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 a b s t r a c t

IoT systems are a network of connected devices powered by software, requiring the study of 
software quality for maintenance. Despite extensive studies on non-IoT systems’ software quality, 
research on IoT systems’ software quality is lacking. It is uncertain whether non-IoT and IoT 
systems’ software are comparable, limiting the application of results and best practices from non-
IoT to IoT systems. Therefore, we compare the code quality of two equivalent sets of non-IoT and 
IoT systems to determine whether there are similarities and differences between the two kinds of 
software systems. We design and apply a systematic method to select two sets of 94 non-IoT and 
IoT system software from GitHub with comparable characteristics. We compute quality metrics on 
the systems in these two sets and then analyse and compare the metric values. We conduct an in-
depth analysis and provide specific examples of the IoT systems’ complexity and how it manifests 
in their source code. We conclude that software for IoT systems is more complex, coupled, larger, 
less maintainable, and cohesive than non-IoT systems. Several factors, such as integrating multiple 
hardware and software components and managing data communication between them, contribute 
to these differences. After the comparison, we systematically select and present a list of best 
practices to address the observed differences between non-IoT and IoT code. We present a list 
of revisited best practices with approaches, tools, or techniques for developing IoT systems. For 
example, applying modularity and refactoring are best practices for lowering complexity. Based 
on our work, researchers can now make informed decisions using existing studies on the quality 
of non-IoT systems for IoT systems. Developers can use the list of best practices to minimise 
disparities in complexity, size, and cohesion and enhance maintainability and code readability.

1.  Introduction

The adoption of IoT systems is growing rapidly. These systems often operate in critical environments (e.g., healthcare, transport, 
and infrastructure management), and any bug in the code could lead to failures, posing significant risks. As the use of IoT systems 
continues to expand, it is crucial to assess the quality of the source code of the software running (on) these systems [1]. The source code 
quality of IoT systems significantly impacts their functionality, security, and reliability, making code assessment a critical component 
in their development lifecycle.
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\begin {equation*}CC(m) = E-N+2P\end {equation*}


\begin {equation*}HV = N.log_2(n)\end {equation*}


\begin {equation*}WMC = \sum _{i=1}^{N} CC_i\end {equation*}


\begin {equation*}RFC = Fan-In + Fan-Out\end {equation*}


\begin {equation*}CBO = |C_{coup}|\end {equation*}


\begin {equation*}LCOM(C) = \frac {1}{a}\frac {\sum _{j-1}^{a}\mu (Aj) - m}{1 - m}\end {equation*}


\begin {equation*}CP = \frac {N_{commet}}{LOC}100\,\%\end {equation*}


\begin {equation*}MI = 171 - 5.2ln(HV) - 0.23CC\end {equation*}


\begin {equation*}- 16.2ln(LOC) + 50 \sin \sqrt {246.COM}\end {equation*}


\begin {equation*}\includegraphics {fx1}\end {equation*}
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Before we delve into the details, we would like to define the terms non-IoT and IoT systems and clarify their meanings within the 
context of this research. IoT systems differ from traditional software systems in that they comprise multiple components (referred 
to as layers), whereas traditional or non-IoT systems typically emphasise a single component (i.e., the application layer). These 
components must function cohesively to enable physical devices to interact with the physical world, generating and processing data 
in real time [2]. Existing research, while examining non-IoT and IoT systems’ software quality [3–5], primarily focuses on assessing 
non-IoT software code quality. Overall, the literature focused less on IoT systems, creating a gap in understanding their software 
quality and raising a critical idea to compare the software quality of IoT and non-IoT systems. Without this comparison, we cannot 
confidently apply the best practices from non-IoT system software to the IoT system software because it lacks the necessary foundation 
and specificity. As a result, the efficacy and reliability of such practices are not guaranteed when applied to IoT system software.

IoT systems are inherently resource-constrained and heterogeneous; they frequently require higher standards of software engi-
neering and code quality than traditional non-IoT systems [6]. To integrate distributed communication protocols, real-time data 
acquisition, and embedded devices, developers must follow strict guidelines, including fault tolerance, concurrency management, 
and modular architecture. An IoT middleware, for instance, needs to have clear abstractions between application logic and hardware 
interfaces to guarantee maintainability across various sensors and communication protocols. Because of this requirement, design pat-
terns, defined APIs, and standardised interfaces are frequently applied more systematically than in many standalone non-IoT systems, 
which may accept ad hoc coding techniques more.

Additionally, the safety-critical nature of many IoT applications, such as smart grids, industrial automation, and healthcare mon-
itoring, forces a stronger adherence to software engineering concepts like continuous integration, automated testing pipelines, and 
static code analysis. Non-IoT systems, on the other hand, that function in less restricted or low-risk settings might not be under as 
much pressure to implement these procedures consistently. IoT development environments are often characterised by a culture of 
greater code robustness, testability, and long-term maintainability, positioning them as examples of disciplined engineering in modern 
software ecosystems.

Comparing code quality between non-IoT and IoT software systems is essential for establishing the best system development and 
maintenance practices. IoT systems’ unique constraints, such as limited resources and distributed architectures, require a thorough 
analysis of code quality [7]. For instance, in smart cities, poor coding techniques in IoT systems might introduce various security 
flaws leading to data exposition, & security concerns. IoT devices work in a dynamic environment, necessitating specific quality 
characteristics such as scalability and adaptability [8].

Larrucea et al. [9] emphasised the lack of established software engineering best practices for IoT systems and highlighted the need 
for effective guidance in developing IoT systems. Many existing studies discuss the software quality of non-IoT systems, but very few 
discuss the software quality of IoT systems. Particularly, there is a lack of information on whether the software for non-IoT systems is 
comparable to IoT systems software. Without this knowledge, the results and best practices proven suitable for non-IoT systems can 
not be applied in IoT systems.

Our research question is therefore: Do metric-based best practices for traditional software systems apply to IoT software systems? The 
result will directly help developers better understand the differences between non-IoT and IoT systems by doing a comparative 
analysis via metrics and best practices. They can adjust best practices from non-IoT systems, considering the unique requirements of 
IoT systems. The comparison between non-IoT and IoT system software thus serves as a first step toward understanding the difference 
between the types of systems, tailoring existing practices according to IoT system software specificities, and highlighting the need to 
develop new strategies suited for IoT system software.

Recognising the importance of this comparison, we developed a systematic methodology. This method allowed us to collect, 
analyse, compare, and evaluate 94 comparable IoT and non-IoT systems. In the coming sections, we provide a descriptive and in-
depth analysis of the two types of software systems. We also present specific examples of in-depth analysis of IoT systems to illustrate 
how our code metrics values manifest in IoT system codebases. Leveraging our findings, we propose an updated, systematically 
selected list of best practices to address the observed difference between the code of IoT and non-IoT systems.

The following are our research questions and the contributions of this work:

1. RQ1: How to select comparable non-IoT and IoT systems using a systematic method? This question arises from the problem of 
obtaining unbiased and comparable systems of both types. Our first contribution is a method for selecting equivalent 94 non-IoT 
and IoT systems software from GitHub to ensure the integrity and validity of our comparative analysis, minimising potential biases 
of our research. The selection process ensures that the chosen IoT and non-IoT systems are comparable, based on the number of 
stars and forks, forming a solid foundation for our evaluations.

2. RQ2: How significant are the values of non-IoT/general systems metrics computed on comparable non-IoT and IoT systems? We 
analyse the results of computing various code metrics, such as Lines of Code (LOC), Depth of Inheritance Tree (DIT), and Comment 
Percentage (CP), on non-IoT and IoT systems, like Apache/Druid and Samsung/TizenRT. These metric values enable detailed 
evaluations, offering a granular analysis of IoT system codebases, which we illustrate with specific examples to demonstrate how 
these metrics manifest in practice.

3. RQ3: How do occurrences of non-IoT/general systems best practices applied on comparable non-IoT and IoT systems correlate? 
We systematically select, analyse, and present an updated list of best practices for IoT systems, drawn from the literature for each 
category of code metrics studied. By incorporating practices such as code optimisation techniques, modularity, and design patterns, 
our study offers targeted solutions to tackle challenges like high code complexity, low maintainability, and poor readability, 
fostering the development of efficient and sustainable IoT codebases.
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The results of the study have shown key differences between the two systems, such as complexity, cohesion, code size, and 
maintainability. We discuss their implications for IoT systems development. We found that developing software for IoT systems 
presents greater complexity than non-IoT systems, affecting the overall code quality. Considering these differences, we provide a 
revised list of best practices for developing IoT systems as a target solution. Our work demonstrates that future work is needed to 
implement the identified best practices list on IoT systems, and evaluating its effect is necessary to address issues such as complexity, 
size, and coupling.

The rest of this paper is organised as follows: Section 2 provides an overview and discussion of related work. Section 3 presents 
the research methodology of the study. Section 4 presents a quantitative analysis and discusses our comparison results. Section 5 
presents an in-depth analysis of some IoT systems regarding the qualitative comparison results. Section 6 contains specific examples 
that illustrate the complexity of IoT systems and how they manifest in IoT codebases. Section 7 discusses results on best practices, 
while Section 8 validates the impact by surveying IoT developers. Section 9 discusses the practical challenges and implications of 
our comparison results for IoT systems development, and threats to validity. Finally, Section 10 presents conclusions and future work 
directions.

2.  Related work

To the best of our knowledge, the literature on code-quality best practices only pertains to non-IoT systems. We could only find 
two previous works that studied code-quality best practices on IoT systems in digital libraries, including IEEE Xplore and ACM Digital 
Library. We discuss below the few studies, [10,11], that are related to our work. For IoT systems, research on best practices focused 
on security [12,13], agile software development [14], and data quality [15], which diverges from the focus of this study.

Klima et al. [10] summarised relevant code quality metrics from IoT systems and assessed their impact on general systems quality 
based on ISO/IEC standards. They categorise those metrics into size (Lines of Code), complexity (Cyclomatic Complexity), coupling 
(Response For Class), etc. These metrics offer an accurate evaluation of IoT systems’ code quality, and we will use and present them in 
our comparison, enabling us to systematically assess and juxtapose the code quality between these IoT and non-IoT systems’ software.

While our study shares a similar approach in utilising these established IoT systems’ code quality metrics, our focus extends beyond 
the evaluation of metrics. We undertake a comprehensive and comparative analysis between non-IoT and IoT systems, leveraging 
these metrics to explore the nuanced differences and shared traits between these two types of software systems.

Corno et al. [11] investigated open-source software development in IoT and non-IoT systems, analysing 60 projects. They found 
significant differences in development processes, developer specialisation, and code reusability between these two types of systems. 
Their study also examined developer contributions, file modifications, specialisation, and project maturity by analysing project de-
pendencies.

Although Corno et al.’s approach differs in research objectives and methods, it complements our work in understanding IoT 
systems. Our study focuses on and measures quality metrics to compare the code quality of non-IoT and IoT systems. We further build 
on this by also examining non-IoT systems.

Barrera et al. [12] discuss IoT security best practices and find that there isn’t enough agreement or clarity on practical rules. They 
highlight the need for more precise, unambiguous procedures to improve IoT security at the device development stage and present 
a novel approach for assessing the actionability of security suggestions. Similarly, Bellman et al. [13] examine “best practices” in 
IoT security, pointing out that it lacks a precise definition and that behaviours and intended results are not often the same. The 
authors provide a more explicit vocabulary for the IoT security community by classifying over a thousand security standards as either 
actionable “practices” or ambiguous “outcomes,” and they suggest a mechanism to encourage manufacturers to embrace improved 
security practices.

Bolhuis et al. [14] investigate how agile software development best practices might enhance the success of IoT initiatives, empha-
sising time-to-market, productivity, and cost reduction. They highlight the significance of adjusting agile methodologies to organisa-
tional contexts and developing technical and soft skills within teams. It is based on surveys and interviews with agile IoT practitioners 
and identifies essential practices and team skills that improve project success.

The systematic literature review [15], investigates data quality challenges in data-centric CPS/IoT applications within Industry 
4.0, identifying common issues, sources, best practices, and engineering solutions. It offers a comprehensive synthesis of current 
techniques and highlights future research directions to enhance data quality management.

The previous work emphasises the complexity, differences, and lack of evidence regarding the applicability of best practices from 
non-IoT to IoT systems. To address these gaps, we identify, examine, and propose a set of metrics and best practices from the literature 
to support IoT system development. To the best of our knowledge, no prior work has compared the code quality of non-IoT and IoT 
systems. Our study aims to identify similarities or differences between non-IoT and IoT systems by analysing specific software metrics, 
offering a straightforward and effective approach for selecting comparable systems. We also provide a quantitative comparison to 
assess this complexity relative to non-IoT systems, as existing works [16,17] noted the complexity of the IoT systems.

3.  Method

Finding comparable non-IoT and IoT systems is challenging, given the need for matching criteria like stars, forks, size, program-
ming language, classes, and files. The approach of matching all those criteria did not yield a significant number of systems on which 
we could base our comparison, so we adapted our selection process to focus on similar numbers of stars and forks. The popularity 
of a GitHub repository, as indicated by stars and forks, reflects its relevance within a certain domain or for a particular use case 
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Fig. 1. System design for selecting non-IoT and IoT systems.

[18]. GitHub stars offer users a way to convey their appreciation for repositories [11]. When two repositories share similar popular-
ity, it implies they are valued within their respective categories. This approach ensures attention and recognition from the GitHub 
community.

Our ten-step methodology, based on Politowski et al. [19] and Corno et al. [11], is shown in Fig. 1.
Steps 1–2: Repository Selection and Filtering: We initiated our study by curating a diverse sample of open-source software systems 

from GitHub to compare IoT and non-IoT codebases. To identify IoT systems, we filtered repositories using GitHub’s topic tags–a 
user-assigned taxonomy used to classify repositories based on their subject area or intended functionality. We focused on repositories 
labelled with keywords such as IoT, Internet-of-things, EIoT (Enterprise IoT), IIoT (Industrial IoT), Internet of Everything, and Indus-
trial Internet of Things. These topic labels served as a heuristic proxy for domain categorisation, enabling us to automate a large-scale 
initial filtering of candidate repositories.

Next, we ranked the filtered repositories based on their number of GitHub stars, using this metric to indicate popularity, community 
engagement, and perceived project quality. We selected the top-ranked, publicly accessible repositories for inclusion. Recognising 
that not all repositories are actual software implementations–many are instructional materials, API wrappers, or documentation-only 
projects–we conducted a manual verification process. This involved reviewing README files, project structures, and commit histories 
to confirm whether the repository represented a runnable and maintainable software system. Our inclusion criteria, which are detailed 
in a later section, were designed to ensure the relevance, completeness, and suitability of the selected repositories for quantitative 
software analysis.

Step 3: Data Collection and Archival: Once the relevant repositories were identified, we cloned them into a local database to ensure 
consistent and versioned access for subsequent analysis. This local archive allowed us to manage dependencies, extract relevant 
metadata, and apply static analysis tools without risk of upstream changes affecting the replicability of our experiments. For each 
project, we recorded metadata such as commit history, contributor count, file structure, and dependency configurations.

Step 4: Outlier Detection and Elimination: To maintain internal validity, we examined the dataset for outliers–repositories that either 
deviated significantly in terms of size, structure, or purpose, or failed to conform to our predefined inclusion rules. This included 
repositories with unusually high file counts due to generated files or those that were technically categorised as IoT but contained 
minimal or no actual source code. The identification process involved both automated heuristics (e.g., file extension ratios, LOC 
thresholds) and manual inspection. Outliers were excluded from further analysis to avoid biasing the metric distributions.

Step 5: Metric Selection: With the refined dataset, we curated a comprehensive set of software engineering metrics to capture struc-
tural and quality-related characteristics of each codebase. These metrics span multiple dimensions, including code complexity (e.g., 
cyclomatic complexity), modularity (e.g., number of classes and packages), maintainability (e.g., code duplication), and repository 
activity (e.g., number of commits, issue closure rate). We selected metrics based on relevance to prior empirical studies on software 
quality and their applicability to both non-IoT and IoT systems. We ensured that all metrics were consistently extractable using 
standardised tooling and scripts.

Step 6: Metric Computation and Comparative Analysis: We computed the selected metrics across all repositories using automated 
static analysis tools. This quantitative data formed the basis for our comparative study. We conducted statistical analyses (e.g., mean 
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comparison, distribution analysis) to identify significant differences in metric profiles between IoT and non-IoT systems. Particular 
attention was given to identifying structural or quality-related trends that might distinguish IoT systems, such as elevated coupling 
or lower comment density. The goal was to establish an empirical baseline for understanding whether IoT systems exhibit unique 
software characteristics when compared to more traditional software systems.

Step 7: Best Practices Extraction from Non-IoT Systems: Drawing on the metric results and prior literature, we identified a set of 
best practices that were consistently observed in high-quality non-IoT systems. These practices were not arbitrarily selected; instead, 
they were empirically grounded in metric patterns associated with better modularity, readability, and maintainability. We prioritised 
tool-supported practices, which are widely recommended by the software engineering community (e.g., through coding standards) 
and are practical to implement. These included strategies such as improved modular decomposition, higher test coverage, better 
documentation, and reduced code complexity.

Step 8: Application of Best Practices to IoT Systems: We then applied a subset of these best practices to the selected IoT systems. The 
selection was guided by relevance and feasibility–only practices that could be meaningfully implemented in the context of an existing 
codebase were chosen.

Step 9: Evaluation of Adaptability and Research Question Mapping: Following the intervention, we systematically evaluated how well 
the selected best practices translated into the IoT context. This involved re-running the metric computations and comparing pre- and 
post-intervention values. We also qualitatively assessed whether the changes integrated well with the existing codebase or introduced 
maintainability burdens. These results were mapped to our research questions, which aimed to explore the generalizability of non-IoT 
practices to IoT systems and assess whether such cross-domain transfer yields tangible improvements.

Step 10: Final Analysis and Conclusion: In the final step, we synthesised our findings across all study phases. We analysed the 
observed metric changes, assessed whether the best practices led to consistent improvements, and reflected on the limitations of such 
interventions in IoT systems. Based on this analysis, we concluded the effectiveness and transferability of software engineering best 
practices across domains and outlined implications for practitioners and future researchers. Our results offer empirical insights into 
the software engineering characteristics of IoT systems and the potential benefits of importing practices from more mature non-IoT 
development contexts.

We present our methodology by asking a series of questions that guided our selection process for non-IoT and IoT systems, metrics, 
and tools. In the following subsections, we present each of them in detail and explain our choices.

3.1.  Which artefacts will we use to base our comparison?

We could use various software artefacts, including documentation, code, bug reports, chat logs, or execution logs [20], in the 
comparison process. We choose to focus on source code because it is the common basis for any software system describing its 
behaviour and functionality.

3.2.  How will we compare the two sets of systems?

We compare the two sets of systems using metrics because they offer a quantitative and objective way to assess quality. Metrics 
provide numerical values that allow for direct comparisons, reducing subjectivity and offering a clear basis for evaluating strengths 
and weaknesses.

We recognise that while metrics are valuable, they may not provide a complete picture of system quality. To conduct a thorough 
assessment, robust quality models that consider various dimensions and factors are essential. Our work is an initial step in gathering 
vital insights by measuring and comparing quality metrics. This contributes to the development of more comprehensive quality 
models.

3.3.  What category of metrics?

Code metrics are categorised by properties such as size, redundancy, complexity, coupling, unit test coverage, cohesion, code 
readability, security, code heterogeneity, and maintainability [10]. In our study, when statically comparing code, we selected metrics 
from different categories: size, complexity, cohesion, coupling, code readability, and maintainability. We did not explore security 
aspects, which have received extensive attention in both systems [21]. We chose to exclude unit test coverage and effectiveness 
categories because we focused on static code aspects. The redundancy category was also excluded as we consider it closely related to 
code readability and maintainability.

3.4.  Which tools we use to compute metrics

There are various tools available for computing metrics. We opted for two tools due to their popularity [22] and because they 
can measure the maximum of the list of metrics that we presented in Table 1. They provide comprehensive insights into system 
complexity, maintainability, and size, aligning perfectly with our research objectives.

Scitools Understand [23] is designed to assist in understanding, evaluating, and verifying source code. It supports a variety of 
languages and offers the possibility of measuring a variety of code metrics.

Multimetric is a Python library for creating multiple metrics [24]. It is designed to make it easy to build complex and multidi-
mensional metrics that can be used in a variety of applications. The library provides a comprehensive set of APIs and utilities; we are 
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Table 1 
Metrics and best practices categories.
 Categories Metrics Best Practices
 Size Lines Of Code (LOC), Estimated rebuild value 

(ERV), Unit Interface Size (UIS), Average Unit Size 
(US), Number of Non-Architectural Components 
(NAC), Number of Classes and Files

Code Optimisation Techniques, Identification and 
Consolidation of Similar Functions, and Use of 
Run-Time Decomposition.

 Complexity Cyclomatic Complexity (CC), Halstead Volume 
(HV), WMC-McCabe, Number of Children (NOC), 
Number of Thing Interconnections (NTI), Depth of 
Inheritance Tree (DIT)

Refactoring, Modularity, and Packaged software 
components

 Coupling Response For Class (RFC), Coupling Between Ob-
jects (CBO), Number of Incoming calls per module 
(INC)

Design Principles & Patterns and Refactoring

 Cohesion Lack of Cohesion of Methods (LCOM), Conceptual 
Cohesion of Classes (C3), Ratio of Cohesive Inter-
actions (NRCI)

Refactoring, and Modularity

 Readability Comment Percentage (CP) and Comment to Code 
Ratio (CCR)

Textual Features and Code Entropy

 Maintainability Maintainability Index (MI) Source Code Conventions and Standards, Model-
Driven Architecture (MDA), Design Patterns, 
Refactoring, and Continuous Integration and Con-
tinuous Deployment CI/CD)

using one of the APIs to measure our metrics. With Multimetric, we can quickly create, combine, and analyse multiple metrics in a 
single codebase.

In conclusion, Scitools Understand and Multimetric were selected due to their ability to handle multi-language support and provide 
a comprehensive analysis of a large list of metrics, ensuring accuracy in our measurements.

3.5.  Which metrics are we using?

Size, complexity, coupling, cohesion, maintainability, and reliability are significant for software code quality because they collec-
tively influence the system’s robustness, ease of evolution, and long-term performance. These metrics provide a comprehensive view 
of software quality, guiding development and improvement efforts [25]. Table 1 provides an extensive list of code metrics under the 
categories presented in [10].

For each category, the selection of metrics was strongly guided by their computability within the two systems we analysed, 
Understand and Multimetric. Rather than being arbitrary, the choice of metrics was constrained by the capabilities and characteristics 
of these specific systems. We also focused on choosing metrics that are not exclusively applicable to IoT systems but are more general, 
allowing us to effectively analyse and compare both types of systems.

Table 2 presents the metrics that we compute using the chosen tools and their formulas. The motivation behind choosing these 
metrics lies in their collective ability to provide multifaceted insights into various aspects of code quality, ranging from system size 
and complexity to maintainability and readability. The selection aims to capture diverse dimensions that collectively contribute to 
software quality assessment.

3.6.  Which code quality best practices are we using?

To study these best practices, we select some best practices among the many existing ones, such as Code Optimisation Techniques, 
Refactoring, Design Principles & Patterns, and Code Entropy. Among all these best practices, we select the ones that correspond to 
the categories of interest, such as Size, Complexity, Coupling, etc. Table 1 summarises the code-quality best practices that we selected 
for study in non-IoT and IoT systems, categorised by the quality categories chosen above.

3.7.  Which systems are we choosing for the comparison?

We obtained the sets of systems from GitHub. GitHub provides a wide variety of applications that can be used to gain insights 
into software development trends, project management, and best practices. Here, we are presenting a selection of IoT and non-IoT 
systems.

3.7.1.  How can we obtain an IoT dataset?
We followed the method presented above to select the IoT dataset. In Step 1 in the process presented in Fig. 1, we proceed to a 

manual selection based on a set of criteria. This allowed us to select systems that are relevant and mature to our research objectives 
to provide meaningful insights using those selection criteria:
1. The repositories under IoT tags have different variants of syntax (Internet of Things, IoT, EIoT, IIoT, Industrial Internet of Things, 
Internet of Everything).
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Table 2 
Metrics used.
 Categories Metrics Definitions Formulas  Tools

Size
Line of Code Counts the number of lines of source code in the 

system, reflecting its size. In this work, LOC is cal-
culated per file, and we sum all file values to have 
a value that represents the system.

LOC = Number of non-blank, non-comment lines 
in the code

 Understand

#Classes Number of classes of each system #Classes = Count of class declarations in the 
source code

 Understand

#Files Number of files of each system #Files = Total count of source code files in the 
project

 Understand

Complexity
Cyclomatic Com-
plexity

Calculates the number of linearly independent 
pathways in system modules [26]. We computed 
the cumulative CC values by summing up the CC 
values of all classes within each application.

𝐶𝐶(𝑚) = 𝐸 −𝑁 + 2𝑃

Where: 𝐶𝐶(𝑚) is the cyclomatic complexity of con-
trol flow graph 𝑚, 𝐸 is the number of edges (trans-
fers of control), N is the number of nodes (a se-
quential group of statements containing only one 
transfer of control), and P is the number of con-
nected components.

 Understand

Halstead Volume Measures the software complexity used to assess 
the program size. The HV is used to measure the 
amount of code written. 𝐻𝑉 = 𝑁.𝑙𝑜𝑔2(𝑛)

Where: Total operators (𝑁1) and total operands 
(𝑁2), 𝑁 : Program length calculated as N = N1 + 
N2, 𝑛: The vocabulary of your program is the sum 
of unique operators and unique operands.

 Multimetric

Weighted Method 
Count

Measures the sum of the complexity of the methods 
in a class. This value is calculated per class; in this 
work, we sum up the WMC values of classes of each 
system.

𝑊𝑀𝐶 =
𝑁
∑

𝑖=1
𝐶𝐶𝑖

Where: 𝐶𝐶𝑖 McCabe’s Cyclomatic Complexity of lo-
cal method 𝑖, 𝑁 Total number of local methods in 
the class

 Multimetric

Coupling
Response For Class Measures the number of different methods and 

constructors that are called by a specific class. This 
value is calculated per class; in this work, we sum 
up the RFC values of classes.

𝑅𝐹𝐶 = 𝐹𝑎𝑛 − 𝐼𝑛 + 𝐹𝑎𝑛 − 𝑂𝑢𝑡

 Understand

Coupling Between 
Objects

Assess the coupling between classes based on their 
usage. CBO metric measures the extent of cou-
pling between two classes by examining the inter-
actions between their methods and instances. The 
low value of CBO indicates low coupling [27]. This 
value is calculated per class; in this work, we sum 
up the CBO values of classes of the system.

𝐶𝐵𝑂 = |𝐶𝑐𝑜𝑢𝑝|

Where: 𝐶𝑐𝑜𝑢𝑝 set of classes

 Understand

 Cohesion Lack of Cohesion 
and Methods

Measures the count of separate sets formed by the 
local methods of a class, determined by their in-
teraction with class variables [28]. High cohesion 
indicates good class subdivision [29]. We calculate 
the sum of LCOM values for each class in the sys-
tem, and then we divide this sum by the number 
of systems to obtain the mean value of each.

𝐿𝐶𝑂𝑀(𝐶) = 1
𝑎

∑𝑎
𝑗−1 𝜇(𝐴𝑗) − 𝑚

1 − 𝑚

Where: 𝑎 stands for the number of variables in a 
class 𝐶. 𝜇(𝐴𝑗) is the number of methods of 𝐶 ac-
cessing the variable 𝐴𝑗. 𝑚 stands for the number of 
methods in 𝑚.

 Understand

 Readability Comment Percent-
age

Quantifies the documentation level by measuring 
the proportion of code lines dedicated to com-
ments. An appropriate documentation level is con-
sidered to be achieved when CP falls within the 
range of 20% to 30% [30]. CP is calculated per 
file; we sum all file values to have a value that rep-
resents the whole system.

𝐶𝑃 =
𝑁𝑐𝑜𝑚𝑚𝑒𝑡

𝐿𝑂𝐶
100%

Where: 𝑁𝑐𝑜𝑚𝑚𝑒𝑡is the total number of comments in 
the source code

 Multimetric

 Maintainability Maintainability In-
dex

Measures the ease of maintaining a piece of soft-
ware. Calculated based on metrics for a software 
system such as HV, CC, LOC, and the percentage 
of comment lines per module [31]. The higher the 
maintainability index, the easier it is to maintain 
the code.

𝑀𝐼 = 171 − 5.2𝑙𝑛(𝐻𝑉 ) − 0.23𝐶𝐶

−16.2𝑙𝑛(𝐿𝑂𝐶) + 50 sin
√

246.𝐶𝑂𝑀

Where: 𝐶𝑂𝑀 represents the percentage of com-
ment lines per module.

 Multimetric
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2. Languages of the repository are supported by both used analysis tools (Java, JavaScript, C, C++, C#, Python).
3. The number of stars is greater than 200 (ensuring that the system is well-rated and of good quality).
4. The number of forks is greater than 20.
5. An active repository with the last push being at least 6 months ago (Date of last push greater than 04–2022).
6. Mature repositories created between 2012 and 2022.

3.7.2.  How can we obtain a non-IoT dataset?
We used the same set of criteria used to select IoT systems to select the set of non-IoT systems. We built a query to choose a set 

of non-IoT systems with the same criteria as the selected IoT systems. This query was constructed to identify repositories on GitHub 
that met certain temporal, popularity, and technological criteria based on our IoT systems selection. The aim was to ensure that the 
selected repositories were recent, popular, actively maintained, and developed in languages relevant to our study, allowing us to 
analyse new, popular projects in the non-IoT domain.

For this study, we intentionally selected projects proposed between 2012 and 2022. This approach ensured that each project 
was mature enough to validate the study, as we focused on projects at least three years old-providing sufficient time for thorough 
community testing. Our query is:

To ensure reproducibility, we have saved the code and the selection process in a replication package on Zenodo1.
Stratification of the Query Output: The execution of the query returns a large output. From this output, we select a representative 

dataset regarding the IoT dataset using stratification. Stratification is the process of dividing a dataset into homogeneous subgroups 
based on certain criteria. This approach allows for a more in-depth analysis within each subgroup and helps ensure that the datasets 
used for comparison (IoT and non-IoT systems) are as comparable as possible. To stratify the resulting dataset of non-IoT based on 
the criteria represented by the IoT dataset, we followed these steps.
1. We extracted pertinent details from the IoT repositories to serve as stratification criteria. We chose the composition of the pro-
gramming language, the number of stars, and of forks. By considering these factors, we aim to create a subset of non-IoT systems 
that closely resembles the characteristics of the original set.

2. We create a mapping of criteria and repository names with each stratification criterion. For example, a dictionary maps program-
ming languages to lists of repositories that use that language. We do the same thing with the stratification criteria.

3. We divide the non-IoT repositories into strata based on the relevant information.
4. For each subgroup, we select the repositories that most closely match the criteria represented by the IoT GitHub repositories. We 
use the Pareto principle [32] to select the top repositories in each subgroup.

5. We combine the selected repositories in each subgroup to form a representative subset of the data having the same number and 
characteristics of IoT systems.

3.7.3.  How to analyse and verify the two sets?
In this step, we manually analyse the two selected sets to ensure they have an equal number of stars and forks and use the same 

programming language, thus eliminating external factors that could affect the results. To examine data distribution, we perform 
statistical tests, including the Shapiro-Wilk test introduced by Hanusz et al. [33].

The Shapiro-Wilk test assesses the normality of data distribution. Checking if the data follows a normal distribution helps ensure 
the appropriateness of parametric statistical tests.

We compare the number of stars and forks in both datasets and use the non-parametric statistical Mann-Whitney U test [34] to 
determine if they are significantly different. The Mann-Whitney U test is a non-parametric test used to compare two independent 
groups when assumptions for parametric tests are not met (such as normal distribution). It is employed to determine if there are 
significant differences between the two datasets in terms of stars and forks. A U-statistic value lower than ≈0.05 indicates significant 
differences, while a higher U-statistic suggests comparability between the datasets.

3.7.4.  How to identify outliers?
Outliers are data points that are significantly different from the majority of the data [35]. They can impact the results of statistical 

analyses. We remove outliers from our dataset to improve the accuracy of our results analysis.
We employed a meticulous approach to detect outliers within our dataset. Our methodology prioritised visual inspection, a recog-

nised technique for outlier identification. Through visual representation, specifically by plotting the data, we aimed to pinpoint 
observations that deviated notably from the expected range. By systematically evaluating outliers and their potential impact on our 
analysis, we aimed to maintain the integrity and accuracy of our dataset. The removal of these influential outliers allowed for more 
reliable and precise statistical analyses moving forward.

The identification and removal of outliers are discussed in detail in Section 4.3.

1 https://zenodo.org/records/10564976
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Table 3 
Best practices for various code categories.
 Category Best Practices How they can be 

Identified?
Application Tools  Available  Appliable Reason

Size
Code Optimisation 
Techniques

Cppcheck Eliminate unused, dupli-
cate code, and replaceable 
instances and detects oppor-
tunities to optimise loops

 Yes  Yes Cppcheck can be used for code 
optimisation

Identification and 
consolidation of 
similar functions

NA NA  No  No Algorithms are available, but 
not any software

Use of Run-Time 
Decompression

IBM CodePack NA  No  Yes IBM’s CodePack is not open 
source

Complexity
Applying refactor-
ing

Eclipse, SonarQube, 
Checkstyle

Pulling up methods, extracting 
methods, and inlining meth-
ods

 Yes  Yes Tools are available and can be 
used

Applying modular-
ity

Docker, Virtual Box Encapsulation and abstraction 
principles

 Yes  Yes Tools can be used

Use of packaged 
software compo-
nents

ThingSpeak, Mi-
crosoft Azure IoT 
Suite, Google Cloud 
IoT

NA  No  Yes Available tools are not open 
source and will increase the 
code complexity of IoT sys-
tems

Coupling and
Cohesion

Application of de-
sign principles and 
patterns

NA DI pattern for IoC, Patterns 
like Single Responsibility, and 
Singleton

 Yes  Yes Multiple studies have shown 
that design patterns can be ap-
plied to IoT systems

Applying refactor-
ing

Eclipse, SonarQube, 
Checkstyle

NA  Yes  Yes Refactoring for IoT is possible 
by utilising Eclipse

Applying modular-
ity

Docker, Virtual Box Cluster Analysis Techniques 
[36]

 Yes  Yes Containerisation tools are 
available like Docker

Readability
Use of textual fea-
tures

ESLint, Pylint, 
Checkstyle

Use shorter lines of code and 
consistent indentation, com-
ments, blank lines, meaningful 
and descriptive variables, etc.

 Yes  Yes Textual features must be in-
tegrated while implementing 
the system

Improve code en-
tropy

NA Enhance overall organisation, 
structure and variability of 
code

 Yes  Yes Developers must watch the 
value of entropy while imple-
menting the system

Maintainability

Use of source code 
conventions

FindBugs1, Check-
style2, Jtest3

NA  Yes  Yes Best practice that must be in-
tegrated while implementing 
the system

Use of model-driven 
architecture (MDA)

ThingML, Papyrus NA  Yes  Yes Applicable when designing 
the system

Use design pattern Eclipse Factory Method, Singleton, 
and Decorator

 Yes  Yes Patterns can be used in the de-
sign phase

Applying refactor-
ing

Eclipse, SonarQube, 
Checkstyle

Encapsulation, limiting the 
length of code units to 15 
lines of code, limiting the 
number of branch points per 
unit to 4, etc.

 Yes  Yes Refactoring of IoT is possible

Continuous Inte-
gration and Contin-
uous Deployment 
(CI/CD)

Azure IoT Edge 
application, Cir-
cleCI, Jenkins as 
IoT CI/CD Manager

NA  Yes  Yes To integrate in the develop-
ment phase

3.8.  How did we obtain non-IoT best practices?

Best practices refer to a set of recommended guidelines, approaches, methods, tools, or techniques that are considered optimal for 
reducing issues or enhancing the overall quality of the software. We approached the identification of these best practices systemati-
cally, initiating the process by formulating research queries tailored to each metric category and incorporating pertinent keywords. 
The query structure was designed as follows: (X or Y) AND (software) AND (best practices), where X represents the category name, 
and Y relates to the specific practice associated with category reduction or improvement. For instance, in the context of the code size 
category, the query took the form of ((code size) OR (code reduction)) AND (software) AND (best practices).
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RQ1: How to select comparable IoT and non-IoT systems using a systematic method?
Our Findings: We conclude that no systematic method exists for selecting IoT and non-IoT projects, so we developed our own. 
This method involves multiple steps, including query execution, visual verification, and result stratification. We have described 
these steps in detail in Section 3.

We executed these queries on Google Scholar, yielding varying numbers of papers for each category. We followed a systematic 
selection process involving the filtration of the ten most highly cited articles that provided best practice insights for each category. 
We studied and extracted pertinent best practices from these articles. We assessed and categorised these extracted practices into three 
groups: directly applicable, partially applicable with necessary adaptations, or not applicable to IoT. IoT-specific requirements guided this 
categorisation, prioritising practices based on their relevance and potential impact on the metric categories. Table 3 presents best 
practices per category for non-IoT systems.

3.9.  How did we ensure the reproducibility of our selection and the generalizability of our results?

We compared IoT and non-IoT systems, choosing the largest possible subset based on our criteria, believing it represents both types 
well. Our selection process considered various programming languages and system types to ensure diversity. Our dataset’s relevance 
comes from methodically selecting diverse systems and using stringent criteria to ensure credibility and generalizability. By carefully 
choosing systems from GitHub and using stratification techniques, we ensured similarity and representativeness between IoT and 
non-IoT sets. Statistical analyses strengthened the comparability and credibility of our findings. While we could not cover every 
system, our careful process allows for reasonable generalisations to broader contexts for open-source systems available on GitHub. 
Also, we extended our systematic process to choose the best practices systematically, guaranteeing reproducibility and validity.

4.  Descriptive statistics

4.1.  Output of queries

We executed our query and applied the process of selection presented in Section 3.7.1. The execution of our query on IoT systems 
yielded 323 repositories. We removed 10 duplicate repositories. Next, based on manual verification of our selection criteria, we 
selected 94 repositories. We selected 94 comparable repositories using the stratification technique, presented in Section 3.7.2, of 
1972 repositories found when running the non-IoT search query.

4.2.  Statistical analysis of two datasets

4.2.1.  Nature of distribution
To examine whether the distributions of stars and forks in our IoT and non-IoT datasets follow a normal distribution, we applied 

the Shapiro–Wilk test. The test yielded p-values below the significance threshold of 0.05 for both variables in both datasets, leading 
us to reject the null hypothesis of normality. This result suggests that the distributions of stars and forks are significantly non-normal, 
motivating the use of non-parametric statistical methods for further comparison.

4.2.2.  Mann–Whitney U test between the two datasets for stars and forks values
Before doing the comparative analysis, we assessed the normality of the distributions for stars and forks in both IoT (n = 94) and 

non-IoT (n = 94) groups using the Shapiro-Wilk test. Results indicated strong non-normality for all: IoT stars (W = 0.473, 𝑝 < .001), 
non-IoT stars (W = 0.273, 𝑝 < .001), IoT forks (W = 0.422, 𝑝 < .001), and non-IoT forks (W = 0.345, 𝑝 < .001).

Given the non-normal distributions, we employed the two-sided Mann-Whitney U test to evaluate differences between IoT and 
non-IoT repositories. The null hypothesis 𝐻𝑜 suggests no difference in distributions, while the alternative 𝐻1 suggests a difference 
exists.

For stars, the test yielded U = 4409.0, p = 0.969 (> 0.05), with a negligible effect size (Cliff’s delta ≈ -0.00045). For forks, 
U = 4401.0, p = 0.948 (> 0.05), with Cliff’s delta ≈ -0.0045. These results fail to reject 𝐻0, indicating no statistically significant 
differences. Fig. 2 further illustrates the similar medians and spreads between groups. Thus, in terms of stars and forks, proxies for 
community interest and reuse, the IoT and non-IoT repositories exhibit comparable popularity and engagement.

4.2.3.  Stars and forks distribution in the two datasets
Fig. 3 presents a scatter plot illustrating the relationship between the number of stars and forks for functions across two datasets. 

Each point represents a function, with its position determined by its corresponding star and fork counts. The dispersion of points 
in the plot reflects the variability in popularity and reuse, measured through stars and forks, of these functions. Most data points 
are densely clustered, indicating that most functions receive a similar number of stars and forks, suggesting consistent patterns of 
community engagement and reuse across the datasets.
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Fig. 2. Software Metrics against Normalised Values (* p < 0.05, ** medium effect, *** large effect Each metric pair shows Non-IoT (left, lighter) 
vs IoT (right, darker)).

Fig. 3. Stars and forks distribution in the two datasets.

4.2.4.  Languages distribution
We selected 14 Java, 11 C++, 16 JavaScript, 24 C, 25 Python, and 4 C# systems.

4.3.  Outliers

There are several methods for identifying and removing outliers. We use visual inspection to eliminate outliers by plotting the data 
and then identifying outliers. Any observations that fall outside the expected range are potential outliers. In Fig. 3, visual inspection 
revealed outliers within our dataset. Notable instances included thingsboard-/thingsboard and home-assistant/core for IoT systems 
and Apache/Druid and ansible/ansible for non-IoT systems.

To assess these outliers’ impact on our analysis, we associated them with top metric values shown in Table 4. ‘Apache/Druid’ 
emerged as a system significantly affecting the results, which is why we removed it from further analysis. To ensure consistency, we 
also excluded its counterpart ‘thingsboard/thingsboard’.

4.4.  Top values of each metric

We computed our metrics (CBO, RFC, LOC, WMC, CC, HV, MI, CP, LCOM and the number of Classes and Files). Table 5 presents 
the highest software metric values for IoT and non-IoT projects after removing outliers. IoT projects exhibit higher values in metrics 
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Table 4 
Top before deleting outliers.

 IoT  non-IoT
 Project Name  Value  Project Name  Value

 RFC  Samsung/TizenRT [37]  475,185  Apache/Druid [38]  191,718
 CBO  eclipse-ditto/ditto [39]  83,212  Apache/Druid  22,423
 CC  espressif/esp-mqtt [40]  167  quarnster/SublimeGDB [41]  339
 HV  Samsung/TizenRT  7539487.092  quarnster/SublimeGDB  137964.39
 MI  eclipse-ditto/ditto  368880.47  Apache/Druid  475261.25
 LOC  Samsung/TizenRT  2,009,696  Apache/Druid  1,003,619
 WMC  project-chip/connectedhomeip [42]  83,347  Apache/Druid  16,057
 LCOM  rwaldron/johnny-five [43]  0.95  rthenica/ffmpeg-kit [44]  0.93
 CP  ARMmbed/mbed-os [45]  70251.58  Apache/Druid  4705.6

Table 5 
Top after deleting outliers.

 IoT  non-IoT
 Project Name  Value  Project Name  Value

 RFC  Samsung/TizenRT  475,185  DarthFubuMVC/fubumvc [46]  64,016
 CBO  eclipse-ditto/ditto  83,212  DarthFubuMVC/fubumvc  22,423
 CC  flomesh-io/pipy [47]  75256385.40  mgba-emu/mgba [48]  26,505
 HV  greghesp/assistant-relay [49]  86,796  dachev/node-cld [50]  240076813.4
 MI  eclipse-ditto/ditto  368880.47  wmira/react-icons-kit [51]  811,513
 LOC  Samsung/TizenRT  2,009,696  dachev/node-cld  551,449
 WMC  project-chip/connectedhomeip  83,347  rthenica/ffmpeg-kit  78,624
 LCOM  rwaldron/johnny-five  0.95  rthenica/ffmpeg-kit  0.93
 CP  ARMmbed/mbed-os  70251.58  UnknownShadow200/ClassiCube [52]  1413.95

Table 6 
Comparison of metrics between the two datasets.

 Median  Mean  Mode  U-statistics  p-value  effect size

CBO
 IoT  188  4252.51  0  5220.5  0.03062  0.156891
 non-IoT  40  715.72  0

RFC
 IoT  505  22334.82  0  5825  0.000149  0.275072
 non-IoT  2956.8  0

LOC
 IoT  4574  62960.13  0  4434.5  0.965788  0.003226
 non-IoT  31374.58  0

WMC
 IoT  217  4550.46  0  5708.5  0.000848  0.240549
 non-IoT  1667.51  0

CC
 IoT  462032.02  26953.31  2  6189  0  0.386057
 non-IoT  2358.08  0

HV
 IoT  2016  7283.76  0  490.5  0  0.765686
 non-IoT  5334.77  441940.37

MI
 IoT  3645.21  24584.31  0  4308.5  0.932151  0.00636
 non-IoT  36403.86  987.39

LCOM
 IoT  0.72  0.70  0.83  4040  0.311436  0.0739
 non-IoT  0.74  0.84

CP
 IoT  44.87  2200.13  0  5945.5  0.000005  0.33665
 non-IoT  168.49  0

#Classes
 IoT  116.5  975.89  0  6688  0.00003  0.295284
 non-IoT  373.76  0

#Files
 IoT  115  984  0  5656  0.000909  0.242032
 non-IoT  356.24  2

like CC, RFC, LOC, WMC, and CBO compared to non-IoT projects. We analysed these projects and found that IoT projects involve 
more complex hardware and software interactions driven by real-time processing needs. Non-IoT projects generally have higher HV 
and MI metric values (Table 5). This difference is due to non-IoT projects typically being less complex, influenced by distinct design 
and coding practices in non-IoT software development.

4.5.  Statistical computation on metrics

Metrics reveal that IoT systems feature more extensive and complex code than non-IoT systems due to their hardware constraints, 
necessitating larger codebases. This highlights IoT’s unique characteristics and the necessity to consider them in research and analysis.
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Table 6 indicates that IoT systems exhibit greater interdependence than non-IoT systems. IoT’s mean CBO is 4252.41, compared to 
non-IoT’s 715.72, illustrating the higher interconnectedness in IoT systems. This interdependence makes IoT systems more challenging 
to maintain and modify, reflected in the MI values, with a median of 24854.31 for IoT and 36403.86 for non-IoT systems.

Furthermore, IoT systems have more classes and files compared to non-IoT systems. For example, IoT systems have a median of 
116.5 classes, while non-IoT systems have 33. This is due to IoT’s distributed nature, integrating advanced technologies and adapting 
to diverse device standards, which require a larger codebase.

5.  Quantitative analysis

We conducted an in-depth study of systems in pairs, one for non-IoT and the other for IoT, written in the same language; the 
comparison is given in Table 6.

The statistical analysis of IoT and non-IoT systems was done using the Mann-Whitney U test, a non-parametric alternative to the 
t-test, which is appropriate for comparing two independent groups when the data may not follow a normal distribution. The size was 
94 for both IoT systems and non-IoT systems, with a significance level set at 𝛼 = 0.05. Effect sizes were interpreted as small (|𝑟| = 
0.1–0.3), medium (|𝑟| = 0.3–0.5), and large (|𝑟| > 0.5).

Among the highly significant differences (p < 0.001), Halstead Volume (HV) showed the most unusual disparity, with non-
IoT systems exhibiting much higher values than IoT systems (U = 490.5, r = 0.77). This suggests that non-IoT codebases are 
substantially larger and more monolithic, whereas IoT code tends to be modular and resource-efficient. Cyclomatic Complexity (CC) 
was significantly higher in IoT systems (U = 6,189, r = 0.39), reflecting more decision points, loops, and branching logic due to 
complex sensor data processing, multi-protocol handling, error management, and real-time processing requirements. IoT systems 
also demonstrated higher use of code patterns (U = 5,945.5, r = 0.34), likely relying on architectural patterns such as Observer, 
Publisher-Subscriber, and Factory.

Moderately significant differences (p < 0.01) included the number of classes, response for class (RFC), weighted methods per 
class (WMC), and the number of files. IoT systems had more classes (U = 6,688, r = 0.30), more method invocations per class (RFC: 
U = 5,825, r = 0.28), more complex methods (WMC: U = 5,708.5, r = 0.24), and more files per project (U = 5,656, r = 0.24), 
indicating greater architectural and functional complexity. Marginally significant differences (p < 0.05) were observed in coupling 
between objects (CBO: U = 5,220.5, r = 0.16), with IoT systems showing higher interdependence among components, suggesting 
potential integration and maintenance challenges.

Non-significant differences (p > 0.05) were found for lines of code (LOC), maintainability index (MI), and lack of cohesion 
of methods (LCOM), indicating that IoT and non-IoT systems have comparable code volumes, maintainability scores, and method 
cohesion despite structural and complexity differences. These findings suggest that the observed distinctions between IoT and non-IoT 
systems are driven more by architectural and functional complexity than by overall size.

The systems we analysed are presented in Table 7. As we obtained similar results for each programming language, we decided to 
showcase only the two Java-developed systems in the study of metrics.

5.1.  Definition of analysed repositories

The two Java systems we present are kymjs/CJFrameForAndroid for non-IoT and eclipseditto/ditto for IoT.
Eclipse-ditto/ditto [39] is a framework for managing digital twins. A digital twin is a virtual representation of a physical object or 

system, and Ditto provides a way to manage the data associated with these virtual representations. The Ditto repository can support 
device connectivity, data modelling, access control, event processing and analytics.

kymjs/CJFrameForAndroid [53] is an open-source repository for Android developers, providing a framework for building Android 
apps. The framework is designed to simplify and accelerate Android app development. The framework provides an architecture for 
building Android apps.

5.2.  Comparison of classes and files

When comparing the most complex classes of non-IoT and IoT systems, we found that IoT systems have an increased class com-
plexity of 23 compared to 7 in the non-IoT systems.

Furthermore, the largest file in the IoT system exceeds 2500 lines of code, while the largest file in the non-IoT system surpasses 
600 lines. Additionally, the largest function in the IoT system contains 290 lines of code, larger than the largest function in the 
non-IoT system, which has 65 lines. These differences arise from the distinctive nature of IoT systems, characterised by complex 
hardware compatibility, sensor integration, real-time data processing, diverse communication protocols, extensive data management, 
and customised business logic.

5.3.  Comparison of other metrics

By analysing the code, we found that high RFC in the eclipse-ditto/ditto repository is due to many tightly coupled classes. The 
project handles complex IoT data and protocols, with one class having 55 complex imports for gateway-service connections. The 
difference between the measured metrics is given in Table 8.
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Table 7 
Selected systems for each language.
 Language  IoT  non-IoT
 Java  eclipse-ditto/ditto  kymjs/CJFrameFor-Android
 JavaScriprt  fabaff/mqtt-panel  deboyblog/vue-wechat-title
 C  timmbogner/Farm-Data-Relay-System  unbit/spockfs
 C++  project-chip/connectedhomeip  zeek/zeek
 C#  renode/renode  madskristensen/MiniBlog
 Python  DT42/BerryNet  JohnHammond/msdt-follina

Table 8 
Comparing measured metrics.

 IoT: eclipse-ditto/ditto  Non-IoT: kymjs/ CJFrameForAndroid
 #Stars  414  412
 #Forks  147  157
 #Classes  7573  32
 #Files  4917  25
 RFC  130,215  328
 CBO  83,212  254
 CC  17056558.06  94
 HV  13,423  72196.47
 MI  368880.47  2043
 LOC  363,467  2040
 WMC  41,499  238
 LCOM  0.62  0.67
 CP  5702.18  17.23

RQ2: How are the metrics values of non-IoT/general code computed on comparable non-IoT and IoT systems?
Our Findings: IoT projects generally have larger, more complex codebases than non-IoT systems with higher metrics due to the 
integration of hardware, software, and data communication components, resulting in more classes, files, and lines of code. In 
contrast, non-IoT projects exhibit a higher HV, indicating the use of more distinct operators and operands. The metric values 
are provided in Table 6.
We thus showed that these metrics enable detailed evaluations, providing a granular analysis of IoT system codebases.

The code includes modules that handle the processing of data collected from various IoT sensors. There are functions to parse, 
filter, aggregate, and transform sensor readings. The repository also provides implementations of communication protocols commonly 
used in IoT systems.

We examined a system with extensive class inheritance, leading to high coupling and an elevated CBO value. The code also 
featured intricate logic and business rules, necessitating extensive interaction between objects, further increasing CBO and indicating 
low cohesion (as evident from the LCOM value).

Eclipse-ditto/ditto exhibited a high CC metric due to its complex algorithms, workflow management, and diverse APIs for de-
vice interaction, device protocols, and communication patterns like AMQP, MQTT, and Apache Kafka. It showed a highly modular 
structure, contributing to a high WMC value.

Contrastingly, Kymjs/CJFrameForAndroid have a low CBO by employing techniques like the Model-View-Presenter architecture 
for code decoupling. Its focus is to minimise code volume while maintaining functionality.

6.  Qualitative analysis

In the previous sections, we argued that IoT projects typically involve more complex interactions between hardware and software 
components, which can lead to increased code complexity compared to traditional software systems. In this section, we present 
concrete examples from selected IoT repositories that we analysed in depth. These examples illustrate the multifaceted nature of IoT 
system architectures, including the integration of sensor data acquisition, communication protocols (e.g., MQTT, CoAP), real-time 
data processing, and device control logic. By highlighting these elements within actual codebases, we aim to demonstrate how such 
complexity is reflected in both the structural and behavioural aspects of IoT software.

6.1.  Java IoT system

As discussed above, the Java system Eclipse-ditto/ditto is highly complex. To further analyse the extent of complexity, we selected 
one class named ImplicitThingCreationMessageMapper, which belongs to the package: org.eclipse.ditto.connectivity.service.map-
ping.
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Listing 1. Code for msg transformation in java-based IoT system.

Listing 2. Code for IoT Entities Creation and Manipulation in Java-based IoT System.

Listing 3. JavaScript code for interactions between hardware components in IoT system.

Listing 4. JavaScript Code to Integrate Real-time Data Handling with WebSocket Connections in IoT Systems.

This class is responsible for integrating new IoT devices into the Eclipse Ditto IoT platform, handling necessary configurations, 
policies, and message transformations for seamless device integration and management, making the codebase more complex.

Listing 1 contains configurations and logic for message transformations. The code uses a lambda expression in Java in a nested 
manner to set configurations for the message mapper. Then, it is used with the method reference operator to filter and map Header 
Configuration, increasing code complexity.

The code also deals with the creation and manipulation of IoT entities such as Thing, Policy, ThingId, etc., as seen in methods like
getCreateThingSignal, createInlinePolicyJson, and validateThingEntityId. We present some details of those methods in Listing 
2. It contains multiple imports, several interfaces, and methods specific to the Eclipse Ditto IoT platform, which results in a complex 
codebase. As discussed in the previous example, the nested environment incorporates various expressions, increasing overall code 
complexity.

While Java is commonly used for developing front-end and backend services in IoT systems, JavaScript plays a central role in 
enabling client-side interactions and lightweight event-driven applications, particularly in web-based IoT dashboards and interfaces. 
The next section discusses IoT systems developed in JavaScript.

6.2.  JavaScript IoT systems

rwaldron/johnny-five is a protocol-based IoT and Robotics programming framework. We analysed https://github.com/rwaldron/
johnny-five/blob/main/eg/nodeconf-radar.jseg/nodeconf-radar.js file. The code is responsible for a radar-like display with simu-
lated scanning motion and distance detection using hardware components and real-time data transmission to a web interface.

The code given in Listing 3 is complex and needs experts to understand it, as it contains interactions and initialisation of hardware 
components, which requires understanding the pin configuration and range specifications for the servo motor and the Ping sensor 
from the ‘johnnyfive’ library. The code contains some fictitious numbers, for example, “pin”, which has a value of 12. Also, the range 
is defined between 0 to 170, but it is not clear what functions these numbers are performing.

The file also contains real-time data handling with Web-Socket Connections (Socket.io), as shown in Listing 4. This code snippet is 
used to set up Socket.io for real-time communication. The use of Socket.io indicates the implementation of real-time data transmission, 
allowing communication between hardware and the web interface via WebSocket connections, which makes the codebase more 
complex compared to non-IoT systems. A complex codebase is less efficient in terms of resource utilisation and is difficult to reproduce.

The inclusion of concurrent operations further contributes to the code’s complexity. As demonstrated in Listing 5, which ensures 
the simultaneous management of servo scanning and Ping sensor data within event-based callbacks, presenting concurrent operations 
within the ‘board.on(“ready”, function()…)’ callback.
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Listing 5. JavaScript code to demonstrate simultaneous operations in IoT systems.

Listing 6. C code for defining configurations for LoRa.

Listing 7. C code to ensure LoRa communication.

Listing 8. C code for handling asynchronous communication in LoRa.

In contrast to JavaScript’s high-level abstraction and event-driven model, C is often employed in IoT firmware development where 
direct hardware control, minimal memory usage, and real-time constraints are critical. 

6.3.  C IoT systems

The system timmbogner/Farm-Data-Relay-System uses ESP-NOW, LoRa, and other protocols to transport sensor data in remote 
areas without relying on WiFi. It is used for scenarios where there is a need for low power. The code is highly complex due to 
several factors. The following code examples are extracted from the file https://github.com/timmbogner/Farm-Data-Relay-System/
blob/main/src/fdrs_gateway.hfdrs_gateway_lora.h. The code in the file handles LoRa communication that involves multiple aspects 
such as frequency, spreading factor, power levels, ACK timeout, and retries, all of which contribute to configuring the radio for 
communication.

Listing 6 overviews a code example to define constants for LoRa configuration parameters like frequency, spreading factor, and 
transmission power. Configuring these parameters is crucial for effective communication, but adds complexity due to their variety 
and specific values.

Also, functions responsible for LoRa Communication ultimately add to the complexity of the code. In Listing 7, a code snippet is 
provided where the ‘transmitLoRa’ function handles the construction and transmission of LoRa packets. It involves CRC calculation, 
packet assembly, and finally, transmitting the packet. This increases the complexity due to the detailed packet handling requirements.

In addition, asynchronous handling of LoRa transmission and reception introduces complexity, managing interruptions, flags, and 
different states for handling data transmission and reception simultaneously. The code snippet of the ‘setFlag’ function, in Listing 8, 
manages interrupts and flags (‘enableInterrupt’, ‘operation-Done’) to handle asynchronous communication. Complexity arises from 
managing interrupts and ensuring correct flag states for proper communication flow.
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Listing 9. C++ code for determining correspondence between dynamic endpoints.

Listing 10. Access Control with ACLs and Bindings using C++.

Building on C’s low-level capabilities, C++ introduces object-oriented abstractions and is frequently used in IoT projects requiring 
more structured software design without compromising performance or hardware proximity.

6.4.  C++ IoT systems

Project-chip/connectedhomeip is a repository for a unified, open-source application-layer connectivity standard built to 
enable developers and device manufacturers to connect and build reliable and secure ecosystems and increase compatibil-
ity among connected home devices. The code examined in the file https://github.com/project-chip/connectedhomeip/blob/
c58f0624887746e6dfa67fb1846a6c04420e6867/src/app/app-platform/ContentAppPlatform.cpp#L4ContentAppPlatform.cpp.
deals with dynamic endpoints and their associated attributes.

External callbacks for attributes read and write, as shown in Listing 9, through the method emberAfExternalAttributeRead-
Callback that handles attribute read operations, respectively, for dynamic endpoints. In the same file, there was a similar function
emberAfExternalAttributeWriteCallback, which writes operations. The code checks whether the dynamic endpoint corresponds 
to a known content app. If found, it calls the app-specific handler; otherwise, it falls back to a generic handler. This demonstrates 
the complexity of managing different attribute operations based on dynamic endpoints and handling scenarios where the app is not 
available for a given endpoint, which results in a complex codebase.

Managing access control for endpoints of IoT systems introduces complexity. Listing 10 overviews code, which deals with setting 
and revoking permissions for various devices. It presents a function that manages access control by creating ACL entries and bindings 
for specific vendor and product IDs.

Unlike the native execution model of C and C++, C# is typically found in IoT systems built on the .NET ecosystem, where 
managed code, cross-platform development (via .NET Core), and integration with cloud services are prominent.

6.5.  C# IoT systems

We studied renode/renode, which is an open-source simulation and virtual development framework for complex IoT 
embedded systems. We present a class named ArduinoLoader within the Antmicro.Renode.Integrations namespace 
from the file https://github.com/renode/renode/blob/b254f5d2f593e612da80dbb2337fb6394028eca8/src/Renode/Integrations/
ArduinoLoader.cs#L27ArduinoLoader.cs.

The class sets up USB devices, configurations, and functional descriptors. It involves configuring multiple USB interfaces, endpoints, 
and descriptors, which make the codebase complex, as presented in Listing 11.
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Listing 11. C# Code for Setting Up USB Endpoints, Configurations and Functional Descriptions.

Listing 12. C# code for encoding and decoding incoming commands.

Listing 13. Python code to ensure dynamic engine switching.

Also, as we are dealing with an IoT system, there is data transfer. The Decode method processes incoming data as shown in 
Listing 12. It iterates over the input data, interpreting ASCII characters. Depending on the character type, it appends nibbles to form 
numerical values. Switch statements handle special characters, indicating different types of commands. The code handles various 
cases, increasing the complexity.

Python, with its simplicity and extensive ecosystem, is increasingly used in IoT for rapid prototyping, data processing, and machine 
learning integration, especially when high performance is not the primary constraint. We have discussed Python-based IoT systems 
in the next section. 

6.6.  Python IoT systems

DT42/BerryNet is an AI/IoT system that connects independent components. Component types include but are not limited to AI en-
gines, I/O processors, data processors (algorithms), or data collectors. We studied the code in file https://github.com/DT42/BerryNet/
blob/2f13f5b559ee22d1c0e325834677b10a504fd117/berrynet/bndyda/bnpipeline.py#L4bnpipeline.py, which defines classes re-
lated to a pipeline engine for processing data in an AI/IoT context.

The complexity of the studied codebase arises from its dynamic behaviour, extensive configuration options, communication han-
dling, and the need to manage different modes and engines based on external messages. While these features provide flexibility to 
IoT, they also increase the overall complexity of the codebase.

In Listing 13, we present code ensuring dynamic engine switching between a real pipeline engine PipelineEngine and a dummy en-
gine PipelineDummyEngine based on MQTT messages indicating the service mode (inference, idle, or learning). This dynamic switching 
adds complexity to the code.

The code ensures communication with an MQTT broker, handling various topics and messages. This includes sending results, 
deploying newly retrained models, and switching between inference and non-inference modes. Using MQTT for communication 
increases code complexity. Listing 14 is an example of communication handling.
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Listing 14. Python code to ensure communication with an MQTT broker.

7.  Impact on best practices

Our study reveals differences between non-IoT and IoT systems. Therefore, we use these insights to enhance best practices from 
non-IoT systems to provide specific guidelines for addressing IoT-specific challenges, which we have discovered through our compari-
son. These challenges include high coupling, low cohesion, high complexity, low maintainability, code size reduction, and readability. 
In Section 3, we have presented best practices per category, shown in Table 3. Some of the best practices found, such as modularity 
and refactoring, can solve multiple problems, which is why they are repeated under different categories. A replication package with 
a detailed version of Table 3, including additional information, is accessible on Zenodo2.

7.1.  Size

We observed that code size is bigger in IoT systems based on high values of the measured metric LOC and the increased number 
of classes and files in IoT systems. The execution of the query yielded 530,000 papers from which we selected the ten most highly 
cited papers. To solve the previously demonstrated size issues in Sections 4, 5, and 6, we found these best practices.

7.1.1.  Code optimisation techniques
Multiple studies introduced techniques to reduce the size of code [54,55]. Most of these techniques could be used in IoT systems, 

such as loop unrolling, strength reduction by replacing costly operations with less resource-intensive alternatives, function inlining to 
minimise function call overhead, strength reduction of arrays, eliminating redundant computations, removing duplicated code, and 
optimising function libraries by selecting lightweight dependencies and unused code removal.

Static analysis tools can help to implement these techniques, such as Cppcheck, which is used in embedded systems and IoT 
development for C/C++ code [56]. It can also detect opportunities to optimise loops or suggest better ways to handle iterations, 
indirectly impacting code size by reducing the number of instructions executed.

7.1.2.  Identification and consolidation of similar functions
Reducing code size is possible through the identification and consolidation of similar functions.
One of the selected papers is the work of Edler et al. [55], which proposes a platform-independent code optimisation technique to 

reduce code size by merging structurally similar functions. The Function Merging algorithm compares function signatures and control 
flow graphs to detect equivalence.

The platform-independent nature of the algorithm, operating at the intermediate representation level within a Low-Level Virtual 
Machine (LLVM), makes it adaptable to the diverse range of IoT devices with varying architectures by abstracting away hardware-
specific details and allowing for the generation of code suitable for different target environments. The algorithm parameters, including 
minimum instruction count and similarity thresholds, contribute to its adaptability, ensuring that the merging process caters to the 
specific constraints of IoT environments.

7.1.3.  Use of run-time decompression
Run-time decompression techniques provide code size reduction. This run-time decompression involves employing techniques 

such as dictionary-based software decompression and selective compression. Lefurgy et al. [57] proposed a dictionary-based software 
decompression, a software decompressor based on IBM CodePack, and a technique of selective compression for controlling perfor-
mance degradation due to decompression, using software-managed caches to support code decompression at the granularity of a 
cache line.

Techniques that we can adapt for IoT development from run-time decompression include selective decompression, dynamic de-
compression thresholds tailored to resource availability, and conditional decompression. However, whole-program decompression, 
real-time decompression of large codebases, and data compression techniques may be less practical for many IoT devices and com-
ponents with limited resources.

7.2.  Complexity

We observed that complexity is high in IoT systems based on high values of measured metrics such as CC and WMC. The query 
resulted in 366,000 papers, and we examined the ten most highly cited ones. To solve the previously demonstrated complexity issues 
in Sections 4–6, we found these best practices.

2 https://zenodo.org/records/10564976
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7.2.1.  Applying refactoring
Refactoring methods [58] provide an array of strategies for reducing complexity [59]. Refactoring involves redistributing variables 

and methods across the class hierarchy to simplify the software system structure, with highlighted techniques such as pulling up, 
extracting, and inlining methods. Mayer Christian [60] underscores the importance of regular code refactoring in development for 
breaking down complex functions. While refactoring applies to IoT systems, it may introduce concurrency bugs and behaviour changes 
[61], requiring post-refactoring detection and evaluation for corrections.

For Java-based IoT systems, the refactoring process can be seamlessly executed in the Eclipse IDE, utilising its integrated refactoring 
tools. Static code analysis tools like SonarQube or Checkstyle can identify potential areas for refactoring. Integrating them into the 
development pipeline for continuous static code analysis and improvement suggestions aids in reducing code complexity.

7.2.2.  Applying modularity
Modularity of the code is a prominent technique for complexity reduction, highlighted in Baldwin and Clark’s theory of modularity 

[62] and in the work of Kearney et al. [63]. This technique emphasises the advantages of decomposing complex systems into smaller, 
manageable modules, a concept that finds resonance in IoT development. We believe that this principle can be applied to IoT systems 
by breaking down an IoT system into modular components. Containerisation tools like Docker are available to facilitate encapsulation 
and abstraction principles, which are techniques that contribute to the better modularity of the code. Docker uses containerisation 
to encapsulate applications and their dependencies, creating isolated environments. In IoT systems, we can create Docker containers 
for different components or services and package each component with its dependencies into a separate Docker image.

7.2.3.  Use of packaged software components
Packaged software components are pre-built, ready-to-use software modules or frameworks that can be integrated into a larger 

software system and are known for decreasing software complexity [64]. In IoT development, where this concept, like IoT platforms, 
is common, these findings bear significance. Examples of packaged software components include IoT platforms, which offer tools and 
services for building and managing IoT applications using tools such as ThingSpeak, Microsoft Azure IoT Suite, Google Cloud IoT, and 
IBM Watson IoT Platform.

7.3.  Coupling and cohesion

IoT systems have high coupling (high RFC and CBO) and low cohesion (low LCOM) compared to non-IoT systems. We found 
26,400 papers and selected the top ten based on citations. From these ten papers, we extract best practices to solve the previously 
demonstrated coupling and cohesion issues in Sections 4, 5, and 6.

7.3.1.  Application of design principles and patterns
Walls and Breidenbach [65] showed that Dependency Injection (DI) achieves Inversion of Control (IoC), leading to reduced 

coupling and enhanced code cohesion.
In resource-constrained IoT environments, we do not have the luxury of using full-fledged DI frameworks. However, we believe 

that using lightweight DI Frameworks through a lightweight DI library such as TinyIoC or MicroDI, which are designed for embedded 
and IoT systems, is useful. These frameworks provide basic DI functionality without the overhead of larger frameworks.

Singleton and Factory [66,67] ensure individual class responsibilities, enhancing cohesion and reducing coupling. For IoT, the 
application of these patterns is straightforward and facilitates the decoupling of modules, simplifying role separation and mitigating 
device heterogeneity [68]. When applying these patterns, there are minimal differences compared to non-IoT contexts that must be 
considered, such as optimising custom design pattern implementations for IoT systems operating in resource-constrained environ-
ments.

7.3.2.  Applying refactoring
Same as for complexity, Du Bois et al. [69] offered a guideline for refactoring to improve code coupling and cohesion. It is crucial 

to organise code with related functionality grouped and separate different concerns into distinct modules or classes [66]. Refactoring 
enhances coupling by reducing interconnections between modules through minimising method calls and shared variables [66].

We find that these refactoring principles apply to IoT systems based on our study of refactoring steps. There are tools and IDE 
features available for developers to automatically identify and suggest refactoring for IoT systems [67], such as Eclipse, SonarQube, 
and Checkstyle.

7.3.3.  Applying modularity
Modularity is a well-known best practice to enhance coupling and cohesion. Utilising cluster analysis techniques can evaluate and 

improve modularisation [62]. In the IoT context, semantic categorisation can be employed to group IoT components based on their 
roles (e.g., sensors, actuators, controllers), and combining structural and semantic criteria enhances modularisation comprehensively.

To enhance modularity, cluster analysis techniques can be applied [36]. In the IoT system, this involves analysing relationships and 
dependencies between different components or modules. By identifying interrelationships among various IoT devices or components, 
we can create more cohesive and loosely coupled modules.
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7.4.  Readability

IoT systems exhibit higher code readability, as indicated by their higher CP values compared to non-IoT systems. The research 
query produced 66,700 papers and, from them, selected the ten most highly cited ones.

One significant challenge in readability studies is the complexity of experimentally substantiating what essentially constitutes 
a subjective perception. Obtaining measures of subjective perception is challenging, necessitating human studies and inherently 
involving variability. To derive useful measures, large-scale surveys that include multiple human raters and careful statistical analysis 
of inter-rater agreement are essential [70]. We report the best practices that proved useful for improving code readability.

7.4.1.  Use of textual features
Using simple textual features enhances code readability, emphasising the importance of shorter lines, consistent indentation, and 

judicious use of comments [71,72]. While comments may not uniformly indicate high readability, they directly communicate intent, 
making their use preferable. Blank lines are positively correlated with readability [71,73]. Xiaoran et al. propose SEGMENT [74], a 
heuristic solution for automatic blank line insertion based on program structure and naming information.

Adapting SEGMENT’s heuristics to IoT code by considering structural elements like event handlers, data processing, and commu-
nication tasks allows for inserting blank lines between logically related code segments, enhancing readability. Meaningful variable 
names and descriptive method names are important for clarity [73,75]. In IoT development, employing clear and descriptive names 
for variables representing sensors and actuators improves code readability, especially when methods interact with sensors or perform 
specific tasks.

To implement these techniques, manual code reviews focusing on the mentioned textual features or developing custom scripts 
tailored to IoT programming languages are viable options. Similarly, existing static code analysis tools supporting readability metrics, 
such as ESLint, Pylint, or Checkstyle, can be adapted or extended to address the outlined requirements.

7.4.2.  Improve code entropy
The concept of entropy measures the amount of information content in the source code. It is often viewed as the complexity, 

the degree of disorder, or the amount of information in a signal or data set. Entropy is calculated from the counts of terms (tokens 
or bytes) as well as the number of unique terms and bytes. Posnett et al. [70] suggest that snippets with higher entropy are more 
readable. This implies that code with more varied elements (operators and operands) is easier to understand.

In IoT systems, it is very common to deal with a variety of sensors, actuators, and communication protocols. While enhancing the 
overall variability of code, developers must consistently monitor the entropy value across diverse elements (operators and operands) 
in the code to enhance its overall entropy using static code analysis tools while creating IoT systems.

7.5.  Maintainability

The maintainability of IoT systems is low compared to non-IoT systems; this is proved by the low value of MI, high code complexity, 
and high interdependence between different modules within a system. The research resulted in 55,300 papers, and we examined the 
ten most highly cited ones. To solve the previously found maintainability issues in Sections 4, 5, and 6, we found the following best 
practices.

7.5.1.  Use of source code conventions and standards
Source code conventions and programming languages have evolved together, and adhering to uniform conventions, such as naming 

conventions, inlined documentation, and syntactic structure, enhances code readability. Barry et al. outlined crucial code conventions 
for maintainability, particularly relevant to Java [76]. These conventions include recommendations for If, For, and Try statements, 
suggesting at most one additional nested statement, advocating the design of extensible classes without code in public methods, and 
more.

This convention list is widely applicable to IoT system codes. Implementing these conventions can be facilitated by employing 
tools like FindBugs, Checkstyle, and Jtest.

7.5.2.  Use of model-Driven architecture (MDA)
MDA involves expressing system requirements in a modelling language (e.g., UML) to generate a Platform Independent Model 

(PIM). This PIM is then transformed into a Platform Specific Model (PSM) for a particular technology and then into the actual code. 
MDA improves system maintenance by facilitating changes at the requirements level, automatically propagating them to affected 
modules [77].

In IoT systems, MDA can be leveraged to create high-level models to capture system requirements like sensor integration, data 
processing, and communication protocols. MDA in IoT ensures code generation based on these models, enhancing code maintainability 
and reducing errors [78].

7.5.3.  Use of design patterns
In addition to coupling and cohesion, design patterns positively impact code maintainability [79]. Jun et al. [80] empirically 

demonstrated that effective use of design patterns enhances software maintainability through an evaluation of a system without 
design patterns against its refined version after applying appropriate design patterns.
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The use of design patterns in IoT systems is straightforward. For instance, the Factory Method pattern eases object creation without 
specifying concrete classes, facilitating the integration of new device types or functionalities in an IoT context. The Decorator pattern 
allows dynamic addition of responsibilities to objects, enabling flexible enhancement of IoT device capabilities without altering their 
core structure. Tools like Eclipse for Java systems can assist in implementing these patterns.

7.5.4.  Applying refactoring
Like complexity, coupling, and cohesion, refactoring techniques positively impact software maintainability [79] and reduce tech-

nical debt [81].
For C# code, Visser et al. provided guidelines for maintainability improvement through refactoring [82]. This includes limiting 

the length of code units (methods or constructors) to 15 lines, restricting the number of branch points per unit to 4 (splitting complex 
units into simpler ones), and balancing the relative size of top-level components.

Refactoring code in IoT solutions requires an understanding of the system architecture and its implications on data flow and 
communication protocols, facilitating code restructuring for improved maintainability without altering the external behaviour of IoT 
systems. While refactoring, we can implement encapsulation, which, as advocated by Anda and Bente [83], improves maintainability 
by hiding system details. In IoT, encapsulation involves concealing the internal details of IoT devices and their communication 
protocols.

7.5.5.  Continuous integration and continuous deployment (CI/CD)
Implementing CI/CD pipelines to automate testing and deployment processes improves maintainability [81,82].
For IoT systems, CI/CD facilitates rapid and reliable updates to IoT devices. However, there are specific considerations to consider 

before applying it to IoT, such as creating realistic IoT device simulations for testing. Tools and frameworks like Eclipse Kapua, 
IoTivity, and IoT-LAB can simulate IoT device behaviour and interactions. Update mechanisms are essential for remotely deploying 
firmware updates to IoT devices. The whole CI/CD pipeline can be done through Azure IoT Edge application, CircleCI and Jenkins 
as IoT CI/CD Manager.

8.  Validation of the impact

To validate the study, a survey was conducted to capture the demographic profile, educational background, regional distribution, 
and levels of expertise and experience of participants engaged in IoT systems development. The survey collected 13 responses. Most 
participants were male (77%), with females comprising 15% and one respondent selecting “Other” (8%). In terms of education, the 
majority held a master’s degree (46%), followed by PhDs (38%), while a smaller proportion reported bachelor’s or other qualifications 
(8% each). Geographically, respondents were concentrated in the Americas (69%), with the remainder from Asia (8%) and other 
regions (23%). Regarding IoT systems development expertise, most self-identified as beginners (38%) or intermediates (46%), with 
only one expert (8%). Experience levels showed a bimodal distribution: a large share reported 0–2 years (38%) or 3–5 years (31%), 
while fewer reported 5–10 years (15%) or more than 10 years (15%).

We asked the developers two questions regarding best practices related to Code Size, Complexity, Coupling and Cohesion, Read-
ability, and Maintainability: Are they currently following these best practices? And if not, would they consider adopting them?

The responses are summarised and discussed in this section as well in the Table 9 below:

8.1.  Size

Code optimisation techniques: Based on the response, we conclude that the adoption is low (23.1%). The overwhelming majority 
(76.9%) do not currently apply these techniques, yet nearly all of them (92.3%) would consider using them. This suggests that 
developers recognise the importance of optimisation but may be discouraged by the additional effort, tooling complexity, or the 
perception that optimisation is not as important in early development stages.

Identification and consolidation of similar functions: The survey responses show moderate adoption (53.8%), which indicates a fair 
level of recognition of its value in reducing redundancy. Among non-adopters, 76.9% expressed willingness to adopt, though 15.4% 
preferred not to answer, which may signal ambiguity about the practice’s applicability in IoT contexts where function consolidation 
could conflict with device-specific requirements.

Use of run-time decompression: The responses show very low adoption (23.1%) and very high non-use (76.9%). Encouragingly, 
84.6% of those not practising it would consider doing so, which highlights awareness of memory and storage constraints in IoT 
devices. However, the presence of 13.1% preferring not to answer indicates uncertainty about the performance trade-offs inherent 
to run-time decompression.

Size-related best practices are weakly adopted overall, with significant room for improvement. The high willingness to adopt 
suggests that barriers are likely technical or contextual rather than conceptual.

8.2.  Complexity

Applying refactoring: The survey shows that the adoption is strong (76.9%), showing widespread recognition of its role in man-
aging complexity. Among non-adopters, 69.2% are open to adopting it, reinforcing its general acceptance as a fundamental software 
engineering practice in IoT.
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Table 9 
Developers responses.

 Do you follow the best practice?  If not, would you consider it?
Category Best Practice  Yes  No  Prefer not to answer  Yes  No  Prefer not to answer

Size
Code optimization 
techniques

 23.1% (3)  76.9% (10) 0  92.3% (12)  7.7% (1)  0

Identification and 
consolidation of 
similar functions

 53.8% (7)  38.5% (5)  7.7% (1)  76.9% (10)  7.7% (1) 15.4% (2)

Use of run-time de-
compression

 23.1% (3)  76.9% (10) 0  84.6% (11)  15.4% (2)  0

Complexity
Applying refactor-
ing

 76.9% (10)  23.1% (3) 0  69.2% (9)  7.7% (1) 23.1% (3)

Applying modular-
ity

 69.2% (9)  30.8% (4) 0  53.8% (7)  15.4% (2) 30.8% (4)

Use of packaged 
software compo-
nents

 30.8% (4)  69.2% (9) 0  69.2% (9)  15.4% (2) 15.4% (2)

Coupling and
Cohesion

Application of de-
sign principles and 
patterns

 69.2% (9)  30.8% (4) 0  84.6% (11)  0 15.4% (2)

Applying refactor-
ing

 69.2% (9)  30.8% (4) 0  76.9% (10)  23.1% (3)  0

Applying modular-
ity

 53.8% (7)  38.5% (5)  7.7% (1)  46.2% (6)  30.8% (4) 23.1% (3)

Readability Use of textual fea-
tures

 53.8% (7)  46.2% (6) 0  92.3% (12)  7.7% (1)  0

Improve code en-
tropy

 46.2% (6)  46.2% (6)  4.4% (1)  84.6% (11)  7.7% (1) 7.7% (1)

Maintainability

Use of source code 
conventions

 53.8% (7)  46.2% (6) 0  84.6% (11)  7.7% (1) 7.7% (1)

Use of model-driven 
architecture (MDA)

 46.2% (6)  53.8% (7) 0  76.9% (10)  23.1% (3)  0

Using design pat-
terns

 53.8% (7)  46.2% (6) 0  84.6% (11)  7.7% (1) 7.7% (1)

Applying refactor-
ing

 53.8% (7)  46.2% (6) 0  76.9% (10)  15.4% (2) 7.7% (1)

Continuous Inte-
gration and Contin-
uous Deployment 
(CI/CD)

 46.2% (6)  53.8% (7) 0  92.3% (12)  7.7% (1)  0

Applying modularity: The adoption is also relatively high (69.2%). However, a substantial 30.8% of non-adopters are resistant, 
possibly reflecting challenges in applying modularity within tightly integrated IoT systems where hardware-software coupling limits 
design flexibility.

Use of packaged software components: The survey shows that the adoption is low (30.8%), suggesting hesitation in reusing pre-
built components. Despite this, 69.2% of non-users would consider using it, although 15.4% preferred not to answer. We believe 
these responses reflect concerns about security, licensing, and compatibility of third-party components in IoT ecosystems.

Complexity-management best practices are fairly well integrated, with the exception of packaged software components, which 
developers are still hesitant to adopt.

8.3.  Coupling and cohesion

Application of design principles and patterns: The survey concludes that the adoption is relatively high (69.2%). Notably, 76.9% of 
non-adopters expressed willingness to adopt, suggesting a clear recognition of their utility in improving maintainability and scalability, 
even if actual usage lags.

Applying refactoring: The survey shows moderate-to-high adoption (69.2%), which indicates recognition of its benefits for reduc-
ing unnecessary coupling. Most non-adopters (76.9%) are open to adoption, demonstrating broad alignment with its value.

Applying modularity: The adoption is lower (53.8%), with a notable 23.1% of non-adopters outright rejecting it. This resistance 
likely arises from practical limitations of modular design in resource-constrained or highly specialised IoT systems.
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RQ3: How do occurrences of non-IoT/general best practices applied on comparable non-IoT and IoT systems correlate?
Our Findings: In this study, we have adapted best practices from non-IoT/general systems and applied them to IoT systems, tar-
geting challenges like code complexity, low maintainability, and poor readability. We conclude that best coding practices, such 
as modularity, code optimisation, and design patterns from non-IoT systems, are effective in addressing the above-mentioned 
issues in IoT systems.

Practices aimed at improving coupling and cohesion show mixed levels of adoption. While refactoring is relatively well-accepted, 
modularity faces stronger resistance in IoT, reflecting a gap between theoretical best practices and practical feasibility.

8.4.  Readability

Use of textual features: The survey shows that the adoption is modest (53.8%), but nearly all non-users (92.3%) would consider 
it. This suggests that textual features are seen as a lightweight and practical means to improve clarity, though not yet consistently 
prioritised.

Improve code entropy: The survey concludes that the adoption is divided (46.2% yes, 46.2% no). However, 84.6% of non-users 
would consider using it, indicating recognition of the importance of code readability, though possibly not prioritised against functional 
concerns in IoT development.

Readability-related practices enjoy strong conceptual support, but adoption by developers lags. The gap between willingness and 
practice suggests institutional or technical barriers rather than scepticism about their value.

8.5.  Maintainability

Use of source code conventions: The adoption is moderate (53.8%), but significantly, 100% of non-users expressed willingness 
to adopt. This reveals strong inherent acceptance and suggests that standardising conventions could be a relatively easy win for 
improving readability.

Use of model-driven architecture (MDA): The survey shows that the adoption is modest (46.2%), while the majority of non-users 
(84.6%) are willing to adopt. This indicates conceptual appreciation of MDA’s value, but possible practical constraints such as tool 
maturity, steep learning curves, or integration challenges.

Using design patterns: The survey concludes that the adoption is also modest (53.8%). Similar to MDA, a strong majority of 
non-users (84.6%) would consider adoption, suggesting underutilization of proven practices rather than rejection of their usefulness.

Applying refactoring: The adoption is moderate (53.8%), with 76.9% of non-users willing to adopt. This indicates strong recog-
nition of its role in enhancing maintainability, though consistency of application remains a challenge.

Continuous Integration and Continuous Deployment (CI/CD): The adoption is low (46.2%), but willingness is exceptionally high 
(92.3%). This disparity suggests that while IoT developers recognise the value of CI/CD, practical adoption is hampered by integration 
complexity, particularly in environments where embedded devices are difficult to test and deploy continuously.

Maintainability practices are seen as crucial, especially CI/CD. The willingness-to-adoption gap highlights infrastructural and 
methodological barriers rather than a lack of interest.

9.  Discussions

9.1.  Challenges and implications

We now discuss the implications of the observed values of the measured quality metrics, our in-depth analysis, and their results 
on practical IoT development. We link those observations to real-world challenges, and we provide implications for IoT developers 
and practitioners.

Real-world challenge and observation 1: IoT development involves intricate hardware-software interactions, intricate data 
communication, and complex algorithms. Metrics such as LOC, #Classes, #Files, CC, HV, and WMC highlight the extensive and 
complex nature of code in IoT systems. The in-depth example of code analysis also illustrates the difficulty of understanding IoT 
systems’ code.

Implication 1: Developers engaged in IoT projects should cultivate specialised skills, such as developing a deep understanding 
of both hardware and software aspects and expertise in efficient data communication protocols to navigate challenges posed by 
hardware-software interactions, data communication intricacies and complex algorithms.

Real-world challenge and Observation 2: Higher interdependence between different modules within a system and low main-
tainability in IoT systems, reflected in metrics like RFC, CBO, and MI, pose challenges in making modifications and maintaining the 
codebase.

Implication 2: Emphasising modular design and efficient code organisation allows for the encapsulation of functionality into 
distinct, manageable units, which is essential to effectively manage interdependence, maintainability, and extensive codebases in IoT 
systems.
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Real-world challenge and Observation 3: The increased number of classes and files in IoT systems is driven by their distributed 
nature. The statistical computation on metrics reveals that IoT systems exhibit more extensive code compared to non-IoT systems. 
Metrics showcase a significant difference in the number of classes and files as presented in Table 6.

Implication 3: Developers engaged in IoT projects should prioritise the implementation of efficient organisational and structural 
practices, such as eliminating redundant code segments and optimising function libraries. These practices involve code size reduction.

Real-world challenge and Observation 4: To understand and maintain code quality in evolving IoT projects. Understanding the 
trade-off between metrics like RFC, CBO, LCOM, CC, and WMC in IoT systems provides developers with actionable insights, leading 
them to make informed decisions and specific actions in the development to enhance metric values.

Implication 4: Continuous monitoring of code metrics, coupled with a willingness to adapt coding practices based on the results 
of these metrics, is essential for ensuring the quality of the IoT systems.

9.2.  Threats to validity

9.2.1.  Internal validity
Using a limited set of quality metrics may not comprehensively represent software systems. We selected various categories of 

popular metrics to address this limitation, ensuring a more holistic perspective on static code analysis.
We acknowledge that metrics alone are insufficient for a comprehensive assessment of software quality; robust quality mod-

els grounded in well-defined metrics are essential for this purpose. Furthermore, our selection of metrics was constrained by the 
availability and capabilities of existing measurement tools. Nonetheless, our work represents an initial step in this direction by sys-
tematically measuring and comparing relevant metrics, thereby laying the groundwork for the development of more comprehensive 
and context-aware quality models in future research.

The choice of tools for measuring quality metrics may not align perfectly with the specific characteristics of IoT and non-IoT 
systems. To mitigate this concern, we employed two popular analysis tools instead of relying on a single tool, enhancing the accuracy 
of our results.

Our study focuses on various heterogeneous non-IoT systems, such as programming libraries, frameworks, databases, IDEs, games, 
scientific programs, etc. However, we acknowledge that more characteristics of these non-IoT projects could be integrated to select 
those systems, avoiding introducing biases or limitations due to inherent differences among these project types. We hope that future 
research will build upon our pioneering work, utilising more selection criteria to enhance the comprehensiveness and robustness of 
such analyses.

9.2.2.  External validity
Discrepancies in the experience levels of developers working on IoT and non-IoT systems can impact the differences in software 

quality. To address this potential bias, we conducted manual analyses to ensure the quality of selected systems. We also identified 
and addressed outliers and anomalies that could affect the validity of our results.

Our work may be susceptible to overlooking external factors influencing code metrics, such as environmental changes, specific 
hardware configurations, or external dependencies. We acknowledge that ignoring such factors might limit the accuracy and appli-
cability of our findings. Also, as noted in the related work section, the lack of prior studies limits the extent to which our work can 
be compared to others.

We also acknowledge that while our study includes projects spanning multiple domains and varying sizes, we acknowledge that the 
selected projects may not fully represent all IoT or non-IoT systems, which constitutes a potential threat to external validity. Similarly, 
our analysis focuses on a selected set of software metrics commonly used in prior research; the exclusion of other metrics may limit 
the generality of our findings, representing a potential threat to construct validity. Future work could address these limitations by 
including a broader and more diverse set of projects and metrics to further strengthen the generalizability and robustness of the 
results.

9.2.3.  Conclusion validity
Comparing non-IoT and IoT systems is a complex task due to the differences in their code and structures. Despite these challenges, 

our work serves as an initial step in this comparative analysis and as a foundation for future research.
We study a limited subset of open-source systems from GitHub that could threaten the generalizability and representativeness of 

the findings. These systems might not encompass the full breadth of diversity present in IoT and non-IoT systems, potentially limiting 
the applicability of the conclusions. Recognising this limitation, we tried to mitigate this issue by considering the most extensive 
possible dataset available within the scope of our study to capture a diverse representation across different programming languages, 
frameworks, and project scales to achieve a more comprehensive understanding.

10.  Conclusion

The increasing prevalence of IoT systems highlights the need for developers and researchers to assess the quality of their source 
code, given the challenges of resource-constrained environments and the complexity of specific hardware requirements. Since IoT sys-
tems often operate in critical domains such as healthcare and infrastructure management, their code directly influences functionality 
and reliability, highlighting the importance of thorough code assessment throughout the development lifecycle.
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This study addresses the existing gap in research on IoT systems software quality by conducting a comparative analysis with 
non-IoT systems software, acknowledging the unique challenges posed by IoT’s limited resources and distributed architectures. The 
study and findings highlight key differences in metrics such as complexity, cohesion, code size, and maintainability, indicating that 
developing IoT systems demands tailored best practices.

Given these disparities, we systematically compiled a set of best practices commonly used in non-IoT systems and customised a 
list specifically designed for IoT system development to address these distinctions. Also, we systematically selected and analysed 94 
comparable IoT and non-IoT systems, providing comprehensive insights into their respective codebases. Our contributions include a 
method for choosing equivalent systems, computation and analysis of various metrics, an in-depth analysis of some IoT systems’ code 
to show the complexity compared to non-IoT systems, and a revised list of software engineering best practices for IoT development, 
addressing observed challenges such as high complexity, low maintainability, and readability issues.

We acknowledge that recognising those metrics alone is insufficient for a complete quality assessment; this work sets the stage for 
future research, emphasising the implementation and evaluation of quality models to evaluate the quality of IoT systems. Overall, 
this study enhances our understanding of the software quality of IoT systems and provides insights for developing more resilient and 
efficient IoT systems across various domains.

Future research can further enrich our findings on software quality in IoT systems. Currently, the focus is on open-source systems 
available on GitHub; further research can extend the scope beyond that to include more systems and have a more diverse range 
of systems. While our study compared code quality between IoT and non-IoT systems via metrics, further investigations can build 
quality models and repeat the comparison process. Also, our study relies on GitHub stars and forks as primary criteria to match 
IoT and non-IoT systems, future work could incorporate additional matching dimensions for selection systems from GitHub, such 
as functional domain, code complexity, or number of dependencies, to further enhance the representativeness and robustness of the 
analysis. For outlier detection, future work could incorporate standardised statistical techniques to complement the current visual 
inspection approach and further enhance the robustness of the analysis. Other aspects to explore in IoT systems include usability, 
security, and performance. Also, implementing identified best practices for non-IoT on IoT systems and evaluating their effects is 
necessary to address identified issues, such as complexity, size, coupling, etc., on IoT systems. Evaluating their effects is needed to 
address complexity, size, and coupling.
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