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ABSTRACT
The past decade has observed a significant advancement in AI, with deep learning-based models being deployed in diverse sce-
narios, including safety-critical applications. As these AI systems become deeply embedded in our societal infrastructure, the
repercussions of their decisions and actions have significant consequences, making the ethical implications of AI deployment
highly relevant and essential. The ethical concerns associated with AI are multifaceted, including challenging issues of fairness,
privacy and data protection, responsibility and accountability, safety and robustness, transparency and explainability, and envi-
ronmental impact. These principles together form the foundations of ethical AI considerations that concern every stakeholder in
the AI system lifecycle. In light of the present ethical and future x-risk concerns, governments have shown increasing interest in
establishing guidelines for the ethical deployment of AI. This work unifies the current and future ethical concerns of deploying
AI into society. While we acknowledge and appreciate the technical surveys for each of the ethical principles concerned, in this
paper, we aim to provide a comprehensive overview that not only addresses each principle from a technical point of view but also
discusses them from a social perspective.

1 | Introduction

As AI becomes ubiquitous in our lives moving forward in this
decade, focusing on the ethical implications of AI is not just
essential but extremely pressing. Several ethical guidelines and
principles have been released around the world by governments
[1], organizations [2], and companies [3]. Among these ethical
considerations, there are common principles that should be pro-
moted in the development of AI systems [4–6]. These principles
form an initial consensus of features or components that should
be embedded in AI systems to make their use more socially
acceptable. Figure 1 showcases the most common principles
found in existing ethical guidelines [3]. These principles include
privacy and data protection, to ensure the privacy preservation
of sensitive information about individuals (Section 2); safety and
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robustness, to promote the robustness and reliability of AI sys-
tems in different real-world scenarios (Section 2); transparency
and explainability, to uncover information about how the sys-
tem works and explain the decisions made (Section 3); fairness,
which promotes bias-free and non-discrimination in AI systems
when used to make decisions in high-stakes scenarios (Section 4);
responsibility and accountability, to promote processes and rules
to enforce ethical considerations throughout the entire lifecycle
of AI systems to limit unintended outcomes (Section 5); environ-
mental impact, to study the impact the growing deployment and
use of AI systems might have on the environment along with
how these systems can be leveraged for environmental protec-
tion (Section 6). All these principles play a key role in foster-
ing trust among all stakeholders in the AI system lifecycle. In
this paper, we walk through these principles and present recent
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efforts, solutions, and regulations for implementing each ethical
guideline in AI systems.

Despite the vast research on AI Ethics, most existing surveys fail
to provide a thorough overview of AI’s negative social impacts
and technical solutions to mitigate them. This work provides
a sociotechnical perspective on ethical AI. We cover the social
impact and value of each guideline and discuss technical contri-
butions from the literature to address them. We extend our inves-
tigation from classic AI to newly emerged foundation models and
compare how these new models inherit concerning attributes
of the classic models, along with the new concerns that have
emerged with them.

1.1 | Methodology

This work was originally developed for the Kaggle AI Report
2023 [7], with the primary goal of covering major works across
all domains of AI ethics. We focused on identifying the major
seminal works in the AI ethics subdomains and high-impact con-
ferences and journals such as FAccT, AAAI, ICML, NeurIPS, and
the IEEE Security and Privacy conference. Our selection criterion
was to include foundational works that established key concepts
in AI ethics subdomains, including fairness, explainability, pri-
vacy, security, AI regulation, and accountability. To do so, we
searched academic databases with search terms such as, but not
limited to, “AI regulation,” “ML privacy,” “ML security,” “Pri-
vacy risks in LLMs,” “AI Fairness,” “AI governance,” “Generative
AI ownership,” “Foundation models,” and “AI accountability”.
In addition, methods such as forward and backward snowballing
were employed to increase the coverage of the papers. Backward
snowballing involved examining reference lists of selected papers
to find earlier foundational works. Forward snowballing involved
looking at citations to identify newer papers that built on the
seminal work we identified. We included papers that addressed
core AI ethics domains, introduced key concepts or methods, and
came from recognized conferences and journals. We excluded
articles that did not focus primarily on AI ethics and duplicates.

1.2 | Related Works

To position our work within the growing body of literature on
AI ethics, we compare it with several recent and widely cited
papers in the field. As shown in Table 1, our survey provides
a broader and more technically detailed treatment of AI ethics
topics. While existing works often focus on specific dimensions
such as social impacts, auditability, or environmental concerns,
our paper integrates these perspectives while also expanding the
discussion to include underrepresented yet critical topics like
existential risks, technical fairness definitions, multi-scale gover-
nance, and how these ethical challenges have evolved with the
emergence of foundation models such as large language mod-
els. This comparative breadth and depth position our survey as
a more comprehensive resource for all stakeholders.

2 | Privacy and Data Protection

Ensuring the security and privacy of machine learning models
has become a crucial issue as they are widely used in various

TABLE 1 | Comparison with prior AI ethics survey papers.

Paper
Additional topics covered

by our paper

Jiao et al. [8] We additionally cover environmental
and existential risks.

Laine et al. [9] Their focus is limited to auditing,
whereas we take a broader view.

Correa et al. [10] Primarily focused on social
dimensions; we include technical

aspects as well.
Prem [11] Emphasizes social ethics; we also

examine technical definitions (e.g.,
fairness metrics).

Radanliev et al. [12] We address important topics such as
climate and ownership and AI

existential risk.
Khan et al. [13] Lacks in-depth coverage of technical

components, which we provide.

fields. To provide trustworthy AI, it is important to include
safety, privacy, and security in its lifecycle. Based on some
definitions, safety means reducing the probability of expected
and unexpected harm [14]. According to this definition, a
machine-learning model should be trained and released to be
robust against different kinds of uncertainty; in other words, in
case of an accident, the model should be able to continue its
expected normal behavior. To prevent safety problems, first, the
designer should be able to specify the correct objective func-
tion and have a method to evaluate it; second, sufficient data,
time, and infrastructure should be available to train and eval-
uate the model [15]. Two main attributes of AI safety are safe
exploration and robustness to distributional shift [15]. If one of
these attributes is lacking, the model will be vulnerable to differ-
ent attacks against its privacy and security.

Several studies [16–22] have indicated that machine learning
models are susceptible to attacks on their privacy and secu-
rity at different stages of their lifecycles. Since these models are
trained on vast amounts of data, model training is sometimes
outsourced, or pre-trained models are obtained from untrusted
sources, which makes them vulnerable to attacks during the
training phase. Additionally, machine learning models provided
as a service contain valuable information about their training
data and hyperparameters, making them attractive targets for
attacks during the test and deployment phases [23]. Attacks on
privacy commonly aim to compromise the confidentiality of var-
ious machine learning model components, while security attacks
target the model’s integrity and availability.

2.1 | Privacy and Security Attacks and Defenses
Overview

Different attacks are possible depending on the model architec-
ture and attackers’ capabilities. In terms of security, attackers may
aim to gain access to the model, steal its information, or disrupt its
normal functioning. For example, an attacker may target a spam
detector to make it unable to classify spam correctly by poisoning
training data [24].
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FIGURE 1 | Ethical AI principles.

The attacks can be categorized into three main categories:
black-box, partial white-box, and white-box attacks, according
to the attacker’s knowledge of the machine learning model [25].
In black-box attacks, the attacker has no information about the
training dataset or model’s architecture; in white-box attacks, the
attacker has full access to the model and all information about it,
including the training dataset, model parameters, model archi-
tecture, prediction vectors, etc. Partial white-box attacks stand
between these extremes, meaning the attacker has some informa-
tion about the model’s architecture and training data distribution.
The most common security and privacy attacks against machine
learning models are described in this section.

2.1.1 | Membership Inference

The membership inference is an attack in which an attacker
attempts to determine if a particular data sample 𝑥 is part of
a model M’s training dataset [26–28]. This attack is often car-
ried out using black-box techniques to query the model. Different
querying techniques are used to optimize the attack to gain more
information about the membership of individual records in the
training dataset. One of the first Membership inference attacks,
implemented by Shokri et al. [29], which could achieve high accu-
racy in their inference, was performed on Google and Amazon’s
APIs that provide machine learning as a service (MLaaS). Quan
et al. [30] showed that having additional knowledge about the
model or training dataset distribution can improve the attack’s
success rate.

2.1.2 | Model Inversion

In a model inversion attack, the adversary tries to get informa-
tion from the target model to reconstruct some representation

of its input dataset. The first category aims to generate an actual
data reconstruction [31]. In contrast, the second group of attacks
tries to create class representatives or probable values of sensitive
features that may not belong to the training dataset [32]. Several
attacks have been implemented based on different assumptions.
Some attacks assumed to have information about data and sen-
sitive features, and some had query access to the model to get a
prediction for an input 𝑋. Two main categories of this attack are
performed.

2.1.3 | Property Inference

A property inference attack attempts to deduce information about
the characteristics of a training dataset that are not explicitly
represented in the features. Revealing such properties can result
in privacy breaches since they may be considered confidential.
Property inference attacks are designed to identify dataset-wide
properties [33] or detect common characteristics among a subset
of the training data [34]. For instance, a classification model may
be trained to distinguish between criminals and non-criminals.
An attacker can estimate the proportion of men and women in the
dataset by conducting a property inference attack. This informa-
tion was not meant to be disclosed and was learned by the model
unintentionally.

2.1.4 | Model Extraction

In a model extraction attack [22], the attacker aims to develop
a model replicating the target model’s behavior. This is typi-
cally done when the attacker lacks information about the target
model’s architecture and training dataset. To achieve this, the
attacker generates a training set for the attack model by sending
queries to the target model and uses the predictions generated
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by the target model as labels for its data points. A successful
model extraction attack, as shown by Tremer et al. [22], allows
the attacker to produce a model that can be used for inference
or to extract information about the training dataset. However, if
the attacker has some knowledge about the training set’s distribu-
tion, the attack’s success rate can be improved. Selecting the data
to query the target model is a critical aspect of the attack method-
ology, which significantly impacts the accuracy and fidelity of the
attack model.

2.1.5 | Poisoning

In certain situations, a machine learning model designer may
not generate or thoroughly examine the data used to train the
model. Generally, this may occur when data generation is out-
sourced to third parties, or pre-trained models are fine-tuned for
a specific task. In such cases, the model becomes vulnerable to
poisoning attacks [35] that target the training dataset. In a sam-
ple poisoning attack, the attacker injects malicious data into the
training dataset, causing the model to learn patterns unrelated to
the classification task specified for the model. These patterns can
be exploited during the inference phase as a backdoor, resulting
in incorrect decision-making by the model when provided with
data containing these malicious patterns [36, 37].

2.1.6 | Evasion

Evasion attacks [38] occur when an adversary attempts to cause a
machine learning model to misclassify a data sample during the
inference phase. This attack typically occurs after the model is
trained and deployed. The attacker aims to generate a data sam-
ple similar to the original ones but misclassified by maximizing a
loss function based on their attack objectives. There are two main
categories of evasion attacks: targeted and untargeted. While in
a targeted attack, the adversary wants the manipulated sample
to be classified as a specific class; in an untargeted attack, the
attacker is not concerned with which class the manipulated input
is classified in. The manipulated data samples created in evasion
attacks are known as adversarial examples in the literature. Sev-
eral techniques, such as projected gradient descent, have been
developed to generate adversarial examples [38–40].

2.1.7 | Manipulation

Manipulation attacks occur when the attacker tries to explain
the model’s decisions based on some criteria that were not
used. Here, explanations help users understand complex models’
behavior (explanations are described in Section 3). However, to
gain the users’ trust, it is not enough to have an explanation; it
should be robust, too. Manipulation attacks are the type of attacks
that exploit the fragility of the explanations. It means that while
the model makes decisions based on some criteria if manipulated,
explanations can pretend the model is using other, more reason-
able measures [41, 42]. This type of attack is performed to achieve
several goals. One of its main objectives is fairwashing [43–45],
which means the model designer has manipulated the explana-
tion methods to hide the unfairness of their model’s decisions
(Fairness is described in detail in Section 4).

2.2 | An Overview of Defense Techniques

Researchers have proposed some defense strategies in response to
security and privacy attacks. Some of the most common defense
techniques are described here in summary. The k-anonymity [46]
is a technique usually used to prevent privacy attacks. It guaran-
tees that each data instance is indistinguishable from at least 𝑘 −
1 other data points. However, it may not be sufficient to prevent
identification when additional information or external knowl-
edge is available. Differential privacy is one of the most popu-
lar defenses against privacy attacks on machine learning models
[47]. Differential privacy guarantees that no more privacy risks
will be introduced to the data after being used to train the model,
compared with when they are not used for this purpose. One of
the main formalizations of differential privacy is 𝜖-differential
privacy, which means that if two models are training on the two
datasets (𝐷,𝐷′) that are only different in one record, for every
𝑆 in the domain of the model, the probability of their distribu-
tions differs at most with the ratio of exp(𝜖). Differential privacy
can be applied in different phases of the machine learning life-
cycle. It is possible to use it to make training data private [48],
or during the training phase, using differentially private training
techniques like PATE [49] and DPSGD1 [50]. Furthermore, model
owners can apply differential privacy techniques after training
the model in the inference phase to make the model respond to
the queries without privacy leakage [51].

In addition to defenses against privacy attacks, some techniques
have been suggested to protect the model against security attacks.
As a countermeasure to evasion attacks, adversarial training [52]
has been suggested to make the model robust by exposing it to
some adversarial examples in the training phase, allowing it to
learn correct behavior against them.

Applying each of the above-mentioned defense techniques is a
critical decision that has to be made based on the model owners,
data owners, and model users’ priorities. Increasing the privacy
and robustness of the models comes with the cost of reducing
their accuracy. Here is where the stakeholders should decide to
what degree they will make their models immune against privacy
and security attacks and, at the same time, how much accuracy
loss they can afford to achieve this degree of immunity.

2.3 | Privacy and Security in the Emergence
of Foundation Models

Now that Large Language Models (LLMs) and generative models
have wide applications in all areas of science and industry and
even daily use by regular users, it is important to investigate the
privacy and security risks imposed by these models.

2.3.1 | LLMs for Data Security and Privacy

Researchers have shown that LLMs can be used for security
objectives. For instance, ChatGPT-4.0 has been used to generate
security tests for evaluating how vulnerable library dependen-
cies impact software applications [53]. OpenAI’s GPT-4 has also
been effectively used for software vulnerability detection [54].
LLMs could also successfully detect vulnerabilities in specialized
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domains like blockchain [55, 56] and ransomware detection [57].
Siddiq and Santos [54] introduce the SALLM framework, con-
sisting of a new dataset specified for security and an evaluation
environment. They introduce novel metrics for systematically
evaluating LLMs’ ability in secure coding. Researchers have also
explored using LLMs to enhance privacy in some studies. For
example, Vats et al. [58] utilized LLMs to deidentify textual data.

2.3.2 | Negative Impacts on Security and Privacy

In addition to their effectiveness in improving privacy and secu-
rity, LLMs could be exploited for adversarial purposes. The
application of LLMs for side-channel attacks has been analyzed
in [59]. LLMs have also been used to analyze vulnerabilities in
virtual machines and propose and automatically execute OS-level
attacks against them [60].

Beckerich et al. [61] proposed using ChatGPT to distribute
malicious software while avoiding detection. LLMs have also
been employed to carry out network-level attacks, such as
phishing [62]. Researchers have demonstrated that LLMs
enhance user-level attacks, including misinformation [63], social
engineering [64], and fraud [65].

2.3.3 | Vulnerabilities and Defenses in LLMs

While LLMs can be utilized to enhance privacy and security,
they also pose a risk of exploitation. Adversarial users can exploit
vulnerabilities in the models themselves to simulate adversar-
ial scenarios, leading to potentially harmful activities. Research
has indicated that LLMs may carry certain AI-inherited vulner-
abilities. Exploiting these vulnerabilities, various attacks have
been conducted against LLMs, including data poisoning [66, 67]
to push the model to return malformed responses and back-
door attacks [68] employing prompt injection to manipulate the
model’s behavior. While these vulnerabilities have been exploited
for malicious purposes, they can also be exploited to ensure copy-
right protection for artists and content creators. For instance,
some researchers [69, 70] employed watermark embeddings to
restrict diffusion models and generative adversarial networks
(GANs) from exploiting copyrighted content in violation of copy-
right regulations. The efficacy of watermarking LLMs has been
investigated in the context of text generation [71].

Similar to traditional ML models, LLMs and generative models
are also susceptible to inference-time attacks in addition to vul-
nerabilities and attacks during the training phase. These include
Attribute Inference Attacks [64], Membership Inferences [72, 73]
(These attacks have also been used to find out if generative mod-
els have used copyrighted content in their training), Bias and
Unfairness Exploitation [74–76], Adversarial Attacks (Instruc-
tion Tuning Attacks) [77, 78] and Prompt Injection [79, 80],
Denial of Service [81, 82] and Remote Code Execution (RCE) [83].

2.3.4 | Defense Techniques

OWASP, the leading organization in software security, has rec-
ommended the OWASP Top 10 for Large Language Model

Applications [84]. It is critical for LLM developers and users
to thoroughly review these recommendations prior to deploy-
ing their models. Additionally, researchers have proposed various
safeguards to address existing vulnerabilities, thereby mitigating
the risk of malicious users executing successful attacks against
LLMs. The initial step entails mitigating certain properties from
training data during its generation, collection, and cleaning pro-
cesses. Research has been conducted in this domain, including
debiasing [85], deidentification [86], and detoxifying [87].

Within the LLM pipeline, optimization techniques can also influ-
ence the ethical alignments of LLMs. Methods such as adver-
sarial training [88] and robust finetuning [89] can enhance the
resilience of LLMs against certain adversarial attacks. Following
the training of models, it is imperative to implement techniques
to safeguard LLMs against adversarial attacks. These defenses
encompass a range of approaches, including pre-processing tech-
niques for analyzing prompts [90, 91], in-processing techniques
for detecting malicious behaviors that could lead to responses
that violate ethical regulations or disclose private information
[92, 93], and post-processing techniques that analyze generated
responses by LLMs before returning them to users to mitigate
their potential toxicity [94, 95].

3 | Transparency and Explainability

As mentioned in Section 2, it is necessary for AI users to under-
stand how the model works and makes its decisions. Explainabil-
ity, a crucial aspect of machine learning, bridges the gap between
predictive accuracy and human understanding. It has emerged
as a critical aspect of machine learning models, addressing the
need to understand the reasoning behind their decisions. While
predictive accuracy has long been the primary focus, the grow-
ing demand for transparency in models has motivated academic
research in interpreting black-box neural networks [96]. Explana-
tions can potentially allow the deployment of machine learning
models while maintaining high ethical standards [97].

In various areas of AI applications, the need to have explanations
for AI model decisions has raised and played an important role in
motivating researchers to focus on making complicated models
explainable.

For example, in medical applications, using an explainable model
for patient screening not only identifies high-risk individuals but
also helps understand disease causes like cancer [98, 99]. This
model could additionally provide insights into predictive fac-
tors, relationships between risk elements, and significant con-
tributors to a diagnosis, such as biomarkers, genetic predispo-
sitions, lifestyle factors, or environmental exposures [100–102].
Interpretability in AI proves crucial in the finance sector [103,
104], aiding in understanding loan rejections, credit score cal-
culations, and fraud detection. This helps stakeholders iden-
tify biases, errors, and discriminatory practices, ensuring trans-
parency and accountability [105, 106]. Compliance and regula-
tory bodies also benefit from interpretability, as financial institu-
tions must elucidate AI-driven decisions. Furthermore, explain-
ability may enhance AI model accuracy and bolster customer
trust [107]. Therefore, interpretability is not merely desirable
but necessary in financial AI applications. Further, explainability
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enhances understanding of customer behavior, enabling person-
alized offerings and improved customer experience [108, 109].
It fosters customer satisfaction and loyalty by tailoring prod-
ucts and services to meet customer needs. Transparent expla-
nations educate customers on AI-driven decisions, alleviating
concerns and fostering understanding, thereby building trust
and strengthening customer relationships [110, 111]. The case
of AlphaGo’s [112] “move 37” exemplifies AI’s potential to sur-
pass human intuition. This neural network model, trained to
play Go, made a move that initially perplexed experts due to
its deviation from traditional strategies. However, as the game
unfolded, it became clear that AlphaGo foresaw the potential of
this unconventional move, which proved pivotal in its ultimate
victory. This case underscores the need for techniques to explain
AI decision-making processes.

Regulators and policymakers recognize the need for mechanisms
to shed light on AI models’ inner workings, enabling stakeholders
to understand and assess the justifiability of AI-driven decisions.
Regulatory bodies across industries emphasize transparency, fair-
ness, and non-discrimination in AI systems. Explanations play a
pivotal role in meeting these regulatory requirements, elucidat-
ing how AI models arrive at their predictions or decisions. Legal
and ethical concerns surrounding AI technologies necessitate the
integration of explanations into AI systems.

3.1 | Stakeholders in XAI

Most experts agree that explainability and/or interpretability are
crucial for artificial intelligence (AI) and machine learning sys-
tems. However, there is not a universal understanding of what
“explainable” and “interpretable” mean. As a result, analyzing
the opinion of stakeholder communities surrounding explainable
AI is of great importance. The majority of stakeholder-related
debates merely distinguish between end users and system
developers. This can be seen in [97] through the following points

• Prediction-recipients who are directly impacted by the
ML-based system’s predictions despite not using it them-
selves since the prediction is typically mediated by an expert
user.

• End users who utilize the ML-based system directly, and are
consequently directly impacted by it.

• Expert users who directly use the ML-based system though
they are not immediately impacted by its forecasts. Since
they could be held responsible (both legally and ethically) for
the results of predictions put into action, they are indirectly
impacted.

• Attorneys and the courts are interested in determining
who is responsible for damage caused by an ML-based
system.

• The Financial Services Authority, the Vehicle Certification
Agency, and the Medical and Healthcare Products Regu-
lation Agency are regulatory bodies that are not the sys-
tem’s immediate users nor its direct beneficiaries. They, how-
ever, safeguard the interests of prediction recipients and end
users [113].

A compressed version of the latter was suggested by [114], where
the authors show a “Users Chart” of stakeholder groups as
developed by the Defense Advanced Research Projects Agency
(DARPA). They summarized some “Sensemaking Needs” and
“Explanation Requirements” for some Stakeholder Groups (such
as Policy Makers and Regulators, Developers: AI Experts,
test Operators, and lastly Operations: Military, Legal, and
Transportation).

3.2 | Properties of Explanations

Explanations, to be able to respond to their stakeholders’ needs,
should involve several properties:

Clarity refers to the quality of understanding the explanation. It
involves presenting explanations in a clear, concise, and inter-
pretable manner. A clear explanation avoids unnecessary jargon
or technical complexity, making it accessible to the intended
stakeholders. It should be structured and organized to facilitate
understanding and promote effective communication of under-
lying concepts or factors.

Fidelity is a crucial property of explanations, emphasizing the
importance of providing correct and truthful information [115,
116]. An accurate explanation aligns with the underlying data or
model, ensuring that the explanation reflects the actual reasons
and factors influencing a decision. Explanations must not mis-
represent or distort the information but rather provide a faithful
representation of the relevant aspects of the data.

Completeness relates to the extent to which an explanation pro-
vides a comprehensive account of the relevant factors or fea-
tures contributing to a decision or result. A complete explana-
tion includes all the necessary information, leaving no significant
gaps or missing components. It should cover both the primary
factors and any secondary or indirect factors that may have influ-
enced the outcome. A complete explanation helps to avoid ambi-
guity or misunderstanding by providing a holistic view of the
situation.

Consistency emphasizes an explanation’s coherence and logical
consistency [117]. A consistent explanation should not contain
contradictory statements or conflicting information. It should
maintain a coherent narrative that aligns with the underlying
data or model. Consistency ensures that the explanation is inter-
nally coherent and does not introduce confusion or ambiguity in
the interpretation of the provided information.

Causality explores the causal relationships between variables or
factors. A causal explanation seeks to identify and explain the
cause-effect relationships that lead to a particular outcome or
prediction [118]. It provides insights into the mechanisms and
processes that drive the observed phenomena. Causal explana-
tions help to uncover the underlying reasons behind a decision
or result, shedding light on the factors that directly or indirectly
influence the outcome.

Transparent relates to the openness and accessibility of an
explanation. A transparent explanation is understandable, inter-
pretable, and accessible to the intended audience. It avoids
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unnecessary complexity or obfuscation and allows individuals
to examine and verify the reasoning behind a decision or out-
come. Transparency promotes trust, accountability, and scrutiny,
enabling individuals to assess the reliability and fairness of the
provided explanation.

Contextuality considers an explanation’s relevance and contex-
tual appropriateness [119]. A contextual explanation takes into
account the specific circumstances, background knowledge, and
contextual factors that may impact the interpretation and under-
standing of the explanation. It adapts the level of detail, lan-
guage, or content to suit the specific context or audience, ensur-
ing that the explanation is meaningful and relevant within the
given context.

Granular explanations can vary in their level of granularity. They
can range from high-level summaries to detailed explanations
at the feature or instance level. The granularity of explanations
should align with the users’ needs and their level of understand-
ing, striking a balance between simplicity and depth.

User-Centric [120] emphasizes the importance of tailoring expla-
nations to the needs, preferences, and cognitive abilities of the
intended users. A user-centric explanation is designed to effec-
tively communicate information to the target audience, taking
into account their background knowledge, expertise, and infor-
mation processing capabilities. It considers the user’s perspective
and provides explanations adapted to their specific requirements
and level of understanding. User-centric explanations enhance
the usability and utility of the provided information.

3.3 | Explainability Techniques

3.3.1 | Classical Methods

A subset of algorithms that inherently produces inter-
pretable models is a straightforward approach to achieving
interpretability.

Logistic regression [121–124], an extension of linear regression,
models binary outcomes based on input variables. Extensions
like ridge, lasso, and elastic net regression improve performance
and interpretability. Decision trees [125–127], intuitive models
that split data based on input features, capture non-linear rela-
tionships. Decision rules provide transparent decision-making
representations. The RuleFit algorithm [128] combines decision
trees and linear regression, capturing complex interactions and
incorporating interpretable linear components. However, these
models’ simplicity may limit capturing complex relationships and
handling high-dimensional data. The choice of model depends
on the problem, data characteristics, and desired interpretability
level.

While these models offer interpretability, it is important to note
that their simplicity and transparency come at the cost of poten-
tial limitations in capturing complex relationships and han-
dling high-dimensional data. Additionally, the choice of model
depends on the specific problem, data characteristics, and the
desired level of interpretability.

3.3.2 | Post Hoc Methods

With the emergence of deep learning and the need for highly
accurate large neural networks, local explanations—post hoc
explanations—have emerged to be highly useful. Instead of
explaining the entire model, post hoc methods explain a particu-
lar decision.

Individual Conditional Expectation [129] curves provide a
fine-grained view of how changing a specific feature affects
the model’s prediction for an individual instance. Unlike PDP,
which shows the average effect, ICE curves show the predicted
outcome for each instance as the feature value varies. Feature
importance-based explanations [130–133] such as Local Inter-
pretable Model-agnostic Explanations (LIME) [134] explain indi-
vidual predictions by approximating the complex model locally
with a simpler, interpretable model. It generates a surrogate
model that is more easily explainable and uses it to understand
the reasoning behind the prediction for a specific instance. Sim-
ilarly, Shapley values [133] are an attribution method that fairly
allocates the prediction value to individual features. SHAP [131]
is a computation method for Shapley values that combines the
individual feature contributions to explain the model’s predic-
tions. It not only provides insights at the feature level but also pro-
poses global interpretation methods by considering combinations
of Shapley values across the data. Scoped rules, also known as
anchors [135], are rule-based explanations that identify specific
feature values that anchor or lock a prediction in place. LORE
(LOcal Rule-based Explanations) [136] creates interpretable rules
by using two types of perturbations, in a genetic algorithm, to find
the minimal changes that would alter the prediction. Counterfac-
tual explanations [137–139] explore what changes in the feature
values would be required to achieve a desired prediction outcome.
Counterfactual explanations help understand the model’s deci-
sion boundaries and provide insights into how different features
impact the predicted outcome by identifying the necessary mod-
ifications to the features. Concept attribution attributes the final
prediction of a model to align with the high-level concept of the
input [140–142].

3.3.3 | Ante-Hoc Methods

Rudin [96] highlights the main challenges of explainable mod-
els, stating the importance of learning explainable features
during model training itself. Ante-hoc explainability methods
involve the learning of concepts during the training phase. Early
concept-based models that involved the prediction of concepts
prior to the classifier were widely used in few-shot learning set-
tings [143, 144]. Unsupervised concept learning methods [145,
146] use a concept encoder to extract the concepts and a relevance
network for final predictions. Although these methods are useful
when pre-defined concepts are absent, they do not enable effec-
tive interventions. Concept whitening [147] was introduced as a
method to plug an intermediate layer in place of the batch nor-
malization layer of a CNN to assist the model in concept extrac-
tion. Koh et al. [148], Espinosa Zarlenga et al. [107] extend the
idea by decomposing the task into two stages: concept prediction
through a neural network from inputs, and then target predic-
tion from the concepts. Such concept-based models [149, 150]
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have been further utilized to facilitate human-model interaction,
a useful feature for model editing.

3.4 | Explainability in the Emergence
of Foundation Models

In a rising number of different tasks, LLMs such as Gemini,
Claude and GPT-4 [151–154] have shown outstanding perfor-
mance. However, these models have become known as “black
boxes” due to their inability to be understood clearly. Due to
their opacity, they are no longer useful in high-risk fields like
medicine and policymaking. Explainability is essential for LLMs
since it enables users to comprehend how the model generates its
predictions [155, 156].

In this line, Cífka and Liutkus [157] developed a model-agnostic
explanation technique based on tracking the model’s predictions
as a function of the number of context tokens available for causal
(autoregressive) language models. Each time a new token is intro-
duced, there is an increment in context length, and the authors
proposed a metric, Differential Importance Score to quantify this
change. These scores appear to have the ability to find long-range
dependencies (LRDs), which is particularly intriguing because
they are intended to highlight information not already covered
by shorter contexts, unlike attention maps, for instance.

Deep neural networks are trained to recognize very particu-
lar structural and perceptual attributes of inputs. Techniques
for locating neurons that react to certain idea categories, such
as textures, are readily available in computer vision. Never-
theless, the scope of these methods is constrained, labeling
only a tiny portion of the neurons and behaviors in every net-
work. To solve this, Hernandez et al. [158] proposed MILAN
(mutual-information-guided linguistic annotation of neurons)
which generates descriptions (that capture categorical, relational,
and logical structure in learned features) of neuron behavior
in vision models using patch-level information about visual
characteristics.

Another approach to black box language models is through text
modules. Singh et al. [156] introduced the Summarize and Score
(SASC) approach that takes a text module as input and outputs
a natural language explanation of the module’s selectivity cou-
pled with a reliability score. They show better interpretability for
LLMs may be attained by the SASC, which can enhance auto-
mated analysis of LLM submodules such as attention heads. Bills
et al. [159] offer a SASC-like technique for explaining individual
neurons in an LLM by forecasting token-level neuron activations.
They used an automated approach to solve the issue of scaling
an interpretability approach to each neuron in an LLM which
is expected to assess the trustworthiness of the models before
deployment. The method clarifies how textual patterns trigger
neuron activation through: explaining neuron’s activation using
GPT-4, simulating activations conditioned on the explanation,
and scoring the explanation [160, 161].

Nevertheless, Zhao et al. [162] provide a classification of explain-
ability methods and a systematic summary of strategies for elu-
cidating Transformer-based language models. These techniques
are categorized according to the LLM training approaches: the

traditional fine-tuning method and the prompting-based method.
They also delve into metrics for assessing the quality of gen-
erated explanations and explore how these explanations aid in
troubleshooting to enhance model performance.

In addition to the above methods, the field of mechanistic inter-
pretability seeks to reverse-engineer the internal computations of
LLMs by identifying circuits, patterns of neuron activations, and
interpretable algorithmic structures within the network [163].
Representation engineering, another active area, involves mod-
ifying or constructing internal representations, such as editing
activations or directions in embedding spaces to induce or ana-
lyze specific behaviors in the model [164]. Probing techniques are
also widely used, where lightweight classifiers are trained on hid-
den representations to determine whether specific linguistic or
semantic information is encoded at various layers [165, 166].

4 | Fairness and Equity

As discussed in Sections 2 and 3, adding transparency to the AI
systems enables different stakeholders to find the system’s devia-
tions from desired behavior. Fairness is one of the main require-
ments that many AI systems fail to meet. Fairness can be defined
as the absence of any prejudice or favoritism toward an individual
or a group of individuals based on their inherent or acquired char-
acteristics, such as race, gender, religion, etc. There are numerous
examples of AI applications that exhibit unwanted discrimina-
tory behaviors. This is alarming for the need to take action to over-
come the potential bias that might be embedded in AI systems.
For instance, the Compas system is a software used in the US
to assess the recidivism risk of defendants. Julia Angwin inves-
tigated [167] the software and showed that compared with white
defendants, black defendants are predicted to be twice as likely
to re-offend although they do no subsequent offenses. Another
example is the AI-based hiring system [168] used by Amazon
for assessing the resumes of job applicants. It was observed that
the evaluations assigned to applicants’ resumes exhibited gen-
der bias. These examples of AI bias have triggered the need for
developing more inclusive AI models to make their use more
socially acceptable. A biased AI system does not only have a neg-
ative impact on the end-users but the organization deploying the
system can suffer reputation damage, user distrust, and judicial
liability. Initial important steps to mitigate these issues focused
on mathematically defining and quantifying bias in AI systems.

4.1 | Definitions of Bias and Fairness

The concept of fairness has a variety of definitions depending on
the domain considered [169–171]. It can be defined according to
political philosophy, areas of education, in the legal domain and
according to the general public’s perception [172]. Unfairness or
discrimination is divided into two categories:

• Disparate treatment: Which is defined as “intentionally
treating individuals differently based on their membership
in a demographic group (direct discrimination)” [173]

• Disparate impact: which is “negatively affecting members
of a demographic group more than others even if by a
seemingly neutral policy (indirect discrimination)” [173]
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In fact, AI systems can exhibit disparate treatment if the model
heavily relies on sensitive attributes to make predictions. How-
ever, in general, discriminatory outcomes of AI systems are not
intended, but due to different sources of bias, the system will
provide disparate outcomes over different demographic groups
considered.

4.2 | Source of Bias and Fairness Notions

Unfairness in machine learning originates from three main
sources of biases: biases due to the data, those from the algorithm,
and user interaction. Machine learning systems and AI systems
are data-driven since they rely on data to be trained, making
them an integral part of the system. As a result, if the algorithm
is trained on a biased dataset, then these biases are likely to be
portrayed in the model’s outcome.

4.2.1 | Source of Bias

There are a wide variety of sources of bias in data, and some
important ones are highlighted here as reported by [172].

4.2.1.1 | Omitted-Variable Bias (OVB). OVB occurs when
the dataset fails to incorporate one or more relevant vari-
ables/features. The authors in [174] showed that in a model
which explains the relationship between dependent and inde-
pendent variables, omitting a relevant variable leads to biased
estimates. They also showed that OVB leads to statistical relation-
ships that can be indicated as larger, smaller, or opposite to their
actual value, which inflates error rates.

4.2.1.2 | Measurement Bias. Also called Reporting or
Recall bias, which is a result of how important features are
measured [172].

4.2.1.3 | Aggregation Bias. It occurs when it is erroneously
believed that individual data points follow the trends found in
aggregated data. Aggregation bias frequently happens in research
because it is sometimes assumed incorrectly that patterns that
exist at an aggregate level must also appear at an individual level.
Sadly, as the preceding illustration showed, this is not always
true. A study’s results may derive incorrect conclusions due to
aggregate bias, which is misleading. This kind of bias is especially
damaging when it comes to the correlations between different
variables.

4.2.1.4 | Representation Bias. It occurs when certain seg-
ments of the target population are underrepresented in the train-
ing data and, consequently, do not generalize well. Data repre-
sentation bias may be due to biases introduced after the data was
obtained, either historically, cognitively, or statistically, or it may
result from how (and where) the data was initially collected [175].
Selection bias can cause representation bias, which occurs when
just a small percentage of the population is sampled, the popula-
tion of interest has changed, or the population of interest differs
from the population used to train the model. For instance, if a
poll measuring the illegal drug use of teenagers only includes
high school students and leaves out homeschooled children or

dropouts, it may be biased [176]. The skewness of the underlying
distribution is another possible explanation for representation
bias. Let’s say that adults aged 18–60 years are the target demo-
graphic for a specific medical dataset. Within this community,
there are minority groups; for instance, pregnant women may
constitute only 5% of the target population. Because the model
has fewer data points to learn from for the group of pregnant
people, it is susceptible to being less robust even with perfect sam-
pling and an identical population [176].

4.2.1.5 | Algorithmic Bias. Another common source of
bias can be the algorithm itself. The machine learning model,
trained on a biased dataset, can reproduce and amplify the biases
in the model’s output. Even if trained using an unbiased dataset,
machine learning algorithms throughout their architecture have
the ability to demonstrate biased behavior [172]. It arises solely
as a result of the design characteristics and model architecture,
such as the choice of the regularizer, and loss functions.

Having identified the origins of bias in the AI lifecycle, audit-
ing AI systems for biases assessment requires metrics to quan-
tify them and to evaluate the efficiency of intervention methods.
In this regard, various fairness metrics (definitions) have been
defined to capture different aspects of fairness.

4.2.2 | Fairness Definitions

Fairness notions can be categorized into group, individual
and subgroup types [177]. Group fairness suggests that dif-
ferent groups are treated equally. In its widest sense, group
fairness splits a population into groups defined by protected
attributes/features (such as gender, religion, caste) and desires
some statistical quantities to be equal across different groups.
Mehrabi et al. [172], Weerts et al. [178] discuss a wide vari-
ety of group fairness metrics and the following are the most
significant ones:

4.2.2.1 | Demographic Parity. The metric seeks to guaran-
tee that a model’s predictions are not related to one’s belonging
to a vulnerable group. Demographic parity refers to equal selec-
tion rates for each group in the binary classification scenario [177,
179]. Equal selection, for instance, in the context of a resume
screening approach, would imply that the proportion of candi-
dates chosen for a job interview should be the same across groups.

4.2.2.2 | Equalized Odds. This metric aims to guarantee
that a machine learning model works equally effectively for all
groups. It is more stringent than demographic parity because it
demands that groups have the same true positive and false posi-
tive rates as well as independent predictions from the machine
learning model regardless of membership in sensitive groups
[179, 180]. This distinction is crucial because even if a model
achieves demographic parity (i.e., its predictions are not depen-
dent on a subject’s membership in a sensitive group), it may nev-
ertheless provide more false positive predictions for a particular
group.

4.2.2.3 | Equal Opportunity. This can be understood as
requiring that both protected and unprotected group members
have an equal chance of being allocated to a positive result if they
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belong to a positive class [172]. In other words, the equal oppor-
tunity definition states that the true positive rates for protected
and unprotected groups should be equal.

4.2.2.4 | Disparate Impact (DI). This notion can also be
viewed as the ratio between the two groups’ rates of accurate
predictions and so a high value of the ratio guarantees that the
percentage of accurate predictions is consistent across groups.
Nevertheless, one of the major drawbacks of disparate impact and
demographic parity is that a perfectly accurate classifier may be
viewed as being unfair when the proportion of real positive out-
comes of the various groups is noticeably different [173].

4.2.2.5 | Individual Fairness. In contrast to group fairness,
individual fairness is focused on how each individual is treated
[181]. This notion requires similar individuals to receive simi-
lar outcomes from the model. Individual fairness is beneficial
because it is a highly specific way of defining fairness and also
because people tend to care more about individuals than large
groups [182].

4.2.2.6 | Fairness Through Unawareness. This notion
states that a model is fair as long as it is not trained using the
sensitive attributes [172]. However, a significant weakness of
this notion is its failure to consider non-sensitive features that
may correlate with sensitive ones. When the model uses these
non-sensitive features as proxies for the unused sensitive fea-
tures, it can result in discriminatory outcomes [183].

4.2.2.7 | Counterfactual Fairness. It concerns the root
causes of differences. A sensitive trait would be replaced in prac-
tice, affecting everything that occurred due to that sensitive fea-
ture down the line [184]. In the hiring scenario, one would alter
a sensitive attribute, such as race, if counterfactual fairness were
applied. As a result, subsequent outcomes should not be altered.
Based on the counterfactual, the decision of a classifier as to
whether to hire the candidate should remain the same.

4.3 | Fairness-Enhancing Methods

Fairness-enhancing methods are grouped into three main cat-
egories based on the stage of the pipeline where the fairness
constraint is enforced, that is, at the data level before train-
ing the model (pre-processing techniques), during the model
training (in-processing techniques), or after training the model
(post-processing techniques).

4.3.1 | Pre-Processing Techniques

A model that relies on sensitive attributes (e.g., gender, race,
nationality) to make predictions can lead to discrimination or
unfair results. Pre-processing techniques are used to remove the
influence of sensitive attributes from the data before training
the model. The main advantage of these techniques is that they
are model-agnostic. The transformed dataset or representation
learned can then be used in downstream tasks (classification,
regression, etc.) without any change to provide “fairer” outcomes.
We group approaches to mitigate biases at the data level into three
main categories:

• Fair representation learning: learn a fair representation of
the data that obfuscates information about the sensitive
attributes [185–190].

• Dataset transformation: Modify the training data by relabel-
ing or reweighing data points [191] or apply data augmenta-
tion by interpolating samples from different group [192].

• Sampling: find a distribution close to the empirical distribu-
tion of the dataset subject to fairness constraints [191].

4.3.2 | In-Processing Techniques

These techniques are used when we have access to the model
training, and it is not costly to retrain an existing model. In a nut-
shell, the loss function is transformed to add a loss/regularization
term that penalizes the model’s disparities across groups. There-
fore, the model is forced to optimize for accuracy and fairness.
The classification problem becomes a constrained optimization
problem where the goal is to minimize the classification error
(maximize the accuracy) while satisfying a given fairness con-
straint. However, this optimization problem is nonconvex and
difficult to enforce. Therefore, existing in-processing techniques
are reformulated in different ways or dual problems are solved.
They can be grouped as follows:

• Reduction approach: The Exponentiated Gradient [193]
and AdaFair [194] approaches for fairness transform any
binary classification problem into a cost-sensitive classifica-
tion problem, that can yield a randomized classifier having
the lowest error while satisfying fairness constraints.

• Adversarial-based approach: Adversarial network is a
method that involves two competitive neural networks, com-
monly used in generative models like GANs (Generative
Adversarial Networks) [195]. This method is also applied to
mitigate bias. A popular application is Adversarial debiasing
[196]. It involves an adversary network that tries to predict
the sensitive attribute while the classifier tries to defeat the
adversary, thus enforcing the independence of the outcome
and sensitive attribute.

• Regularization-based approach: Regularization is gener-
ally used in ML to prevent overfitting by penalizing the
model’s weights using 𝐿1 or 𝐿2 norms [197]. A similar tech-
nique can be employed to add regularization terms to the
loss function to penalize the model for disparities over demo-
graphic groups [198–204]. For instance, Kamishima et al.
[202] introduced prejudice remover regularizer, a regulariza-
tion term for fairness that minimizes the mutual information
between the model’s output and the sensitive attributes.

• Sampling-based approach: Bias can be mitigated using
oversampling [205, 206] or subsampling [207, 208]. For
instance, FairBatch [208] is a batch selection process that
enforces a given fairness metric by sampling mini-batches to
transform the Empirical Risk Minimization (ERM) problem
into a weighted ERM to incorporate fairness constraints. In a
nutshell, FairBatch modifies the ratio of each demographic
group in the minibatch by increasing the representation of
the group of samples mostly misclassified (discriminated
against) in the previous batch.
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4.3.3 | Post-Processing Techniques

This group of methods treats the model as a black box and
enforces fairness constraints over the model’s output. Most exist-
ing post-processing methods consist of post hoc modification of
the model’s outputs to satisfy a given fairness metric [209–212].
In particular, Hardt et al. [211] formalized an optimization
problem over the model’s output to derive a classifier that satisfies
the fairness constraint while minimizing the classification loss.
The derived classifier depends on four parameters that measure
the probability of positive outcomes given the current classifier
output and the sensitive attribute. The optimization problem is
thus defined as a constrained linear optimization problem. When
the model output is continuous (a score function), the derived
classifier is based on a threshold of each demographic group such
that it maximizes the classification loss while satisfying fairness
constraints, that is, equal opportunity and equalized odds. Simi-
lar methods are proposed in the literature, and they differ mainly
in the way the optimization problem is defined.

4.3.4 | Pre-in-Post Process: Where Should We Enforce
Fairness?

Each group of fairness-enhancing methods has its pros and cons.
There are different settings where they can be applied and settings
where their use is more challenging or not possible. We summa-
rize the advantages and disadvantages of each group of methods
as follows:

• Pre-processing methods can work with any type of model
and machine learning tasks. As the fairness intervention is
done at the data level, the downstream task can be of any
type, however, it becomes difficult to control the tradeoffs,
and the algorithmic bias that might arise in the downstream
task is not controlled.

• In-processing methods allow control over the fairness-
accuracy tradeoff that the model can achieve. Having access
to the optimization problem with fairness constraints pro-
vides more flexibility in the tradeoffs; however, there is little
flexibility over the type of models used, that is, the constraint
optimization is model-specific.

• Similarly to pre-processing techniques, post-processing
methods can be applied to any type of model (classifier),
which is treated like a black box. The output of the model is
modified to satisfy a given fairness metric. However, chang-
ing the model’s output comes at a significant cost of accuracy.
Moreover, these methods can yield unfair outcomes against
certain individuals as the model output is changed to satisfy
a certain fairness metric.

Overall, as shown by Friedler et al. [213], there is no consensus in
the literature about which group of methods performs best. None
of the methods consistently outperforms others, and their perfor-
mances depend on the fairness metric and datasets.

Fairness definitions and fairness-enhancing methods presented
above have been mainly applied to classical machine learn-
ing setups, where a single model is trained for a specific task.

With the emergence of foundation models, new evaluation and
mitigation strategies have been proposed to target the new
learning paradigm.

4.4 | Fairness and Equity in the Emergence
of Foundation Models

Foundation models such as GPT-3.5 [151] are pretrained on mas-
sive amounts of data without a specific task in mind, learning
various complex patterns that can be adapted to a range of down-
stream tasks [214]. Specifically, a foundation model fine-tuned on
a small, specific task often performs better than a task-specific
model trained from scratch. This new paradigm is not free
from bias since foundation models can capture social bias dur-
ing the pretraining stage or task-specific bias during finetun-
ing. However, while new definitions of unfairness and mitigation
approaches have emerged when using foundation models, clas-
sical definitions and mitigation techniques are either reused or
adapted to the new learning paradigm. For example, individual
or group fairness metrics presented in the previous subsection
can be applied to foundation models, such as LLMs, by quan-
tifying the disparity of the outcome of an algorithm built upon
the foundation model. Individual or group fairness metrics nat-
urally transfer to foundation models when used for classification
or regression tasks. On the other hand, other unique forms of
bias are specific to natural language tasks such as text genera-
tion, machine translation and question-answering. This includes:
stereotyping, which occurs when the model makes assumptions
about certain groups due to historical or social bias; toxicity,
where generated text contains offensive language targeting spe-
cific social groups [215]. Several metrics have been proposed to
measure this type of bias in language models. Unlike in clas-
sification tasks, bias evaluation metrics in language models are
task-specific and usually linked to a dataset designed to identify a
particular type of bias. For instance, stereotypes in language mod-
els can be measured using crafted input text that only differs in
the demographic information (e.g., gender, race or religion) and
by analyzing variation in the model output. The task submitted to
the model could be question-answering or text completion [216,
217]. For example [217] found that when the context informa-
tion given to the model is under-informative, the produced output
reinforces existing social bias by generating stereotyped content
with harmful biases. This form of evaluation often reveals intrin-
sic bias coming from model pretraining or extrinsic bias from
model finetuning [218].

Foundation models are not limited to natural language tasks; they
have been successfully extended to other data modalities, includ-
ing vision [219] and tabular data [220]. In the case of tabular data,
rows and columns are serialized into text format and presented
to the model as contextual input [220]. Remarkably, language
models can achieve high predictive accuracy on test data without
any parameter updates, a capability known as in-context learn-
ing (ICL) [220]. This paradigm allows models to adapt to new
tasks by conditioning on a few examples provided in the prompt,
enabling rapid generalization with minimal computational over-
head [151].

In parallel, foundation models specifically tailored for tab-
ular data are being developed, moving beyond the simple
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text-serialization approach [221]. These models are designed to
capture the unique structure and statistical properties of tab-
ular data, such as column semantics and row-wise dependen-
cies. Recent advancements show that these specialized founda-
tion models are beginning to outperform traditional tree-based
models like XGBoost and LightGBM, particularly in settings with
large-scale data or complex feature interactions. Their ability
to leverage pretraining and transfer learning offers significant
advantages in both predictive performance and generalization.

From a fairness standpoint, existing metrics such as demo-
graphic parity, equal opportunity, and disparate impact can still
be applied to evaluate model behavior under in-context learning
[222]. However, because the model parameters remain fixed dur-
ing inference, traditional in-preprocessing mitigation approaches
are not directly applicable. As a result, new fairness interven-
tions that operate at the prompt level have been proposed. These
include demonstration selection [222], where carefully curated
in-context examples are chosen to reduce bias, and prompt engi-
neering [223], where the phrasing and structure of the input are
optimized to elicit fairer or more accurate responses.

Despite promising results, the fairness implications of in-context
learning are still an active area of research. The model’s behavior
can be highly sensitive to prompt design and input ordering, lead-
ing to prediction variability across different demographic groups
[151, 224]. Moreover, because prompts are often constructed
manually or heuristically, ensuring fairness at scale remains a
significant challenge. Future work is needed to develop system-
atic and automated techniques for fairness-aware prompt genera-
tion, as well as robust evaluation frameworks tailored to this new
paradigm.

5 | Responsibility, Accountability,
and Regulations

As it was demonstrated in previous sections, AI systems are
generally complex “black-boxes” sociotechnical systems that can
sometimes produce unintended outcomes, which have raised
issues of accountability establishment when something goes
wrong. Moreover, understanding how new technologies inter-
twine with the upcoming AI regulations and how they reflect on
AI ethics could go a long way. In this section, we delve into other
important ethical considerations of AI and the current landscape
of AI regulation.

5.1 | Existential Risks of AI

The existential risks of AI are becoming increasingly concern-
ing as advancements in the field continue to evolve [225, 226].
The common approach with new technologies is to implement
them first, then address any significant issues that arise, mak-
ing adjustments as necessary. However, this approach may not
be suitable for advanced AI, as early missteps in directing these
systems could prevent later adjustments, potentially leading to
catastrophic outcomes [227]. Examining history, technological
advancement during the Industrial Revolution completely trans-
formed people’s lives and brought about profound changes for
humanity. This also yielded sociotechnical problems that needed

regulations. For instance, the invention of the first gas-powered
automobile lacked the rules and technologies we now take for
granted, like traffic signs and automated lights. Pedestrians and
drivers had to watch out for themselves for safety. During this
transformative period, legislators responded reactively by insti-
tuting rules to govern personal car usage. Few events during the
Industrial Revolution have the same transformative impact as
advancements in AI [228].

These advancements in AI could potentially amplify existing
catastrophic risks, such as bioterrorism, the spread of disinfor-
mation leading to institutional dysfunction, misuse of centralized
power, nuclear and conventional warfare, other coordination fail-
ures, and unforeseen risks [226]. This necessitates a proactive
approach where potential problems are anticipated and resolved
well in advance, preserving our ability to make corrections and
avoid irreversible consequences.

Shortly after the development of advanced AI, we are likely to
encounter AI systems that significantly outperform humans in
most cognitively demanding tasks [229]. These include tasks that
have a substantial impact on the world, such as technological
development, social/political persuasion, and cyber operations
[226]. If there is a conflict of goals between advanced AI sys-
tems and humans, the AI will likely outperform or outmaneu-
ver humans to prioritize its objectives. Misdirected advanced AI
could limit humanity’s ability to make corrections. It could deter-
mine that its current goals would not be met if humans redi-
rected it toward other objectives or deactivated it. Consequently,
it would take steps to prevent such interventions.

5.2 | Accountability

We have seen in previous sections that AI systems can some-
times go wrong; for example, gender bias in the Amazon hiring
system, or adversarial environments that mislead a deep neu-
ral network model. In general, when something goes wrong in
an organization or a company, someone is held accountable for
it. However, AI systems cannot solely be responsible for unpre-
dicted outcomes. A question that naturally arises when AI sys-
tems provide outcomes that have adverse effects or harm indi-
viduals, is who is accountable for the issues. Accountability is
a well-studied notion in different fields such as politics and law
[230, 231]. It provides moral principles that guide the ethical con-
duct of people or organizations as they bear the responsibility
for their actions. Accountability is, therefore, a key component
of trust in society, organizations, and the professional milieu. In
the context of AI, accountability is a meta-component of trust-
worthiness that ensures that ethical principles are promoted and
enforced throughout the lifecycle of AI projects [228, 232–234].

5.2.1 | Accountable for What?

According to Virginia Dignum accountability means the deci-
sions of the AI system are explainable and derivable from
the decision-making mechanisms used [235] and is a set of
components guided by moral values that are part of a large
socio-technical system. Millar et al. [236] see accountability as
“answerability” for decisions, actions, products, and policies.

12 of 24 Computational Intelligence, 2025

 14678640, 2025, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/coin.70149 by E

cole D
e T

echnologie Superieur, W
iley O

nline L
ibrary on [09/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



From this perspective, it is required that accountability is a prac-
tice that the management board of a company could enforce by
making all the stakeholders who develop the system understand
that they bear the responsibility for the decisions of the system.
Therefore, policymakers, data scientists, and AI engineers should
carefully choose and justify the choices made during the design,
development, and deployment of AI systems [237].

5.2.2 | Accountable to Whom?

The design, development, and deployment of AI systems involve
multiple stakeholders. While a system in which decisions can be
explained can help to detect the causes or reasons for the inci-
dents, it does not necessarily provide an answer to who is most
responsible for the unintended outcomes. Establishing causal
accountability remains challenging, and unintended negative
outcomes might bear legal liability. Companies or organizations
can acknowledge incidents caused by the use of their systems
and can pay for reparation. However, monetary compensation
could not be enough in society and requires someone to be pun-
ished, that is, to take legal responsibility for the potential harm.
Ammanath [228] says that instead of looking for people to blame,
companies should recognize the legal responsibility of sociotech-
nical systems around AI and all stakeholders should use it as an
“additional motivation to own their individual responsibility.”

Promoting accountability throughout the entire lifecycle of AI
systems faces the challenge of developing processes and rules to
enforce it while not hindering innovation. The enforcement of
accountability can also be backed by laws and regulations that
define a conformity assessment of the outcomes of sociotechni-
cal systems to hinder potential flaws in the system [228, 236].
Accountability, therefore, becomes a core component of trust-
worthiness in a socio-technical system. That is, if a system pro-
vides discriminatory outcomes, leaks people’s sensitive data, or
is not robust to different kinds of environments where it is
deployed, someone would bear the responsibility of justifying and
mitigating it.

5.3 | AI Ethics and Regulation

Understanding how new technologies intertwine with the
upcoming AI regulations and how they reflect on AI ethics could
go a long way. According to Stanford University’s 2023 AI Index
[238] in 2022, 127 countries passed around 37 bills with the word
“artificial intelligence,” which shows a greater interest in regulat-
ing AI. In this section, we discuss theoretical considerations of AI
and the current landscape of AI regulation.

There are initiatives around the world that focus on the develop-
ment and promotion of trustworthy AI and the regulations that
surround it. One exciting initiative to look at is the National AI
Initiative, one of the components of the United States’ approach
to AI regulation. Looking at the National AI Initiative Act of 2020
[239], it aims to promote and support research and development
in trustworthy AI in both the public and private sectors. It also
aims to develop technical standards and guidelines that facilitate
the evaluation of bias in artificial intelligence training data and
applications. The US governmental agencies allocated a budget

of $1.7 billion to AI R&D which is an increase of 209% from 2018
[238]. Despite many of these efforts, the United States does not
have a comprehensive federal law governing AI. Different states
or even problem statements have taken different approaches to
AI regulation, with some enacting laws related to specific applica-
tions of AI, such as autonomous vehicles, and others focusing on
broader issues, such as data privacy and security. For autonomous
vehicle regulation in the United States, the National Conference
of State Legislatures (NCSL) provides a comprehensive database
[240] that tracks autonomous vehicle bills introduced in all 50
states and the District of Columbia. And for broader issues such
as data privacy and security, the National Conference of State
Legislatures (NCSL) documents state privacy laws in various
areas [241].

There has also been regulation around Deepfake and online
safety of users [242]. The UK passed the Online Safety Bill, mak-
ing sharing pornographic deepfakes without consent a crime, and
considering laws for clear labeling of AI-generated content [242,
243]. Also, China’s Deep Synthesis Provisions, effective from Jan-
uary 10, 2023, regulate deep synthesis technology, mandating
data protection, transparency, and content management with
other requirements [244].

The European Union (EU) has taken significant steps to regulate
AI and protect data. General Data Protection Regulation (GDPR)
[245], enacted in May 2018, is a set of rules designed to give EU cit-
izens more control over their personal data. Elements of GDPR,
like Data Minimization, can play a huge role in what kind of data
AI models can store and use for training. Additionally, the Euro-
pean Commission introduced the Artificial Intelligence Act in
April 2021 [246] and is actively working toward establishing com-
prehensive AI regulations. “The vote sets up the so-called trilogue
negotiations, the final phase of the EU’s process, and paves the
way for the likely adoption of Europe’s—and the world’s—first
comprehensive AI regulatory framework in early 2024” [247].

The regulation and public policy of AI could greatly help make
AI safe for all involved; however, it also comes with some chal-
lenges. Firstly, new policies may be slow to implement and can
get stuck in bureaucratic processes. For example, in Canada, Bill
C-27 (“An Act to enact the Consumer Privacy Protection Act, the
Personal Information and Data Protection Tribunal Act, and the
Artificial Intelligence and Data Act and to make consequential
and related amendments to other Acts”) [248] had its first read-
ing in the House of Commons in 2022. Parts of the bill, such as
Part 3, add common requirements for the design, development,
and use of artificial intelligence systems, including measures to
mitigate the risks of harm and biased output. However, on 6 Jan-
uary 2025, the bill died on the Order Paper, since parliament was
prorogued [249].

In addition to regulatory processes, researchers have also raised
questions about the legal duty to find and discover less discrim-
inatory algorithms [250]. Model multiplicity is a phenomenon
in which multiple models can achieve equal accuracy on the
same task, but differ in their individual predictions or aggregate
properties [251]. This means it is possible to have a model with
lower disparate impact without affecting the performance. Black
et al. [250] in their work argue that service providers should have
a legal duty to search and discover these LDAs that show less
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disparate impact with reasonable efforts. There are no known
regulations around the discovery of LDAs, and the question of
who the burden of proof falls upon is also raised in the paper.

5.4 | Generative AI Ownership

For a long time, creativity has been considered one of the most
distinguishing attributes of humans. But with the advances in
computer science and machine learning, people have tried to add
creativity to the machine learning models, and it is where Gen-
erative AI appears. Regarding probabilistic modeling, generative
models are machine learning models that describe generating a
dataset. Sampling from such a model generates new data belong-
ing to the desired distribution [252].

5.4.1 | Who is the Author?

While current samples of generative models can create
high-quality products like meaningful text [253], different types
of art, including paintings [254], music [255], and executable
computer codes, the first generative models that caught the news
attention were StyleGAN [256] which created hyper-realistic
images from human faces and GPT-2 [257] that could finish
a paragraph of meaningful text related to its received opening
sentence.

While the number of generative AI users is increasing daily, a
critical question about generative AI ownership still needs to be
answered. Consider a situation in which an employee who is
expected to add some lines of code to their company’s product
uses generative AI to generate the code and add it to their prod-
uct. The question that arises here is who owns the product? Does
the company lose copyright over its product because a machine
learning model generates one part? What about art generated by
generative AI? While an artist who won Colorado State Fair’s art
competition using an AI-generated picture [258] claimed he had
not broken any rules, another artist rejected the prize he won at
the Sony World Photography award, revealing that AI had gener-
ated the winning photo [259]. As a prevention from such events,
the Grammys forbids AI-generated works from participating in
their competitions [260]. Debates about the ownership of gener-
ative AI products remain unsolved, and people taking each side
of this debate have satisfying reasons. While from one point of
view, the owners of the AI-generated products are people who
made the models generate such output by their prompts and guid-
ance, the other perspective gives the ownership of these products
to model owners who created these generative models or to the
models themselves [261].

5.4.2 | Rules and Regulations

Although the debate on generative AI ownership has not con-
cluded, generative AI is being used more daily. Thus, it needs
some regulation to decide who is responsible for and who owns
the products generated by AI. Based on Federal Register guide-
line [262], the work generated by AI, using only one prompt by
the human user, is unprotected. At the same time, if it is a product
of interaction between the human and machine where a human

makes some modification, selection, or arrangement on the AI
product, it is protected by copyright law. Regulations in the EU
and UK take a different side toward AI-generated product own-
ership: a product can be subject to copyright if it is “the author’s
own intellectual creation.” According to Copyright Designs and
Patents Act 1988 (CDPA) [263], since computer programs can-
not be considered as the owner of their product, “the person by
whom the arrangements necessary for the creation of the work
are undertaken” is known as the author of AI products. As can be
seen from different viewpoints of regulations toward generative
AI ownership, there has yet to be a finalized committed decision.
Some consider AI models as an extension of their human users,
and the human owns their products; others take model owners as
the creators of the model’s products, and the last group considers
joint ownership between creators and the model owners. Since
the legal landscape around AI ownership is still evolving, a long
way exists to achieve commitment.

But what are generative AI’s economic and social impacts apart
from the ownership of AI products? Based on AI ACT, when prod-
ucts like images, voice, art, etc., are generated by AI and pub-
lished, it should be exposed that they are AI-generated, especially
when they resemble existing persons, places, or events [264].
Otherwise, AI-generated products can easily deceive and manip-
ulate people in various political, social, and cultural domains.
Malicious use of AI to defame or create popularity for specific
individuals or groups is another important concern regarding
the use of Generative AI. In this regard, the AI Act added an
account for general-purpose AI that “may lead to discriminatory
outcomes and the exclusion of certain groups.” Product manu-
facturers or fashion designers can utilize AI-generated content
to promote their products without hiring specialized individuals.
In this regard, another issue that arises is the economic impact
of using generative AI. Despite the significant concerns raised
about generative AI’s impact on the future of jobs by enabling
enterprises to use AI instead of their human forces, the economic
consequences of its use and the possibility of further economic
inequality due to AI utilization exist. Since launching and utiliz-
ing generative AI requires high-level hardware capabilities and
software knowledge, equal access to it is impossible for all coun-
tries and all individuals within a society. This can significantly
increase social and economic inequality between developing and
developed countries and between organizations and individuals
with financial and informational resources and those without
them. The lack of consistent regulation for generative AI added
to the concerns about the harms unregulated AI can bring to soci-
ety [265] has resulted in an open letter [266] initiated by Future
for Life and signed by more than 3000 people in the technology
industry, asking for a six-month pause on giant AI experiments by
all companies until sufficient policies are made and enforced. On
the other hand, since the AI Act is forcing more strict regulations
for using generative AI, some European companies claim that it
may “jeopardize technological sovereignty” and signed an open
letter [267] asking the EU to reconsider its plans to let European
companies participate in the advancement of AI.

6 | Environmental Impact

While machine learning algorithms are not inherently bad for
the climate and environment, their implementation can have
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certain implications that need to be considered [268–270]. One
significant factor is the high energy consumption associated
with training and running machine learning models, particularly
when GPUs (Graphics Processing Units) are used for accelerated
computation. From an environmental viewpoint, the following
aspects have to be considered.

6.1 | Energy Consumption and Carbon
Emissions

Machine learning algorithms, particularly deep learning models,
require extensive computational resources for training [268]. This
process involves performing numerous complex calculations on
large datasets. GPUs are commonly used for their parallel pro-
cessing capabilities, which accelerate the training process. How-
ever, GPUs are power-hungry devices that consume substantial
amounts of electricity. The energy consumption of AI algorithms
is a significant concern due to the scale at which these algorithms
are deployed. The study by Strubell et al. [271] discovered that
the greenhouse gas emissions produced from some of the NLP
algorithms were comparable to those from 300 flights traveling
between New York and San Francisco. Training state-of-the-art
models can take weeks or even months, consuming a substan-
tial amount of energy during that time. The energy consumption
is directly proportional to the size and complexity of the model
and the amount of data being processed. As machine learning
applications become more prevalent across industries, the collec-
tive energy consumption associated with training and running
increases [272].

6.2 | Carbon Emissions

Machine learning algorithms’ energy consumption directly
impacts carbon emissions [273–275], as most electricity world-
wide still comes from non-renewable sources like coal, natural
gas, and oil. These fossil fuels emit CO2 and other greenhouse
gases when burned for energy, contributing to climate change.
Machine learning algorithms, which heavily use GPUs, often
draw electricity from grids powered by fossil fuel-based plants.
This results in significant carbon emissions from both the direct
power consumption and the indirect emissions from fossil fuel
extraction, production, and transportation needed to meet energy
demands.

6.3 | Electronic Waste and Disposal Challenges

The rapid advancement of machine learning technology neces-
sitates frequent hardware upgrades, including GPUs [276]. As
newer and more powerful GPUs are introduced to the market,
older models become obsolete. This cycle of hardware replace-
ment results in electronic waste generation. The electronic waste
consists of discarded electronic devices, including GPUs, that are
no longer in use. Improper handling and disposal of e-waste pose
significant environmental risks. Electronic devices contain haz-
ardous materials, such as lead, mercury, cadmium, and bromi-
nated flame retardants, which can contaminate the environment
if not managed properly. E-waste often ends up in landfills,
where toxic substances can leach into the soil and water, posing

threats to ecosystems and human health. Managing e-waste from
machine learning infrastructure can be particularly challeng-
ing due to the rapid obsolescence of hardware and the need
for specialized recycling processes to handle complex electronic
components [277].

6.4 | Using AI for Mitigating Climate Change

Contrary to the potential harms of climate change due to AI,
recent research [278–281] has gained interest in harnessing AI
to combat climate change. By leveraging AI’s capabilities, cli-
mate modeling and prediction, optimization of resource manage-
ment and energy efficiency, advancement of renewable energy
solutions, and enhancement of climate change adaptation and
resilience can be improved. The potential of AI to address the
pressing issues of climate change offers a promising path toward
sustainability and a greener future.

6.4.1 | Improved Climate Modeling and Prediction

AI has revolutionized climate modeling by providing powerful
tools to process vast amounts of data and make accurate predic-
tions [282, 283]. Machine learning algorithms can analyze histor-
ical climate data, satellite imagery, and environmental variables,
unveiling complex climate system dynamics. This enhanced
understanding enables us to anticipate extreme weather events,
assess the impacts of human activities on the environment, and
predict long-term climate trends. AI-driven climate modeling
empowers policymakers [278] with valuable insights to develop
effective mitigation and adaptation strategies, fostering a more
sustainable future.

6.4.2 | Optimized Resource Management and Energy
Efficiency

AI has the potential to transform resource management and
enhance energy efficiency across various sectors [284, 285]. By
employing AI, especially RL algorithms, smart grids can ana-
lyze real-time data on energy consumption, demand, and weather
conditions [286, 287]. This analysis facilitates efficient energy dis-
tribution, minimizes wastage, and encourages the integration of
renewable energy sources. Machine learning techniques can opti-
mize energy-intensive processes in industries, transportation sys-
tems, and buildings, resulting in significant energy savings.

6.4.3 | Advancements in Renewable Energy Solutions

Renewable energy plays a pivotal role in mitigating climate
change, and AI can accelerate its adoption. AI algorithms can
optimize the integration and operation of renewable energy sys-
tems [288–290] like solar, wind, and hydroelectric power. By
analyzing geographical and climatic data, AI can identify opti-
mal locations for solar panels and wind turbines, maximizing
energy output. Additionally, AI can aid in developing advanced
materials and technologies for efficient energy storage, address-
ing one of the primary challenges in renewable energy adoption
[291]. By harnessing AI, the shift to a renewable energy-powered
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world reduces dependence on fossil fuels and mitigates climate
change.

In summary, to ensure the responsible use of machine learning
algorithms, stakeholders must consider the environmental impli-
cations and strive to adopt sustainable practices. This can include
optimizing algorithms for efficiency, using energy-efficient hard-
ware, considering renewable energy sources for computing
infrastructure, and promoting responsible e-waste management.
By balancing technological advancements with environmen-
tal considerations, we can potentially harness the benefits
of machine learning while minimizing its potential negative
impacts on the climate and environment.

7 | Conclusion

Over the past few years, AI ethics has reaped significant atten-
tion as the ramifications of AI decisions permeate every layer
of society. We provide a review to understand its intricacies
and challenges through notions of privacy and data protection,
transparency and explainability, fairness and equity, responsibil-
ity, accountability, and regulations and lastly the environmental
impacts. The notions presented in this paper are key ingredients
to building trustworthy AI systems. Nevertheless, there is not yet
a checklist that, when fulfilled, ensures trustworthy AI. The inte-
gration of these principles depends on the problems and the busi-
ness needs. Moreover, certain ethical principles can be conflicting
or open to compromise. For example, prioritizing privacy in a
system might lead to diminished performance and fairness [292,
293], introducing trade-offs among accuracy, fairness, and pri-
vacy. Determining which ethical aspect should take precedence
in such scenarios remains ambiguous. Regulators are expected to
establish a baseline for fairness and privacy, necessitating com-
pliance audits before AI system deployment [294].

Concurrently, constructing fair models introduces privacy con-
cerns related to demographic information [295, 296], or faces
challenges when demographic information is unavailable due to
privacy constraints [297, 298]. While explainability is crucial for
instilling trust, disparities in the quality of explanations [299] and
the risk of “washing” [43] persist.

Assessments of advancements in building models robust to
attacks predominantly focus on accuracy, though other principles
such as fairness are also vulnerable to attacks [300].

Conversely, promoting accountability in companies, with clear
consequences for individuals involved in the AI lifecycle when
unexpected outcomes arise, could instill fear of professional
repercussions and potentially stifle innovation. Therefore, it is
imperative to formulate policies that strike a balance between fos-
tering innovation and ensuring accountability [228, 236]. Despite
these challenges requiring considerable attention, an expanding
body of work is dedicated to addressing them [301–305].

Its interdisciplinary scope and emphasis on actionable insights
make it a valuable resource for researchers, developers, and
policymakers alike. Still, several open challenges remain, such
as reconciling ethical trade-offs, operationalizing fairness with-
out compromising privacy, and developing globally inclusive

governance frameworks. Future research should focus on cre-
ating standardized evaluation metrics, scalable mitigation tech-
niques, and participatory design processes to ensure responsible
and reproducible AI across diverse contexts.

To sum up, while this paper investigates the interdisciplinary
scope of AI Ethics from classical machine learning to foun-
dation models, it highlights open challenges, including ethical
trade-offs, the need for a global, inclusive regulatory and gover-
nance framework, and the environmental impact of AI.

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated
or analysed during the current study.

Endnotes
1 Differentially private stochastic gradient descent.
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99. K. Kobylińska, T. Orłowski, M. Adamek, and P. Biecek, “Explainable
Machine Learning for Lung Cancer Screening Models,” Applied Sciences
12, no. 4 (2022): 1926.

100. J. Adeoye, L.-W. Zheng, P. Thomson, S.-W. Choi, and Y.-X. Su,
“Explainable Ensemble Learning Model Improves Identification of Can-
didates for Oral Cancer Screening,” Oral Oncology 136, no. 106 (2023):
278.

101. M. Idrees and A. Sohail, “Explainable Machine Learning of the
Breast Cancer Staging for Designing Smart Biomarker Sensors,” Sensors
International 3, no. 100 (2022): 202.

102. M. Sobhan and A. M. Mondal, “Explainable Machine Learning to
Identify Patient-Specific Biomarkers for Lung Cancer,” in 2022 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM)
(IEEE, 2022), 3152–3159.

103. P. Bracke, A. Datta, C. Jung, and S. Sen, “Machine Learning Explain-
ability in Finance: An Application to Default Risk Analysis,” Bank of
England Working Paper (2019).

104. A. G. Hoepner, D. McMillan, A. Vivian, and C. Wese Simen, “Signif-
icance, Relevance and Explainability in the Machine Learning Age: An
Econometrics and Financial Data Science Perspective,” European Journal
of Finance 27, no. 1–2 (2021): 1–7.

105. W. Li, “Transparency and Explainability in Financial Data Science”
(PhD thesis, NTNU) (2021).

106. M. Rizinski, H. Peshov, K. Mishev, L. T. Chitkushev, I. Vodenska,
and D. Trajanov, “Ethically Responsible Machine Learning in Fintech,”
IEEE Access 10 (2022): 97531–97554.

107. M. Espinosa Zarlenga, P. Barbiero, G. Ciravegna, et al., “Con-
cept Embedding Models: Beyond the Accuracy-Explainability
Trade-Off,” Advances in Neural Information Processing Systems 35
(2022): 21400–21413.

108. N. Ameen, A. Tarhini, A. Reppel, and A. Anand, “Customer Experi-
ences in the Age of Artificial Intelligence,” Computers in Human Behavior
114, no. 106 (2021): 548.

109. Y. Xu, C.-H. Shieh, P. van Esch, and I.-L. Ling, “AI Customer Ser-
vice: Task Complexity, Problem-Solving Ability, and Usage Intention,”
Australasian Marketing Journal 28, no. 4 (2020): 189–199.

110. C. Maree and C. W. Omlin, “Can Interpretable Reinforcement Learn-
ing Manage Prosperity Your Way?,” AI 3, no. 2 (2022): 526–537.

111. R. Sahal, S. H. Alsamhi, and K. N. Brown, “Personal Digital Twin: A
Close Look Into the Present and a Step Towards the Future of Personalised
Healthcare Industry,” Sensors 22, no. 15 (2022): 5918.

112. D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the Game of
Go With Deep Neural Networks and Tree Search,” Nature 529, no. 7587
(2016): 484–489.

113. S. Burton, I. Habli, T. Lawton, J. McDermid, P. Morgan, and Z. Porter,
“Mind the Gaps: Assuring the Safety of Autonomous Systems From an
Engineering, Ethical, and Legal Perspective,” Artificial Intelligence 279,
no. 103 (2020): 201, https://doi.org/10.1016/j.artint.2019.103201.

114. R. Hoffman, G. Klein, S. T. Mueller, M. Jalaeian, and C. Tate, “The
Stakeholder Playbook for Explaining AI Systems,” PsyArXiv Preprint
(2021), https://osf.io/9pqez.

115. A. Mamalakis, E. A. Barnes, and I. Ebert-Uphoff, “Investigating the
Fidelity of Explainable Artificial Intelligence Methods for Applications of
Convolutional Neural Networks in Geoscience,” Artificial Intelligence for
the Earth Systems 1, no. 4 (2022): e220012.

116. A. Papenmeier, G. Englebienne, and C. Seifert, “The Role of Causal-
ity in Explainable Artificial Intelligence,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 15, no. 2 (2019): e70015.

117. V. Pillai and H. Pirsiavash, “Explainable Models With Consistent
Interpretations,” Proceedings of the AAAI Conference on Artificial Intel-
ligence 35 (2021): 2431–2439.

118. G. Carloni, A. Berti, and S. Colantonio, “The Role of Causality in
Explainable Artificial Intelligence,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 15, no. 2 (2019): e70015.

119. S. Anjomshoae, K. Främling, and A. Najjar, “Explanations of
Black-Box Model Predictions by Contextual Importance and Utility,” in
Explainable, Transparent Autonomous Agents and Multi-Agent Systems:
First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada,
May 13–14, 2019, Revised Selected Papers 1 (Springer, 2019), 95–109.

120. Q. V. Liao and K. R. Varshney, “Human-Centered Explainable AI
(xAI): From Algorithms to User Experiences,” arXiv Preprint (2021).
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