped, or sorted?

Assess the level of automation 
or manual effort.

5 How do you differentiate a real conflict 
from a false positive (e.g.: intentional 
intersection, unmodeled reservation)?

Understand the business logic 
behind conflict filtering.

6 At what point and in what form are the 
detection results communicated to the 
rest of the team?

Identify the dissemination 
channels and deliverable 
formats.

7 What happens to a conflict once it is 
validated as real? How do you monitor it 
until its resolution?

Understand the conflict lifecycle 
in the project.

8 What types of projects do you generally 
handle (schools, hospitals, etc.)?

Get an overview of the project 
context and volume.

9 Are there recurring technical constraints 
in conflict management? For example, 
elements that are non-modifiable like 
conduits.

Identify frequent technical 
obstacles.

10 How are priorities between disciplines 
defined?

Understand the methodological 
and contractual framework.

Table 2 
Workstation device configuration.

Component Details

Operating System Windows 11 Pro – Version 24H2
Processor Intel Core i7-10510U @ 1.80 GHz (Boost up to ~4.9 GHz)
RAM 16 GB
Graphics Card used AMD Radeon RX 640 (2 GB)

Table 3 
Evaluation questionnaire for professionals.

Questions Targeted Responses

Role performed in BIM projects Identification of the professional 
profile

Level of experience in the BIM environment Knowledge and familiarity with 
the BIM ecosystem

Does the plug-in address a real issue in conflict 
management in Navisworks?

Assessment of the tool’s 
relevance

Is the combination of automatic filtering AI 
useful?

Evaluation of the added value of 
the concept

Do you think this tool could be integrated into 
your current coordination processes?

Potential for integration into real 
workflow

Based on your experience with existing 
solutions, how do you rate the difficulty of 
using the filtering plug-in?

Evaluation of ergonomics and 
ease of use

Based on your experience, what are the 
strengths and limitations of this solution?

Collection of qualitative feedback 
(strengths/weaknesses)

What is your overall assessment of the presented 
solution?

Synthetic evaluation of overall 
satisfaction

Select the future development paths Collection of key priorities for 
functional improvement

Do you have suggestions for improvements or 
additional features?

Open suggestions for future 
development

Would you like to be contacted for a discussion 
or a test version?

Interest in future engagement/ 
use

1 The questionnaire and interviews were conducted in accordance with the 
standard research ethics guidelines of École de Technologie Supérieure. Data 
collected from respondents were used exclusively for research purposes. The 
identities of the respondents remain confidential in compliance with all appli
cable ethical regulations of École de Technologie Supérieure.
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process without the use of machine learning (ML) was carefully analyzed 
and mapped using a BPMN diagram (Fig. 2).

4.1.2. Issue with the current process and avenues for improvement
The current process requires a significant amount of time and focus 

to separate true and irrelevant conflicts, as well as to group conflicts by 
zone for easier management. It was also pointed out that an analysis 
based solely on images cannot be relevant, as many conflicts require a 
better contextualized view. This highlights the complexity of managing 
conflicts without a global perspective, which is typically provided by the 
BIM coordinators.

This need for a more efficient and contextualized approach led to the 
creation of the following set of criteria that the solution must meet 
(Table 4).

A revised clash detection workflow (Fig. 3) is proposed to address 
limitations of the previous process by integrating automation and 
centralization. Clashes are now grouped automatically using Autodesk 
Navisworks’ Issue Add-In, while a dedicated plug-in separates relevant 
and irrelevant clashes by updating their status directly in Navisworks. 
Issue management can be handled via Newforma Konekt or Autodesk 
Construction Cloud, with the plug-in also supporting detailed reporting. 
Although automated clash filtering is planned for a future phase, the 
updated workflow already reduces manual effort and enhances project 
efficiency.

4.1.3. Quality criteria for the proposed plug-in
To evaluate the overall performance of the developed plug-in, a set of 

criteria was defined across several key dimensions (Table 5): data 
extraction, ease of use, business relevance, prediction accuracy, soft
ware integration, scalability, and compliance. These criteria were not 
limited to a purely technical perspective but also incorporated the 

normative requirements of the ISO 19650 series, particularly regarding 
information management, traceability, security, and workflow effi
ciency. The following table presents these criteria, their rationale, 
associated indicators, and their potential alignment with ISO principles.

4.2. Development of the artifact

This section will describe each part of the artifact in detail, outlining 
its development and functionality according to a four-step development 
process (Fig. 4).

The four steps required to create a functional plug-in can be sum
marized as follows: data extraction from Navisworks, preprocessing of 
this data, training of models, integrating the best option selected into a 
prediction architecture, and finally, integrating the entire solution into 
Navisworks.

4.2.1. Data extraction
This section describes the initial data extraction process, which 

served as the foundation for constructing the training conflict dataset 
used in our machine learning models.

4.2.1.1. Development. Conflict data was retrieved from two public 
building projects: a long-term care facility and a university, for a total of 
36,562 individual conflicts. Initially, the extraction of conflict data from 
Navisworks was intended to be done by utilizing the conflict report 
feature of Clash Detective in its HTML Tabular format (Fig. 5), as several 
studies have done before. However, access to a limited number and 
types of data without initial customization actions, as well as the need 
for additional preprocessing to convert data from HTML formats into AI- 
interpretable formats, led to the creation of a new extraction module 
that will integrate into the workflow of our final plugin.

Fig. 2. Current interference detection process.
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The extraction module of the plug-in was developed using the 
Navisworks .NET API, with the NavisLookUp Add-in employed to 
identify relevant property class paths (e.g., ModelItem, ClashResult, Ge
ometry). These classes provided essential attributes such as bounding 
box coordinates, disciplines, clash types, and geometric values (e.g., 
distance, overlap volume). Dedicated methods (e.g., ExtractClashData) 
retrieved this information while managing missing properties, such as 
replacing absent bounding boxes with a default directional vector 
(1,0,0). To ensure consistency across heterogeneous datasets, all values 
were standardized via ToDisplayString (e.g., degrees, booleans as text) 
before being structured in JSON format using the Newtonsoft.Json li
brary (Fig. 6).

The plug-in was developed in Visual Studio Enterprise 2022 as a 
Class Library project (.NET Framework 4.8) compatible with 

Navisworks 2025. Key references (e.g., Autodesk.Navisworks.Api.dll, 
Autodesk.Navisworks.Automation.dll) were integrated from the Navis
works installation, and Newtonsoft.Json was added via NuGet for JSON 
management. A main class implementing the FilterPlugin interface 
orchestrated extraction functions such as ExtractClashData. The 
compiled DLL was deployed to Navisworks’ Plugins folder for testing, 
and debugging via Visual Studio ensured stable performance in real- 
world conditions.

4.2.1.2. Operation and utility. The process begins with the extraction of 
raw conflict information from the Navisworks model, referred to as 
RepresentativeResults in Fig. 6. This includes essential attributes such as 
distance between elements, conflict status, associated notes, conflict 
group, test identifier, description, and, when available, location. 

Table 4 
Improvement criteria.

Category Improvement criterion Description Representative metric

Functional 
efficiency

Management of relevant/irrelevant 
conflicts

Identify relevant conflicts (unintentional) and irrelevant ones 
(intentional intersections)

Detection rate equivalent to a BIM 
coordinator

Technical 
performance

Integration with existing tools Seamlessly integrate with Navisworks Integration with Navisworks
Reproductibility Applicability to various public building projects Capacity to be applied across various 

projects
Safety and ethics Data protection Protect sensitive data in compliance with regulations (e.g., GDPR) Compliance with data security 

standards
Data traceability Preserve metadata for clear and auditable tracking Percentage of metadata retained

Fig. 3. Proposed enhanced clash detection process.
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Table 5 
Detailed criteria.

Category Criterion Why It’s Important Indicator / Metric Target 
Objective

ISO 19650 Link

Extraction Extraction Quality Ensure each clash contains complete data 
for analysis

% of clashes with complete 
properties

> 98 % Data traceability

Extraction Speed Must integrate without slowing down 
business workflows

Extraction time for 10,000 
clashes

< 10 s –

Relevance Alignment with Business Needs Automatic sorting must reflect actual site 
priorities

Gap between automatic and 
expert sorting

< 10 % Automated quality control

Useful Filtering Rate Effectively eliminate irrelevant false 
clashes

% of false clashes correctly 
filtered

> 85 % Workflow efficiency

ML 
Accuracy

Classification Accuracy Avoid misclassifying critical clashes Accuracy, F1-score F1 > 0.90 Performance indicator
Recall Ensure important clashes are not missed Recall Recall >0.85 Performance indicator

Integration Compatibility with Navisworks Remain within the BIM working 
environment

Direct integration (binary) Yes/No Common Data 
Environment (CDE)

Interoperable Export (ACC, 
Newforma)

Enable integration into current workflows Number of compatible output 
formats

≥ 2 formats Standards compliance

Evolution Scalability to New Projects Ability to reuse the tool in various contexts Number of projects tested ≥ 2 projects Dynamic information 
updating

Model Update Capability Ensure continued adaptability to evolving 
data

Model reloading capability 
(binary)

Yes/No Information updating

Structured and Secure Export Protect data and enable traceability Structured and locked format Yes/No Data security / traceability

Fig. 4. Global vision of the solution.
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Subsequently, information about the two elements involved (Item1 and 
Item2) is collected, including general categories (e.g., Object, Material) 
and specific details (e.g., element name, material type), corresponding 
to PropertyCategory and DataProperty in the diagram.

Additional geometric information (GeometryData) is calculated to 
characterize the conflicts more comprehensively. This includes overlap 
volume, contact area, angles between elements, and penetration depth, 
derived from the bounding boxes of the elements. While these measures 
provide approximate rather than exact values, they offer meaningful 
insights into the spatial relationships and severity of conflicts, sup
porting both visualization and subsequent machine learning tasks.

Finally, all data are consolidated into a structured set (Extrac
tPropertyfromClash), combining raw attributes, calculated geometry, and 
user-specified element details. This structured output is exported as a 
JSON report (Fig. 6), which can be pre-processed for training supervised 
learning models and also serve as input for the final plug-in’s conflict 
status prediction module.

4.2.2. Preprocessing
In this section, we present the data enrichment strategies, and the 

preprocessing steps applied prior to training.

Fig. 5. Example of traditional Navisworks HTML conflict report.

Fig. 6. Example of a conflict data extracted in JSON.
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4.2.2.1. Dataset development and enrichment. Preprocessing begins with 
loading conflict data from JSON files, including numerical attributes (e. 
g., distances, overlap volumes) and categorical attributes (e.g., conflict 
categories, disciplines). Data are structured in a table where each row 
represents a conflict, with columns for numerical values, categorical 
identifiers, and binary indicators (e.g., structural element presence). 
Missing numerical values are imputed using the median, and all nu
merical features are normalized to a [0,1] range. Categorical variables 
are encoded numerically to ensure compatibility with machine learning 
models.

Additional geometric and contextual features are generated from 
spatial relationships and element properties. Boolean indicators capture 
whether specific conditions are met, while features derived from geo
metric properties and coordination rules include SignificantOverlap, 
LargeContactSurface, and PenetrationDepth. Combined spatial-contextual 
features include IntentionalPenetration, capturing perpendicular MEP 
penetrations, FabricationTolerance, flagging acceptable clashes during 
fabrication, FinishingOverlap, for minor architectural interferences, and 
MinorIntraDiscipline, isolating clashes within the same discipline. Each 
element’s discipline is automatically determined from its category using 
predefined rules based on Revit nomenclature extracted via tools such as 
Dynamo (Fig. 7).

Using these derived disciplines, a ClashType is computed to charac
terize the nature of each clash—for example, a Structural–Architectural 
or Ventilation–Plumbing clash. Additional binary features such as 
MinorStructuralClash, MinorMEPPenetration, or UnacceptableClash are 
defined according to coordination rules to identify minor or critical 
clashes based on practical criteria. These variables enrich the repre
sentation of each clash significantly, providing a mix of geometric, 
technical, and contextual insights that are essential for classification.

4.2.2.2. Data preparation for training. Following preprocessing (Fig. 8), 
the dataset was prepared for machine learning integration through two 
main steps: transformation of categorical variables and construction of 
the target label. Categorical textual variables (e.g., Category1, Cate
gory2, ClashType, Discipline1, Discipline2) were processed using one- 
hot encoding, converting each unique value into a binary feature (e.g., 
Discipline1_Structural, Discipline1_Architectural), ensuring that the 
model interprets categories without introducing artificial ordinal 

relationships. All numerical, binary, and one-hot encoded features were 
then concatenated into a single, fully numeric dataset. Normalization 
parameters and the complete set of encoded feature names were pre
served for deployment consistency.

The binary target label (Label) was derived from Navisworks clash 
statuses (“New,” “Active,” “Verified,” “Approved,” “Resolved”) and 
manually refined by two experienced BIM coordinators. Clashes deemed 
critical (Label = 1) corresponded to unresolved or potentially prob
lematic statuses, while resolved clashes (Label = 0) were considered 
non-critical. Coordinators applied domain-specific heuristics, including 
spatial impossibilities, clearance violations, and other coordination er
rors, to ensure labeling reflected practical project needs. Disagreements 
were resolved collaboratively, and unrecognized statuses were conser
vatively labeled as critical to maintain caution.

Finally, the dataset was partitioned into a feature matrix (X), con
taining all numeric, binary, and encoded features, and a target vector 
(y), containing the binary labels. The resulting normalized, feature-rich 
dataset is structured for training supervised models to predict the criti
cality of clashes in BIM coordination workflows.

4.2.3. Machine learning model
This section presents the methodology followed to identify the most 

suitable classification model for our task. The approach includes a re
view of existing solutions explored in related experimental contexts, 
followed by in-depth evaluations of a selected subset of models chosen 
for their relevance to the problem domain.

The dataset exhibited a moderate class imbalance between critical 
(real) and non-relevant clashes. To ensure a robust performance 
assessment, we employed a 5-fold cross-validation scheme. Model per
formance was evaluated using standard classification metrics, including 
accuracy, F1-score, recall, and the Area Under the Receiver Operating 
Characteristic Curve (AUC-ROC). In addition, threshold tuning was 
performed to optimize the F1-score, reflecting the practical need to 
maximize detection of relevant clashes while minimizing false positives 
in a domain-specific filtering context.

4.2.3.1. Exploratory research. In the context of automatic clash classi
fication in 3D BIM models, an in-depth review of the scientific literature 
and existing solutions within the technical documentation of various 

Fig. 7. Example of Revit category list extraction in Dynamo.
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platforms allowed us to define a strategic, narrowed-down list of models. 
This selection considers: 

• The type of data handled (text, tables, images),
• The complexity of the task (severity classification, grouping by 

conflict type, etc.),
• The maturity of models within the BIM context (compatibility with 

Navisworks outputs).

Initially, we focused on scikit-learn models [27], which are known 
for their ease of implementation and effectiveness when chosen in an 
appropriate context. The classification models Random Forest, XGBoost, 
and SVM, which are ensemble models, as well as SVC, are initially 
preferred for their robustness and ease of deployment on data extracted 
from Navisworks model conflicts. A K-Means classification model, 
although unsupervised, is considered strategic for uncovering patterns 
that may not be immediately apparent in the datasets. MLP (Multilayer 
Perceptron) offers a progressive step toward deep learning without 
introducing excessive complexity. BERT, a natural language processing 
model, is selected to handle object names and comments within conflicts 
(something that traditional models are not equipped to do) and for its 
accessibility via open-source platforms like Hugging Face. Finally, deep 
learning architectures could potentially enable the effective combina
tion of images, text, and raw data for advanced contextual classification. 
The main characteristics of each model are summarized in Table 6.

Several advantages and limitations for each model emerge from the 

current context (Table 7). The boundary between real and false conflicts 
is ambiguous, requiring the extraction of additional details beyond the 
standard Clash Detective reports, such as richer data on conflict 

Fig. 8. Simplified diagram of the preprocessing of extracted data.

Table 6 
Main characteristic of the selected models.

Model Type Main Feature Key References

Random 
Forest

Classical ML Robust, noise-resistant, 
good for tabular data, 
interpretable

Hu & Castro- 
Lacouture [9], 
scikit-learn [27]

XGBoost Advanced ML High performance, 
handles imbalanced data, 
fast, accurate

xgboost.ai

SVM Classical ML Good on small datasets, 
efficient for well- 
separated classes

Ahmadpanah 
[11]; scikit-learn 
[27]

MLP Light Deep 
Learning

Entry-level DL model for 
tabular data or text 
embeddings

Scikit-learn [27]. 
MLPClassifier

BERT NLP (Natural 
Language 
Processing)

Best for text analysis, 
captures meaning in 
names/reports

Hugging Face

K-Means Unsupervised 
Clustering

Useful to discover similar 
clash groups

scikit-learn [27] 
Harode et al. [8]

Deep 
Learning 
(fusion)

Multimodal DL For text + image +
tabular data fusion, an 
advanced and 
comprehensive approach

TensorFlow, 
PyTorch 
R.adegun [28]
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properties or Revit categories. The data is noisy, imbalanced (with more 
false than real conflicts), and lacks standardization from one conflict to 
another, complicating processing. Models based on large language 
models (LLMs), such as BERT, have limitations, including data security 
risks and a significant need for fine-tuning, while deep learning models 
demand substantial computational resources, which are incompatible 
with standard environments (CPU). Clustering, although relevant, gen
erates too many clusters due to the complexity and number of features 
related to the conflicts, making this approach less viable. These con
straints lead to the preference for simpler classification algorithms from 
scikit-learn (e.g., Random Forest, SVM, XGBoost, MLP) [27].

For more advanced tests, we will keep the following three models: 
MLP, Random Forest, XGBoost.

4.2.3.2. Advanced testing. This section presents an in-depth analysis of 
the key hyperparameters used for three commonly employed classifi
cation models in the context of intelligent clash filtering in BIM: the 
MLPClassifier (multi-layer perceptron), the RandomForestClassifier 
(random forest of decision trees), and the XGBoostClassifier (extreme 
gradient boosting). For each of these models, hyperparameters play a 
crucial role in controlling complexity, learning, regularization, and 
overall model performance. The following tables detail the most influ
ential parameters, along with concise explanations of their function. 
Testing will be conducted on each of the three chosen models to deter
mine the optimal hyperparameters, followed by the creation of an 
ensemble model incorporating the best-performing hyperparameters.

The MLPClassifier is a deep learning model based on a fully connected 
neural network. It is particularly suited for supervised classification 
problems where the relationships between variables can be complex and 
non-linear. Hyperparameters here configure the network’s structure, 
learning strategy, regularization against overfitting, and the batch size 
used during training. The flexibility of this model allows it to be finely 
tuned to a variety of datasets (Table 8).

The set of hyperparameters for the MLPClassifier allows the model to 
be calibrated based on the complexity of the data and the desired 
sensitivity to overfitting. Proper configuration is essential to ensure the 
stability and effectiveness of supervised learning.

The RandomForestClassifier relies on the aggregation of a set of de
cision trees trained on different subsets of the dataset. This robust 
method reduces the risk of overfitting while offering good performance 
in terms of accuracy and generalization. The hyperparameters primarily 
define the depth of the trees, the number of samples required for splits, 
as well as the sampling methods for bootstrap. Options are also provided 
to adjust the handling of imbalanced classes (Table 9).

Thanks to its numerous structural and sampling parameters, Random 
Forest allows for precise adaptation to the constraints of the dataset. Its 
ability to naturally handle variance issues and provide reliable results 
makes it a highly valued model in the BIM context.

XGBoost is a gradient boosting method that is particularly efficient, 
designed to optimize both the speed and accuracy of supervised 
learning. Its hyperparameters cover a wide range of configurations, from 
tree depth to weight regularization, as well as sample ratio adjustment 
and class weighting (Table 10). Its performance is often remarkable on 
structured datasets like those encountered in complex BIM 
environments.

XGBoost allows for fine-tuning the trade-offs between bias, variance, 
and complexity. It is particularly recommended for projects where 
classification performance and handling class imbalances are priorities.

The training of the Random Forest (RF), XGBoost (GBX), and Multi- 
Layer Perceptron (MLP) models follows a rigorous methodology to ensure 

Table 7 
Strengths and limitations of the selected models.

Algorithm Strengths Limitations Relevance

BERT Powerful for textual 
data

heavy fine-tuning Low (not 
selected)

Random 
Forest

Robust, handles noisy 
data well

Less suited for very 
complex data

Medium to 
high

SVM Effective on small 
datasets

Sensitive to poorly 
standardized features

Medium

MLP Flexible with structured 
data

Requires more 
resources than scikit- 
learn

Medium to 
high

XGBoost High performance, fast 
on medium datasets

Less intuitive to 
interpret

High

K-means Useful for unsupervised 
clustering

Too many clusters with 
complex data

Low (not 
selected)

Deep 
Learning

Powerful on rich 
datasets

Requires high 
computational capacity

Low (not 
selected)

Table 8 
Description of the parameters of the MLPClassifier model.

Category Hyperparameter Description

Structure hidden_layer_sizes Defines the structure of the network by 
indicating the sizes of the hidden layers.

Structure activation Activation function of the neurons in the 
hidden layers (relu, tanh, etc.).

Learning learning_rate_init Initial learning rate for optimization.
Learning solver Optimization algorithm (adam, sgd, lbfgs).
Learning max_iter Maximum number of iterations during 

training.
Learning early_stopping Stops training if no improvement is observed 

on a validation set.
Regularization alpha L2 regularization coefficient to avoid 

overfitting.
Sampling batch_size Size of mini-batches for stochastic training.
Miscellaneous random_state Sets the seed for reproducibility.
Miscellaneous beta_1 / beta_2 Internal parameters of the adam algorithm 

for weight updates.

Table 9 
Description of the hyperparameters of the RandomForestClassifier model.

Category Hyperparameter Description

Structure max_depth Maximum depth of the trees in the forest.
max_features Maximum number of variables considered 

for each split.
max_samples Proportion of samples used for each tree (if 

bootstrap).
Learning n_estimators Total number of trees to build.
Regularization min_samples_leaf Minimum number of samples in a leaf.

min_samples_split Minimum number of samples to split a node.
Sampling bootstrap Indicates if sampling is done with 

replacement.
Miscellaneous random_state Controls reproducibility.

criterion Function used to measure the quality of a 
split.

class_weight Class weights to handle imbalanced classes.

Table 10 
Description of the hyperparameters of the XGBoostClassifier model.

Category Hyperparameter Description

Structure max_depth Maximum depth of the constructed trees.
colsample_bytree Fraction of columns (features) used for each 

tree.
subsample Fraction of samples used for each tree.

Learning learning_rate Rate of reduction of the weight of each new 
tree.

n_estimators Total number of trees to train.
Regularization reg_lambda L2 regularization applied to weights.

gamma Loss reduction threshold to allow a split.
min_child_weight Minimum weight of a child node to keep it.

Sampling subsample Ratio of random samples per tree.
Miscellaneous random_state Sets the seed for reproducibility.

Objective Objective function to optimize (e.g., “binary: 
logistic”).

scale_pos_weight Weight of positive classes to handle 
imbalances.
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optimal performance in conflict classification. After data preprocessing, 
the data is split into training and test sets, with proportions tailored to 
each model to maximize efficiency. A hyperparameter search is then 
conducted using an automated grid search, which tests different com
binations to identify the best-performing configuration. This step is 
crucial for adapting the models to the specifics of the data and avoiding 
overfitting. Once the optimal hyperparameters are selected, fine-tuning 
of the classification threshold is performed to optimize the balance be
tween the “False” and “True” class predictions, taking into account the 
specific needs of the project. This process ensures that each model is 
trained in a robust and consistent manner, while considering its algo
rithmic particularities.

Given the imbalance in the dataset with a higher number of false 
(non-critical) clashes compared to true (critical) ones a rebalancing 
strategy was required to prevent model bias. The SMOTE (Synthetic 
Minority Over-sampling Technique) algorithm was applied to artificially 
generate new samples of the minority class. A 50/50 class distribution 
was achieved, ensuring equal representation of both classes during 
training and improving the model’s ability to detect critical clashes 
without being overwhelmed by false positives.

Using the native GridSearchCV function from scikit-learn [27] in each 
of the three selected models, the best hyperparameters for each model 
were determined (Table 11) and subsequently used to create the 
ensemble model.

To leverage the individual strengths of the three models, an ensemble 
model (EM) is built by combining the predictions of RF, GBX, and MLP. 
This approach relies on a voting or probability aggregation strategy, 
where each model contributes to the final decision based on its perfor
mance. The objective is to compensate for the weaknesses of one model 
with the strengths of others, for example, by exploiting the robustness of 
RF for noisy data, the ability of GBX to capture complex relationships, 
and the flexibility of MLP for non-linear patterns. The ensemble model is 
trained using the already optimized base models, and a new evaluation 
is performed to verify the performance improvement. This step dem
onstrates the added value of the ensemble, which consistently out
performs individual models in key metrics, thus providing a more 
reliable solution for conflict classification in this project.

All models are created through the same Python pipeline (Table 12), 

set up in a Google Colab Pro environment, designed to automate all the 
steps required to train a classification model from data extracted from 
Navisworks, for direct integration into a BIM clash filtering plug-in. This 
is a production-oriented pipeline, with the goal of generating a robust 
model and inference files usable in an application environment.

Specifically, this pipeline begins by reading JSON conflict files, ap
plies disciplinary categorization rules, enriches the data with specific 
features, and then preprocesses them (encoding, normalization, label
ing). It then trains a model (MLP, Random Forest, XGBoost, or ensemble 
model), dynamically adjusts the optimal decision threshold, evaluates 
performance on the test set, and exports the files required for deploy
ment: model, encoders, thresholds, feature importance, performance 
curves, and metadata. Each function within this pipeline is responsible 
for a specific step, ensuring smooth, traceable, and easily reproducible 
execution.

This training pipeline does not aim to cover the entire exploratory 
development cycle but focuses on preparing a stable model that is 
directly usable in an application context. By producing the necessary 
inference files, it serves as a bridge between the experimental phase 
(carried out in advance) and the operational integration phase, partic
ularly within the framework of the Navisworks plug-in developed for 
this project. Its modular structure also allows for future adaptation to 
other datasets or new models, ensuring its sustainability and portability.

Four approaches were compared: the Multi-Layer Perceptron (MLP), 
Random Forest, XGBoost, and an ensemble model combining the three 
previously mentioned. The goal is to identify the model that offers the 
best trade-off between precision, robustness, and generalization capa
bility. The evaluation relies on several complementary indicators 
(Table 13): optimized confusion matrices, ROC and Precision-Recall 
curves, predicted probability distributions, feature importance anal
ysis, as well as a comparative table of global metrics (F1-score, AUC, 
precision, recall, etc.). Each model is analyzed in detail, highlighting its 
strengths and weaknesses. These results aim to justify the choice of the 
most performant model for operational integration into the Navisworks 
plugin, ensuring reliable and automated classification of relevant con
flicts in a multidisciplinary BIM environment.

Table 11 
Best hyperparameters by model.

Catégorie Modèle Hyperparamètres Valeurs

Structure MLP hidden_layer_sizes, activation (256, 128), 
‘relu’

Random 
Forest

max_depth, max_features, 
max_samples

20, 0.9, 0.9

XGBoost max_depth, colsample_bytree, 
subsample

30, 0.7, 0.9

Learning MLP learning_rate_init, solver, 
max_iter, early_stopping

0.001, ‘adam’, 
300, True

XGBoost learning_rate, n_estimators 0.1, 300
Regularization MLP alpha 0.0001

Random 
Forest

min_samples_leaf, 
min_samples_split

1, 2

XGBoost reg_lambda, gamma, 
min_child_weight

0.01, 0, 1

Sampling MLP batch_size ‘auto’
Random 
Forest

bootstrap, max_samples True, 0.9

XGBoost subsample 0.9
Ensemble 

Configuration
Random 
Forest

n_estimators 300

XGBoost n_estimators 300
Miscellaneous Tous random_state 42

MLP beta_1, beta_2 0.9, 0.999
Random 
Forest

criterion, class_weight ‘gini’, None

XGBoost objective, scale_pos_weight ‘binary: 
logistic’, 1

Table 12 
Description of the model training pipeline.

Function Role

classify_element_type_with_llm_rules Classifies elements according to their 
disciplinary type based on categories and 
families.

determine_clash_type Determines the type of conflict based on the 
two disciplines involved.

select_json_files Allows the user to select JSON files 
containing conflicts.

process_clash Extracts and processes information from a 
conflict to create a structured entry in the 
DataFrame.

load_json_data Loads all conflicts from JSON files and builds 
the main DataFrame.

export_raw_data Exports raw data as a dictionary for later use 
or verification.

preprocess_data Adds constructed features, encodes 
categories, normalizes numerical values, and 
creates labels.

assign_label Internal function in preprocess_data that 
converts status to binary label (1 or 0).

train_model Trains a VotingClassifier (RF, XGB, MLP) and 
adjusts the optimal threshold with 
TunedThresholdClassifierCV.

evaluate_model Evaluates the model by generating 
classification metrics, ROC/PR curves, and 
variable importance.

export_results Saves the model, metadata, configuration 
files, and variable importance files.

main Executes data processing, training, 
evaluation, and export steps by calling all 
previous functions.
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The confusion matrices obtained after optimizing the classification 
thresholds (Fig. 9) allow for the comparative evaluation of the four 
models tested: the ensemble model (ME), XGBoost (GBX), the multi- 
layer perceptron (MLP), and the random forest (RF).

Overall, the ensemble model stands out with the best results, 
achieving a total of 2299 true negatives and 4699 true positives, 
compared to only 50 false positives and 265 false negatives. This model 
effectively minimizes classification errors, demonstrating excellent 
generalization ability and a good balance between precision and recall. 
XGBoost also delivers very good performance, with 2268 true negatives 
and 4732 true positives. It records 81 false positives and 232 false 
negatives, which remains low. Although slightly less effective than the 
ensemble model, particularly in terms of false positives, it maintains 
excellent overall accuracy. The Random Forest model is close to 
XGBoost in terms of results but falls slightly behind. It records 2249 true 
negatives and 4637 true positives, with 100 false positives and 327 false 
negatives, suggesting a slight tendency to under-classify some positive 
observations. In contrast, the MLP performs significantly worse. With 
1011 true negatives and 2293 true positives, it generates a high number 
of errors: 161 false positives and 192 false negatives. This imbalance 
highlights a particular weakness in correctly identifying the negative 
classes, which could be attributed to model instability on this dataset or 
increased sensitivity to noise.

In summary, the results demonstrate the advantage of an ensemble 
model combining multiple complementary approaches. The ensemble 
model benefits from the strengths of each individual classifier to achieve 
a more robust and reliable classification, surpassing each of them when 
considered separately. These results confirm the value of the ensemble 
approach in a context where precision and minimizing classification 
errors are priorities.

The graphs representing variable importance (Fig. 10) highlight the 
most influential features in the decision-making process for each of the 

models used.
The charts presented in Fig. 10 illustrate the variable importance 

across each model employed, both at the individual level and in terms of 
variable families. The ensemble model (ME) exhibits a relatively balanced 
contribution from multiple descriptor types. At the individual variable 
level, Discipline2_Ventilation emerges as the most influential, followed by 
specific object categories such as Category2_Ossature and Cat
egory2_Modèles génériques, as well as a key geometric variable, Distance. 
This distribution indicates a heterogeneous use of input information, 
integrating both contextual and geometric dimensions.

The aggregated analysis by variable families corroborates this obser
vation. While variables from Category2 appear slightly more prominent, 
numerical descriptors, discipline-related variables, and conflict types 
(ClashType) also contribute substantially to the model’s predictions. This 
diversity of input types highlights the ensemble model’s ability to 
integrate relevant signals from complementary dimensions, thereby 
mitigating over-reliance on any single information source.

The XGBoost (XGB) model demonstrates pronounced sensitivity to 
the variable IntentionalPenetration, which stands out with an individual 
importance score exceeding 0.07. Other influential variables include 
categories such as Category2_Unknown and Category2_Ossature, alongside 
discipline descriptors like Discipline2_Ventilation and Dis
cipline2_Electrical. It is worth noting that generic or unspecified cate
gories (e.g., Unknown) may represent instances where modeling 
information is incomplete or absent. While statistically informative, 
these variables should not be interpreted as having strong domain- 
specific significance. In the grouped analysis, the predominance of 
Category2 indicates the model’s focus on a narrow set of strong signals, 
which may lead to underutilization of other relevant dimensions 
necessary for a broader understanding of conflicts.

The Random Forest (RF) model similarly emphasizes Category2 var
iables, in addition to geometric descriptors such as Distance and Angle
BetweenVectors, and variables related to disciplines. The aggregated 
importance across variable families reveals a notable emphasis on object 
categories, while also incorporating numerical descriptors, suggesting a 
more diversified approach to decision-making—though still notably 
influenced by categorical object features.

In the case of the Multilayer Perceptron (MLP), the most influential 
variables are primarily binary indicators derived from domain-specific 
rules, including Structure1, SignificantOverlap, and IntentionalPenetra
tion. These variables reflect predefined interference scenarios aligned 
with recurrent industry logic. The grouped analysis indicates a dominant 
contribution from such binary rule-based features, underscoring the 
MLP’s capacity to effectively exploit explicitly defined contextual 
relationships.

In summary, certain variables—including Category2, IntentionalPe
netration, and Discipline2—consistently appear among the most influ
ential across models, affirming their central role in predicting conflict 
criticality. Nevertheless, each model leverages these features differently. 
XGBoost adopts a selective approach focused on a limited number of 
highly discriminative variables, while Random Forest distributes 
importance more gradually. The MLP relies heavily on structured 
domain-specific rules.

Ultimately, the ensemble model (ME) distinguishes itself by distrib
uting variable importance more equitably across categorical, geometric, 
and contextual dimensions. This integrative strategy capitalizes on the 
complementary strengths of its constituent models (XGB, RF, MLP), 
enhancing robustness by reducing dependence on any single dominant 
signal and improving adaptability to the diverse interference scenarios 
characteristic of BIM projects.

The probability distributions predicted by each model (Fig. 11) 
provide an insight into their ability to effectively distinguish between 
positive and negative classes. In these graphs, probabilities associated 
with negative instances (the “False” class) are represented in blue, while 
those of positive instances (the “True” class) are in red.

The Random Forest (RF), XGBoost (GBX), and ensemble model (ME) 

Table 13 
Description of the model evaluation metrics.

Element Description

Confusion Matrix Table showing model predictions against actual values 
(True Positive, False Positive, False Negative, True 
Negative). Evaluates classification errors.

ROC Curve Curve illustrating the trade-off between true positive rate 
and false positive rate at different thresholds. Measures 
model discrimination ability.

AUC-ROC Overall performance measure based on the ROC curve. 
Indicates the quality of class separation.

Precision-Recall Curve Curve showing the relationship between precision and 
recall at different thresholds. Evaluates the balance 
between these two metrics.

AUC (Precision-Recall) Overall performance measure based on the precision- 
recall curve. Reflects the quality of positive predictions.

Feature Importance Graph ranking variables with the most impact on model 
predictions. Helps identify the most influential features.

Probability Distribution Graph showing the distribution of predicted probabilities 
for each class (False/True). Good separation indicates 
clear distinction between classes.

F1-Score (Optimized 
Threshold)

Harmonic mean of precision and recall. Evaluates overall 
performance, especially useful for imbalanced classes.

F1-Score 
(GridSearchCV)

F1-Score obtained after hyperparameter optimization via 
GridSearchCV, measured on a validation set or via cross- 
validation.

Precision Proportion of correct positive predictions among all 
positive predictions for a class.

Recall Proportion of true positives correctly identified relative 
to all actual true positives.

Support Number of actual examples in each class. Indicates data 
size per class.

Accuracy Overall proportion of correct predictions across all 
classes.

Macro Avg Average of metrics (precision, recall, F1-Score) for each 
class, without weighting by support.

Weighted Avg Average of metrics (precision, recall, F1-Score), 
weighted by support of each class.
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exhibit well-separated distributions, with a strong concentration of 
probabilities close to 0 for the false class and close to 1 for the true class. 
This clear separation, combined with a decision threshold set around 0.5 
(dashed vertical line), indicates a very good ability to discriminate be
tween the classes. Specifically, the ensemble model stands out with an 
extremely sharp separation, featuring well-defined peaks and minimal 
overlap between the two classes, which reflects its robustness in 
prediction.

In contrast, the MLP model shows a less pronounced distribution. 
There is more overlap between the classes around the threshold, with a 
more spread-out and less polarized probability distribution. This sug
gests that the multilayer perceptron is less confident or less well- 
calibrated in its predictions, which could lead to greater uncertainty 
in classifying certain cases. Overall, the analysis of the distributions 
confirms the previously observed performance: the ensemble model 
appears to be the most reliable for correctly separating relevant conflicts 
from irrelevant ones, thanks to its clear and well-structured probabilistic 
distribution.

The ROC and Precision-Recall curves obtained (Fig. 12) provide 
insight into the discriminative power of the models, as well as their 

efficiency in detecting positive instances while minimizing false posi
tives. The ensemble model (ME) stands out with an almost perfect ROC 
curve, achieving an Area Under the Curve (AUC) of 0.990. This value 
indicates an excellent ability to separate the positive and negative 
classes, while simultaneously minimizing false positives and false neg
atives. The GBX (0.992) and RF (0.987) models also display excellent 
performance, though slightly behind. In comparison, the MLP model 
achieves an AUC of 0.962, which is still very satisfactory but indicates 
slightly less distinct discrimination, particularly in the areas with low 
false positive rates.

The Precision-Recall (PR) curves further support these observations 
by emphasizing each model’s performance on the positive class—that is, 
the accurate detection of relevant clashes. The ensemble model (ME) 
once again achieves the highest area under the curve (AUC), with a 
value of 0.996, highlighting its ability to maintain high precision even 
when recall is maximized. XGBoost (GBX) and Random Forest (RF) 
follow closely, with respective AUCs of 0.996 and 0.994, also demon
strating strong robustness. While MLP remains effective, its PR curve is 
slightly less regular, with an AUC of 0.981, suggesting a noticeable drop 
in precision at high recall levels. These findings reinforce the superiority 

Fig. 9. Confusion matrices of the different training models.
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Fig. 10. Variable importance chart by model.

R. Ailem and C. Boton                                                                                                                                                                                                                         Automation in Construction 181 (2026) 106644 

16 



of the ensemble model, which effectively integrates the strengths of its 
base learners to achieve an optimal trade-off between sensitivity and 
precision—a critical requirement for the reliable identification of true 
clashes.

The performance metrics of the evaluated models are summarized in 
Table 14. The ensemble model achieves the highest scores across all 
indicators, including an F1-score of 0.96, precision of 0.96, and AUC- 
ROC of 0.990, indicating a strong ability to discriminate between rele
vant and irrelevant conflicts. It also provides the best class-specific ac
curacy, both for clashes to retain (VC) and clashes to filter (FC), while 
maintaining a well-balanced recall of 0.91 and overall accuracy of 0.99. 
The individual models, Random Forest and XGBoost, also demonstrate 
excellent performance, with F1-scores of 0.945 and 0.956, respectively, 
and AUC-ROC values exceeding 0.98. MLP, while still performing 
reasonably well, falls slightly behind across all criteria, most notably 
with a lower recall of 0.86, potentially indicating challenges in detecting 
certain relevant clashes. Overall, these results validate the ensemble 
learning strategy as an effective compromise between robustness and 
performance, successfully leveraging the complementary strengths of 
the individual classifiers.

The SHAP summary plots highlight key factors influencing model 

predictions for clash classification. Geometric features such as Distance, 
AngleBetweenVectors, and PenetrationDepth consistently show high 
impact, especially in XGBoost, MLP, and the Ensemble model, con
firming their critical role in identifying relevant clashes. Category fea
tures like Isolations des gaines and Ossature are particularly important in 
the Random Forest model, reflecting the value of typological informa
tion. The Ensemble model combines both geometric and disciplinary 
features, leading to more balanced and reliable predictions. Overall, the 
analysis confirms that effective clash filtering relies on both spatial 
metrics and discipline-specific attributes.

The ensemble model has better performance than the three other 
individual models, with the best F1-score, average precision, and strong 
recall. This indicates its superior ability to deliver the most accurate 
predictions without significantly increasing inference time.

Once the models have been trained and evaluated, the results are 
exported so includes metadata such as feature importance scores, 
enabling further analysis or integration into automated machine 
learning pipelines. This export process ensures that the models can be 
deployed in an operational environment, where they will be used to 
predict new clashes from raw BIM data. The entire workflow—from 
training to export—is designed to meet the project’s requirements while 

Fig. 11. Probability distributions for the different models.
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offering a scalable and reproducible framework for future 
implementations.

4.2.4. Prediction model
The Predict module is a lightweight Python architecture integrated 

into the final plug-in, designed to apply a pre-trained Machine Learning 
model to new datasets generated from clash detection processes. The 

user selects a clash file, which is then automatically preprocessed using 
the same steps applied during model training: encoding of categorical 
columns, normalization of numerical variables, addition of rule-based 
features, and identification of the involved disciplines. This pre
processing relies on inference files (such as columnEncoded, sca
lingParam, and categoryMapping) to ensure full consistency with the 
saved model (Model.pkl). The predicted output indicates whether a 
clash is “Resolved” or “Active”.

Once the data has been transformed, it is passed to the model to 
generate predictions for each conflict. The output is a structured JSON 
file, where each entry includes the ClashName (conflict identifier), the 
ClashGroupName (associated test group), and the predicted NewStatus (e. 
g., “Resolved” or “Active”). This file then serves as an instruction source 
for the automatic modification of conflict statuses within the plug-in, 
enabling dynamic and centralized updates of conflict information 
directly in the BIM user interface.

The prediction pipeline (Table 14) developed in this project is 
designed to automatically process new conflict files extracted from 
Navisworks, apply the trained classification model, and save the results 
in a format compatible with the plug-in. This process follows a sequence 
of steps: dependency management, loading of inference files (model, 
normalization parameters, encodings), extraction and preprocessing of 
new conflict data, model inference, and export of the predictions. Each 
function within the script is dedicated to a specific task to ensure the 
robustness, traceability, and reusability of the pipeline across various 
project contexts. Table 15 summarizes the role of each key function.

This prediction pipeline is designed to integrate seamlessly into the 
plug-in workflow. It ensures reliable end-to-end execution, from data 
selection to prediction generation, while automatically handling errors 
and technical dependencies. Its modular architecture facilitates model 
updates and deployment on new datasets originating from various BIM 
projects.

In addition to accuracy metrics, inference times were measured at 
this point within the Navisworks environment to assess the plug-in’s 
responsiveness during real-time usage for 11,522 samples. Average 
inference times per conflict were as follows: Random Forest – 172 ms, 
XGBoost - 92 ms, and MLP – 170 ms. And Ensemble model regrouping 
the three of them - 607 ms These values confirm the feasibility of on-the- 
fly classification without significantly slowing down the coordination 
workflow.

4.2.5. Final plug-in
The developed plug-in integrates directly within Autodesk Navis

works and aims to enhance the process of detecting and managing 
conflicts in BIM models by adding a layer of artificial intelligence. This 
system automates the analysis, classification, and prioritization of 
detected conflicts within the Clash Detective module, with the goal of 
facilitating decision-making for professional modelers.

The process begins when the user runs a conflict detection in 
Navisworks using the Clash Detective tool (Fig. 13). This tool auto
matically identifies interferences between objects in the model, gener
ating a raw list of conflicts that is often large and difficult to directly 
utilize. To structure this data, an initial complementary module (add-in) 
allows for grouping the conflicts according to intelligent criteria: spatial 
proximity, nature of the involved elements, geometric similarity, etc. 
This grouping represents the first step in streamlining the information. 
Once this sorting is done, the user can launch the main plug-in, which 
orchestrates a complete process of extraction, analysis, and classification 
of conflicts. Developed in C#, this plug-in automatically extracts the 
data associated with each conflict (coordinates, object identifiers, 
element types) and formats them into a standardized JSON file (referred 
to here as file A). This file serves as the input for an intelligent analysis 
pipeline.

The extracted metadata is then passed to a Python script that per
forms rigorous data preprocessing. Using the Pandas and Pandera li
braries, the script cleans, encodes, and normalizes the information to 

Fig. 12. ROC and Precision-Recall curves for the different models.
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make it compatible with a Machine Learning model. This model, pre
viously trained on real-world cases, is then called to automatically 
predict the new status of each conflict.

The predictions are saved in a second JSON file (file B), enriched 
with the predicted statuses for each individual conflict as well as the 
groups of similar conflicts. This file is then reintegrated into the Navis
works environment, where the results are displayed directly within the 
Clash Detective interface (Fig. 14).

Thanks to this seamless integration, the plug-in transforms a purely 
visual and manual process into a semi-automated workflow, where 
conflicts are intelligently analyzed, classified, and prioritized. The ulti
mate goal of this system is to provide professional modelers with a 
decision-support tool: by prioritizing real conflicts, it facilitates their 
swift and documented resolution. This system can thus be incorporated 
into a model review cycle, where identified and classified conflicts are 
sent to the modeling team for correction, focusing on the most critical 
issues to address first.

The functions listed in Table 16 correspond to the main steps of the 
plug-in, ranging from data extraction to status updates, including the 
invocation of the prediction model. The process involves both C# 

modules (extraction, interface, updating) and Python modules (analysis, 
classification).

5. Evaluation

This section presents the evaluation of the proposed plug-in using a 
combination of technical testing, practitioner feedback, and criteria- 
based assessment.

5.1. Test in Navisworks

As part of this project, a comparative approach was undertaken to 
assess the alignment between conflict filtering performed manually by 
experienced BIM coordinators and automatic filtering carried out using 
a plug-in we developed.

The goal is to measure the ability of the automatic tool to replicate 
expert choices, while identifying differences related to grouping logic, 
implicit business rules, or technical criteria used. The analysis focuses on 
conflicts detected between various disciplines within the federated BIM 
project, including architecture (A), structure (S), ventilation (VE), 
electricity (EL), fire protection (PI), and plumbing (PL). These disci
plines were cross-referenced in multiple tests (e.g., A VS S, S VS VE, A VS 
EL) to assess the relevant types of conflicts from a geometric, technical, 
or business perspective.

For each test, only the conflicts deemed “true” were retained in both 
approaches. A detailed analysis was conducted by comparing the vol
ume of conflicts retained, the nature of the elements involved, and the 
frequency of the cases represented. This comparison allows for the 
identification of convergences, explainable gaps, and actionable insights 
for refining the machine learning model used (Table 17).

This comparative analysis aims to highlight the similarities in con
flict detection between those identified manually by experienced BIM 
coordinators and those filtered automatically through a machine 
learning-based plug-in. The goal is twofold: to validate the ability of the 
automatic filtering to reproduce business priorities, while also identi
fying current limitations and potential areas for improvement.

The manually identified conflicts were grouped based on the 
expertise of the stakeholders, business rules, client expectations, and 
project issues. In contrast, the automatic filtering relies on an ensemble 
model trained on manually annotated conflicts, combining Random 
Forest, XGBoost, and MLP, and incorporating several features of the 
clash (element type, distance, local density, etc.).

Overall, there is convergence on several critical cases, notably in 
tests like S VS S or A VS EL, where structural or technical interference 
conflicts are consistently highlighted. However, discrepancies appear in 
certain groupings: coordinators, due to their business knowledge, take 
into account usage logic, clearances, and client contexts. Thus, conflicts 
like Guardrails vs Rooms are highly prioritized manually but are less 
detected automatically.

Conversely, automation sometimes highlights frequent but less crit
ical geometric conflicts, according to the coordinators, suggesting room 
for interpretation. In particular, discrepancies are observed in ventila
tion conflicts (S VS VE), which are often seen as particularly problematic 
in practice but are sometimes under-analyzed by the model.

The most common cases of misclassification involve conflicts be
tween secondary technical elements (e.g., flexible ducts vs insulation), 
which are often considered negligible by coordinators. These errors are 

Table 14 
Results of the model evaluation.

Model F1-Score (Optimal Threshold) AUC-ROC Avg Precision Precision FC Precision VC Recall Accuracy

MLP 0.89 0.971 0.88 0.81 0.96 0.91 0.90
Random Forest 0.93 0.978 0.92 0.86 0.97 0.94 0.93
XGBoost 0.95 0.990 0.95 0.91 0.98 0.96 0.95
Ensemble 0.96 0.990 0.96 0.91 0.98 0.96 0.96

Table 15 
Description of the prediction architecture pipeline.

Function Name Role

log_message(message) Writes a message to a log file for tracking 
script execution and displays it in the 
console.

install_package(package, version) Checks if a dependency is installed and 
installs it with pip if necessary. Also 
handles forced reinstallation.

check_and_install_dependencies() Checks and installs all necessary 
dependencies for the script to function 
properly.

classify_element_type_with_llm_rules 
(…)

Classifies elements of a clash into a 
discipline (e.g., Structural, Electrical) 
based on category/family keyword rules.

determine_clash_type(discipline1, 
discipline2)

Defines a conflict type based on the two 
involved disciplines (e.g., Structural- 
Electrical).

process_clash(…) Extracts and structures key information of 
a conflict (volume, distance, category, 
discipline, etc.).

load_inference_files() Loads the files needed for inference: 
trained model, normalization parameters, 
category mapping, encoded columns.

load_new_data(input_path) Loads the JSON file containing conflicts 
to predict, extracting each conflict into a 
pandas DataFrame.

preprocess_new_data(…) Applies the same preprocessing as during 
training: feature creation, normalization, 
categorical encoding, column alignment.

predict(model, X) Applies the classification model to the 
preprocessed data and returns the 
predicted statuses (‘Active’, ‘Resolved’).

save_predictions(…) Saves the predictions in a JSON file in the 
expected format, including clash names 
and their predicted status.

save_error_message(…) Saves an error message in a JSON file if an 
exception is raised during execution.

main() Manages the entire prediction logic: file 
selection with tkinter, data loading, 
inference, saving, and error handling.
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mostly false positives, reflecting the model’s heightened sensitivity to 
geometric conflicts that have a low business impact.

5.2. Evaluation by practitioners

The diagram on Fig. 15 summarizes the quantitative feedback from 
professionals across four key dimensions of the plug-in: its relevance to 
field needs, its potential for integration into existing BIM workflows, its 
usability (inverted here so that higher scores indicate greater ease of 
use), and the overall appreciation of the solution. The consistency of the 
ratings reflects a general recognition of the tool’s added value, with 
particular emphasis on its contribution to the intelligent prioritization of 
conflicts. Slightly lower scores on the usability dimension suggest that 
further improvements are still needed to enhance user-friendliness.

Table 18 provides a qualitative summary of the feedback given by 
five professionals who attended the demonstration of the plug-in. Each 
row outlines the participant’s role, their level of BIM experience, and the 
key strengths and weaknesses noted in their comments. This overview 
helps contextualize the evaluations according to each participant’s po
sition within the coordination workflow. There is a clear interest in the 

concept of intelligent filtering, alongside concrete observations 
regarding current limitations, particularly in terms of usability and the 
reliability of automated processing.

This professional evaluation highlights the strong potential of the 
conflict filtering plug-in, both in terms of functional value and its ability 
to integrate into BIM coordination workflows. The feedback gathered 
validates the relevance of the approach, particularly through the com
bined use of domain-specific rules and artificial intelligence to better 
target critical clashes. However, several areas for improvement have 
been identified, mainly concerning usability, system robustness, and the 
handling of complex cases. These insights will serve as a foundation for 
guiding future development, with the goal of delivering a reliable, user- 
friendly production version that aligns with professional practices.

5.3. Criteria-based evaluation

As part of this research, a criteria-based evaluation was conducted to 
objectively validate the performance and relevance of the developed 
plug-in. The criteria were defined beforehand within the methodology 
following the Design Science Research (DSR) approach, and cover the 

Fig. 13. Simplified diagram of the interference detection process incorporating the filtering plug-in.

Fig. 14. Example of filtered conflicts (in French).
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key aspects of the system: data extraction, domain relevance, model 
accuracy, integration into the working environment, and scalability.

Each criterion is associated with a measurable indicator and a target 
objective that enables a factual assessment of the plug-in’s effectiveness. 
The last column of the Table 19 provides concrete evidence of the ob
jectives being met: this includes, for instance, performance measure
ments for processing time, comparisons with expert annotations, 
classification reports, and software compatibility tests. These elements 
demonstrate the plug-in’s capability to integrate into existing BIM 
workflows while efficiently automating conflict filtering.

Table 19 presents the evaluation criteria along with the supporting 
evidence. Screenshots, execution logs, and excerpts of numerical results 
further substantiate this analysis in the following sections.

6. Discussion and conclusion

This section discusses the main contributions and implications of the 
study, situates the proposed approach within the context of previous 
research, and highlights its practical relevance.

6.1. Comparative analysis with previous work

Several recent studies have explored the potential of machine 
learning to automate clash filtering in BIM projects. Ahmadpanah [11] 
introduced an original approach based on image analysis from Navis
works, using the YOLO model to visually identify relevant clashes. This 
method is relatively easy to implement and relies on easily accessible 
data, but it does not fully leverage the semantic information embedded 
in BIM models and remains disconnected from real-world business 

processes. In contrast, Adegun [28] proposed a more structured 
approach by combining attribute data extracted from Revit with manual 
annotations. The resulting system is based on deep learning models 
capable of delivering accurate predictions in a controlled environment. 
While this work is notable for its rich datasets and methodological rigor, 
the tool remains limited to test cases and specific technical disciplines 
such as MEP. Hu and Castro-Lacouture [9] introduced an interesting 
framework aiming to formalize the relevance of clashes using predefined 
business rules. Their method analyzes geometric and topological prop
erties of clashes using models such as Random Forests and SVMs. 
Although this methodology is logically consistent, it requires substantial 
data preparation and lacks implementation within standard professional 

Table 16 
Pipeline of the filtering plug-in architecture.

Function Role

Execute() Entry point of the plugin. Launches the 
overall processing: conflict extraction, 
property selection, calculations, 
export, and call to the Python script.

GetClashResults() Retrieves all conflicts (ClashResult) 
and conflict groups 
(ClashResultGroup) present in the 
model.

ShowFilterDialog() Opens a user interface to filter 
conflicts by status, distance, and origin 
test.

GetAllCategories() / GetAllProperties() Traverses conflicts to extract all 
available categories and properties for 
filtering.

ExtractClashData() Central analysis function that extracts 
geometric and semantic properties for 
each selected conflict.

DisplayResults() Displays the results in an interactive 
table (DataGridView) allowing to 
consult each conflict and its 
properties.

ExportResults() Allows the user to export results in 
JSON or CSV, and to launch automatic 
prediction.

RunPythonScript() Calls the predict.py script with the 
JSON file of conflicts, and retrieves the 
generated predictions.

UpdateClashStatusesFromJson() Automatically updates conflict 
statuses in Navisworks based on 
predictions.

Geometric functions 
(CalculateOverlapVolume, 
CalculateContactSurface, 
CalculatePenetrationDepth, 
CalculateAngleBetweenItems)

Calculate advanced geometric metrics 
from the bounding boxes of conflicting 
elements.

Interface functions (ShowSelectionDialog, 
ApplyPreselection)

Manage interactions with the user 
(selection of categories, properties, 
filters, etc.).

Table 17 
Conflict filtering comparison (Automatic vs Manual).

Tests Number of 
true 
conflicts 
(manual)

Top conflicts 
(manual)

Number of 
true conflicts 
(automatic)

Top conflicts 
(automatic)

A VS 
A

14 Walls vs Walls (7), 
Walls vs Ceilings 
(2), Guardrails vs 
Supports (1)

66 Guardrails vs 
Rooms (13), Rooms 
vs Guardrails (7), 
Storage furniture vs 
Rooms (6)

A VS 
S

3 Ceilings vs Load- 
bearing columns 
(2), Walls vs Floors 
(1)

25 Walls vs Floors (6), 
Walls vs 
Topographic solid 
(2), Walls vs 
Foundations (2)

A VS 
EL

1 Ceilings vs 
Electrical 
installations (1)

32 Rooms vs Electrical 
installations (6), 
Ceilings vs 
Electrical 
installations (6), 
Walls vs Lights (6)

S VS 
S

3 Foundations vs 
Foundations (2), 
Walls vs Floors (1)

16 Concrete 
reinforcement vs 
Foundations (3), 
Walls vs 
Topographic solid 
(2), Walls vs 
Concrete 
reinforcement (2)

S VS 
PI

1 Floors vs Pipeline 
(1)

3 Floors vs Pipeline 
fittings (1), 
Topographic solid 
vs Pipeline (1), 
Load-bearing 
columns vs Pipeline 
(1)

S VS 
VE

1 Topographic solid 
vs Duct (1)

7 Floors vs Pipeline 
(6), Topographic 
solid vs Ventilation 
outlet (1)

EL 
VS 
VE

13 Electrical 
installations vs 
HVAC equipment 
(5), Lights vs 
HVAC equipment 
(3), Lights vs Duct 
insulation (2)

14 Duct vs Lights (3), 
Ventilation outlet vs 
Lights (3), Duct 
insulation vs Lights 
(2)

PL 
VS 
VE

20 Pipeline insulation 
vs Duct insulation 
(8), Pipeline vs 
Duct insulation 
(4), Pipeline 
insulation vs Duct 
(2)

18 HVAC equipment vs 
Pipeline (6), Duct 
insulation vs 
Pipeline fittings (5), 
Ventilation outlet vs 
Pipeline insulation 
(5)

VE 
VS 
VE

3 HVAC equipment 
vs Duct fittings 
(1), Duct fittings 
vs Ventilation 
outlet (1), Pipeline 
vs Duct insulation 
(1)

14 Duct insulation vs 
Flexible duct (5), 
Duct vs Flexible 
duct (2), Duct 
fittings vs Flexible 
duct (2)
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BIM tools. More recently, Harode et al. [8] explored a novel direction by 
studying the automatic prediction of clash resolution strategies. They 
used multimodal neural networks combining images, text descriptions, 
and geometries to assist coordinators in decision-making by directly 
suggesting suitable resolutions. While promising in terms of decision 
support, the technical infrastructure is complex and not easily trans
ferable to standard coordination environments.

The project presented in this report stands out from these contribu
tions in several key aspects. It is, to date, the only system offering direct 
integration within Autodesk Navisworks as a native plug-in. This allows 
users to launch clash filtering, view results, and export data without 
leaving their usual working environment. Unlike other approaches that 
require prior data extraction or transformation, this solution adheres to 
the digital continuity principles promoted by ISO 19650. Furthermore, 
the tool is not restricted to a single discipline but has been applied to real 
projects involving multiple trades, such as architecture, structure, 
HVAC, and electrical systems, demonstrating broader generalization 
capabilities. The export of results in structured JSON format, the dy
namic reloading of models, and compliance with information security 
and traceability standards also enhance its operational value.

Our project differs from previous studies by focusing on a custom 
extraction module that retrieves detailed geometric and textual data 
directly from Navisworks, unlike previous approaches that relied on 
basic HTML conflict reports. In particular, we incorporate geometry data 
(e.g., intersection volume, contact angles) not available in studies like 
Lin & Huang [29] or Hu & Castro-Lacouture [9]. Furthermore, in 
contrast to previous work mainly relying on supervised learning, we 
experimented on a wider range of ML models, including supervised and 
unsupervised learning. In summary, while previous studies have 
advanced the field methodologically through annotation strategies, 
image analysis, or relevance criteria the approach presented here dis
tinguishes itself through software integration, interdisciplinary 
coverage, adherence to BIM standards, and immediate applicability in 
real coordination workflows. It represents a significant step forward 
toward reliable, interoperable, and context-aware automation of quality 
control in digital construction projects.

6.2. Recommendations and conclusion

The project presented in this paper led to the development of a plug- 
in integrated into Navisworks, capable of automating clash filtering in 
BIM models using machine learning. This work addresses a recurrent 
need in the construction industry: to quickly distinguish true technical 
conflicts from false positives generated by automated detection 

Fig. 15. Quantitative feedback from professionals across four key dimensions 
of the plug-in.

Table 18 
Summary of respondents’ profiles and perceptions.

Post Experience Overall Feeling

Main BIM 
Manager

5–10 years Highlights time optimization and reduction of 
irrelevant conflicts, but notes a need for 
comparative tests to validate reliability. 
Ergonomics could use adjustments.

BIM Integrator 10+ years Appreciates the relevance of the concept and its 
integration potential, but points out difficulties 
during re-import into Navisworks and 
recommends simplifying manipulations.

BIM Manager 10+ years Emphasizes the significant contribution of AI to 
prioritize critical conflicts. Considers the plug-in 
a good support tool, but notes a need for fine- 
tuning.

BIM Integrator 10+ years Recognizes the usefulness of filtering, but warns 
of a risk of generating artificial errors. The tool 
still seems to require adjustments for reliable use.

Modeler / BIM 
Integrator

2–5 years Appreciates the intelligence brought by machine 
learning and the overall coherence of the system, 
although some manipulations still seem 
unintuitive.

Table 19 
Evaluation using predefined detailed criteria.

Category Criterion Indicator / Metric Target 
Objective

Proof / Verification

Extraction Extraction Quality % of conflicts with complete 
properties

> 98 % Usable data rate at extraction output of 98 %

Extraction Extraction Speed Extraction time for 10,000 conflicts < 10 s Extraction time of 5 to 15 s in Navisworks depending on data complexity
Relevance Alignment with business 

needs
Gap between automatic sorting and 
expert sorting

< 10 % Expert / model comparison table

Relevance Useful filtration rate % of false conflicts correctly filtered > 85 % 91 %
Relevance True conflict recognition rate % of true conflicts detected and 

maintained
> 90 % 98 %

ML 
Accuracy

Classification accuracy Accuracy, F1-score F1 > 0.90 0.95

ML 
Accuracy

Recall Recall Recall >0.85 0.96

Integration Compatibility with 
Navisworks

Direct integration (binary) Yes/No Yes, plug-in directly included in Navisworks

Integration Interoperable export (ACC, 
Newforma)

Number of compatible output 
formats

≥ 2 formats Results visible in clash detective and thus opens up possibilities for 
integration into various workflows

Evolution Scalability on new projects Functional on untrained project Yes/No Yes
Evolution Model updates Ability to reload the model (binary) Yes/No Operational “load model” function
Evolution Structured and secure export Structured and locked format Yes/No Examination of exported JSON files
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processes, which often lead to cognitive overload for BIM coordinators. 
Following a rigorous Design Science Research methodology, the project 
resulted in the design of a functional artifact tested on real-world public 
sector projects. The tool combines a structured metadata extractor, a 
supervised classification model (Random Forest, MLP, or XGBoost), and 
a user-friendly interface. Experimental results demonstrated a signifi
cant improvement in the clash review process, with an F1-score 
exceeding 0.95 and a recall above 0.95, confirming the plug-in’s abil
ity to replicate expert coordinator decisions while reducing processing 
time from several hours to just a few minutes. This project is also notable 
for its direct integration of a machine learning solution within the 
Navisworks environment, without requiring data export or advanced 
technical skills. This operational orientation, combined with compliance 
with ISO 19650 standards (traceability, security, interoperability), en
hances the industrial and normative relevance of the work.

Although the results obtained are promising, several areas for 
improvement have been identified to enhance the robustness and rele
vance of the developed plug-in. A first area concerns the improved uti
lization of geometric data available in Navisworks. Currently, certain 
information such as volumes or tolerance distances is not fully exploited. 
Integrating advanced queries via the COM API could enable more pre
cise extraction of these volume-related features and improve classifica
tion quality. Accounting for clearance zones also represents a critical 
challenge. This involves distinguishing critical interferences from those 
that are acceptable based on discipline-specific clearance rules. Such 
processing requires a refinement of contextual evaluation rules, which 
are currently simplified.

From an algorithmic perspective, it is necessary to increase both the 
size of the training dataset and the diversity of project types. Working 
with datasets from various typologies (residential, healthcare, indus
trial) would improve the model’s generalization capability, particularly 
when faced with unfamiliar structures or modeling conventions. Addi
tionally, the approach could benefit from deeper collaboration with BIM 
coordinators to refine business rules. Moreover, a limitation of this study 
is the potential subjectivity in the clash labeling process, as it relied on 
the collaborative judgment of two BIM coordinators without a formal 
annotation protocol or quantified inter-rater agreement due to time and 
project constraints. While domain-driven features were integrated to 
support the classification, the absence of a standardized protocol may 
have introduced variability. Future studies could address this by 
implementing a stricter annotation process with a broader group of 
experts and inter-rater reliability metrics to enhance objectivity and 
reproducibility. By tailoring these rules to specific disciplines and 
project contexts, the model’s decisions could better align with real- 
world practices. Finally, several developments aimed at industrializing 
the solution should be considered. These include delivering a stable 
production version with a finalized user interface, actionable analysis 
logs, and a model update system. In the longer term, integrating a hybrid 
analysis framework—combining business rules, machine learning, and 
deep learning (e.g., for automatic interpretation of clash images or 
critical zones)—would significantly broaden the analytical scope, 
enabling multi-scale coordination in complex projects.

Nonetheless, some limitations remain. Although Navisworks is 
widely used in industry, the methods and findings presented in this 
study may not be fully generalizable to other software environments or 
project contexts. The implementation relies on features and workflows 
specific to Navisworks, which may limit the applicability of the 
approach in different technological settings. Future work could inves
tigate the adaptability of the proposed framework across alternative 
platforms to enhance its generalizability. Moreover, the size and di
versity of the dataset needs further improvement to ensure optimal 
generalization. Additionally, the integration of more refined domain- 
specific rules and visual features extracted from the BIM model could 
enhance the robustness of the model in more varied contexts. Several 
future directions can be envisioned: expanding the dataset, industrial
izing the plug-in for large-scale deployment, integrating computer 

vision, and implementing the solution within a digital twin framework. 
Future work will focus on validating the proposed approach through real 
case studies to better illustrate its practical advantages and effective
ness, and on deploying the proposed approach in live project environ
ments, enabling quantitative assessment of its impact on coordination 
efficiency, clash resolution time, and decision-making processes. Future 
work could also benefit from a more explicit integration of practitioner 
feedback, either through hybrid models combining machine learning 
with rule-based logic, or through active learning frameworks where 
model predictions are iteratively validated and refined with expert 
input.
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