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 a b s t r a c t

This paper presents an effective methodology for the automatic calibration of Manning’s roughness coefficients, 
which are crucial parameters for modeling shallow free-surface flows. Traditionally determined through empir-
ical methods, these coefficients are subject to significant variability, making their determination challenging, 
especially in flow areas with complex bathymetry. The conventional trial-and-error approach, widely used to 
select these coefficients, is often tedious and time-consuming, particularly in applications constrained by time 
and data availability. The proposed methodology aims to determine the optimal values of Manning’s coeffi-
cients distributed over the flow domain while minimizing global discrepancies between simulations and field 
measurements. The calibration approach is formulated as an inverse optimization problem and addressed using 
metaheuristic optimization algorithms such as the Genetic Algorithm or Particle Swarm Optimization, com-
bined with an ensemble model of deep neural networks. The database for training the neural networks is ob-
tained using a newly developed finite volume-based shallow-water equations solver, parallelized on multiple 
GPUs, to generate large datasets of solutions for machine learning purposes. The performance of this approach 
is evaluated through various flow scenarios. Compared to conventional techniques, this methodology stands 
out for its simplicity, computational efficiency, and robustness. Additionally, Hybrid Particle Swarm Optimiza-
tion (HPSO) proves to be particularly effective, notably for its speed. The developed codes are available at: 
https://github.com/ETS-GRANIT/CuteFlow.

1.  Introduction

The prediction of free-surface flows, especially during high discharge 
periods, is crucial for developing effective water resource management 
policies and flood prevention strategies. Accurate predictions rely on 
computational models that simulate the behavior of free-surface flows. 
Over the years, numerous high-fidelity computational codes have been 
developed to model river flows by solving shallow-water equations 
(SWEs). Among the various parameters required for this modeling, Man-
ning’s roughness coefficient is particularly important for accurate pre-
diction.

Generally denoted in the SWEs by the variable 𝑛, Manning’s coeffi-
cient is an empirical parameter that allows hydraulic engineers to char-
acterize the effect of bed topography roughness on river hydrodynam-
ics. This coefficient varies considerably depending on factors such as 
river geomorphology and flow conditions [1,2]. This variability compli-
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cates its selection and can significantly impact the prediction accuracy 
of numerical models, leading to discrepancies between simulated and 
field-measured data.

Several approaches to identifying Manning’s coefficients have been 
developed to improve simulation accuracy and ensure reliable forecasts. 
In [3], these approaches are categorized into three groups: identifi-
cation through measurements, estimation of values, and value adjust-
ment. The first category, which is very costly, involves indirect identi-
fication of Manning’s coefficients in water bodies based on field mea-
surements. To mitigate the time and resource costs associated with 
this approach, alternative procedures have been developed. Estimation 
methods, such as visual comparison with reference sections and the use 
of reference tables, have been adopted to facilitate this identification 
(Chow (1959); Henderson (1966); Barnes (1967); Urquhart (1975)). In 
1967, Barnes identified the roughness characteristics of natural channels 
and provided photographs as well as typical river cross-sections with
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\begin {equation}\label {DNN1} a_{j}^{(k)} = \sigma (z_{j}^{(k)}), \quad \forall j \in \{1,\dots ,n_k\},\end {equation}


\begin {equation}\label {DNN2} z_{j}^{(k)} = \sum _{i = 1}^{n_{k-1}} w_{ji}^{(k)}a_{i}^{(k-1)} + b_{j}^{(k)}, \quad \forall j \in \{1,\dots ,n_k\},\end {equation}
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\begin {equation}\textbf {a}^{(k)} = \sigma (\textbf {z}^{(k)}), \label {Xeqn8-8}\end {equation}


\begin {equation}\textbf {z}^{(k)} = \textbf {W}^{(k)}\textbf {z}^{(k-1)} + \textbf {b}^{(k)}, \label {Xeqn9-9}\end {equation}
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\begin {equation}\textbf {z}^{(out)} = \textbf {W}^{(out)}\textbf {z}^{(L)} + \textbf {b}^{(out)}, \label {Xeqn10-10}\end {equation}
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\begin {equation}\textbf {Y}^{(out)} = \phi (\textbf {z}^{(out)}). \label {Xeqn11-11}\end {equation}
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\begin {equation}\textbf {Y}_{ens}^{(out)} = \frac {1}{p}\sum _{i = 1}^{p} \textbf {Y}_{i}^{(out)} \label {Xeqn12-12}\end {equation}
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\begin {equation}{g}_{best} = {\min } ({p}_{i}^{k}) \label {Xeqn15-15}\end {equation}


$c_1$


$c_2$


$1.5$


$\bf {n_0}$


$1^{-8}$


$\textbf {Y}_{ens}^{(out)}$


$\textbf {Y}^{(obs)}$


$\bf {n ^*} \in \mathbb {R}^m$


$\bf {n^*}$


\begin {equation}{f}^{obj}(\bf {n}) = \frac {1}{N_p}\sum _{i = 1}^{N_p}(\textbf {Y}_{ens}^{(out)} - \textbf {Y}^{(obs)})^2, \label {Xeqn16-16}\end {equation}
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associated values of Manning’s coefficients 𝑛. These photographs served 
as reference sources, allowing modelers to select appropriate values for 
this empirical parameter in their models. However, due to the diversity 
in river morphology, these values cannot be directly transferred solely 
based on photographs and visual comparisons. Therefore, various em-
pirical formulations have been proposed for more practical applications 
[4]; Lane and Carlson (1953); Meyer-Peter and Muller (1948). Cowan 
(1956) proposed a formulation based on a detailed analysis of the effects 
of shape factors influencing roughness, formulating the coefficient 𝑛 as 
an algebraic sum of these factors. While useful, these formulations have 
limitations due to their variation across sites and inadequacy for unsta-
ble flows. The third approach category, based on optimization search 
methods, has emerged to reduce uncertainty and enable the modeling 
of complex large-scale flow problems. It includes two methods: the tradi-
tional trial-and-error method, which is subjective and time-consuming 
[5–7], and methods based on numerical optimization. These methods 
combine hydrodynamic simulation models and optimization algorithms 
to reduce discrepancies between measured and predicted values of hy-
draulic variables at specified observation locations by adjusting Man-
ning coefficients. Identifying Manning coefficients then becomes an in-
verse optimization problem to determine the optimal parameter 𝑛∗ that 
minimizes the objective function, 𝐿, such that:
𝐿(𝑛∗) = min

𝑛∈𝐼
||Ψ(𝑛) − 𝑧||2 (1)

where 𝑛 is constrained to belong to an interval of realistic values 𝐼 =
[𝑛min, 𝑛max], Ψ(𝑛) is the predicted hydrodynamic variable of interest (i.e. 
water level or velocity), 𝑧 is the field-measured value, and || ⋅ || is the 
norm in the observation space [8].

The literature on parameter identification methods through opti-
mization is highly diversified. Two main approaches for identifying 
roughness coefficients have been followed: gradient-based search meth-
ods [1,8–12] and metaheuristic algorithms [2,13–18]. Gradient-based 
methods rely on finding the optimum by following the gradients of the 
objective function. However, their sensitivity to initial predictions can 
lead to convergence towards local minima, depending on the complex-
ity of the solution space. Additionally, they can be very intrusive, some-
times requiring specific and complex numerical formulations to compute 
the gradient [8]. In contrast, metaheuristic algorithms offer an alterna-
tive by exploring the search space more globally. However, they can be 
sensitive to tuning parameters and do not always guarantee convergence 
to the optimal solution.

More recently, the increasing integration of deep artificial neural 
networks with classical optimization algorithms has opened new per-
spectives in the field of hydraulics. The methodology proposed in this 
article capitalizes on the advantages of both approaches, offering a ro-
bust, efficient, and better-suited solution for managing uncertainties and 
outliers in data. This method proceeds in two phases. First, a numeri-
cal mapping between Manning’s coefficients and hydraulic variables is 
established using a surrogate model, for which a set of high-fidelity so-
lutions are initially obtained using a fast parallel numerical solver. Sub-
sequently, this surrogate model, also called the reduced-order model, is 
integrated into an optimization process where various heuristics, classi-
cal, and hybrid algorithms, such as the Genetic Algorithm (GA & HGA) 
and Particle Swarm Optimization (PSO & HPSO), are used to determine 
the optimal values of Manning coefficients.

The rest of the paper is organized as follows. In Section 2, we start 
by describing our in-house multi-CPU/multi-GPU shallow-water equa-
tions solver, CuteFlow [19–22], which has been used to generate the 
large databases needed for machine learning purposes. The capabilities 
of CuteFlow are crucial to our work, enabling simulations that would 
otherwise be unfeasible. We then describe the methodology of our ap-
proach in Section 3, first presenting the surrogate modeling based on an 
ensemble of deep neural networks, and then the optimization algorithms 
and their features. Next, in Section 4, the applicability of this methodol-
ogy is validated through three benchmark tests. Two of these are based 
on representative simple geometries and bathymetries, while the third is 

conducted on a real portion of a river with complex bathymetry. These 
tests include flow along a divergent channel, a free-surface flow in a 
river with non-submersible piers, and a calibration test on a hypothet-
ical flow in the Mille-Îles River in Quebec. We summarize our findings 
in Section 5, where we also mention a performance test, detailed in an 
appendix.

2.  A high-fidelity parallel solver for the shallow-water equations

The generation and preparation of a sufficiently large database of 
high-fidelity simulation solutions, needed to build a surrogate model (a 
neural network model in our case) of the full-order numerical solver, 
which will be used in the optimization stage, can be a very time-
consuming task and is of10 a major factor in the convergence and qual-
ity of the resulting surrogate. In this section, we start by recalling the 
Shallow-water equations before briefly describing the multi-GPU paral-
lel solver used to generated the large databases needed by the machine 
learning models.

2.1.  Finite volume method for the shallow-water equations

We begin by recalling the two-dimensional Shallow-water equations
𝜕𝐔
𝜕𝑡

+ ∇ ⋅ 𝔽 (𝐔) = S(U), (2)

with

𝐔 =
⎛
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, (3)

in which ℎ is the depth of the water such that ℎ = 𝜂 − 𝑏 where 𝜂 is the 
elevation of the free surface and 𝑏 the bathymetry (see Fig. 1), 𝑢 and 
𝑣 are the components of the depth-averaged velocity along the x and y 
directions, respectively, and 𝑔 is the acceleration of gravity set to 9.81
𝑚∕𝑠2.

On the right-hand side, the source term 𝐒(𝐔) contains both the bathy-
metric and the friction source terms and is written as

S(U) =
⎛
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0
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where 𝑆𝑏𝑥  and 𝑆𝑏𝑦  are the slopes of the bathymetry function 𝑏(𝑥, 𝑦) in 
the 𝑥 and 𝑦 directions, respectively, 𝑆𝑓𝑥  and 𝑆𝑓𝑦  are the friction terms 
in the x and y directions, respectively, and 𝑛 is the Manning roughness 
coefficient. The finite-volume formulation is then found by splitting the 
spatial domain Ω into 𝑁 volumes 𝜔𝑖 such that 

⋃𝑁
𝑖=1 𝜔𝑖 = Ω and 𝜔𝑖 ∩ 𝜔𝑗 =

∅, ∀𝑖 ≠ 𝑗, and by integrating (2) over 𝜔𝑖 to get the discrete form.

|𝜔𝑖|
d𝐔𝑖
d𝑡

+
∑

𝑒∈(𝑖)
𝑙𝑒𝐅𝑖𝑒 = |𝜔𝑖|𝐒𝑖, (5)

where 𝐔𝑖 is the cell-averaged solution vector, (𝑖) is the set of edges of 
the cell 𝑖, 𝑙𝑒 is the length of edge 𝑒, and 𝐅𝑖𝑒 is the discrete flux that passes 
through the edge 𝑒 of cell 𝑖 in the normal direction of the edge 𝐧𝑖𝑒. The 
discrete flux 𝐅𝑖𝑒 is found by solving a one-dimensional Riemann problem 
in the direction 𝐧𝑖𝑒. We use the classical HLLC Riemann solver [24–26] 
to compute the intercell flux. The friction source term contained in the 
right-hand side of 𝐒𝑖 is computed in a semi-implicit manner, see [22]. For 
the bathymetric source term, we use the hydrostatic reconstruction from 
[27] to have a well-balanced discretization. Alternative approaches ex-
ist in the literature, including [28–31], which achieve high-order accu-
racy while preserving equilibrium states in finite-volume shallow water 
solvers. The second-order extension is performed in a fully discrete man-
ner using the MUSCL-Hancock procedure with limited reconstructed 
polynomials as presented in [21].
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Fig. 1. Description of the variables adapted from [23].

2.2.  Multi-GPU parallel solver

To accelerate the computations, we leverage a hybrid MPI/CUDA 
implementation to utilize multiple GPUs on the computer clusters. The 
development of this parallel solver has been described in previous pa-
pers, refer to [20,21,32] and we only recall the key aspects hereafter. 
The computational domain is divided into subdomains using the METIS 
library [33], and a single MPI process that controls its own dedicated 
GPU is used to compute the solution on each subdomain. Because the 
solution vector is stored inside the GPU’s memory, we use a CUDA-aware
version of OpenMPI [34] to minimize CPU-GPU memory exchanges and 
improve communication efficiency, as demonstrated in [21]. The parti-
tioned subdomains are also renumbered to minimize slower internode 
communications and benefit from faster intranode communications. In 
order to improve file handling, a method using the Hierarchical Data 
Format (HDF) through the use of the CFD General Notation System 
(CGNS) library [35] was developed in [20] in order to store the entire 
domain decomposition including the overlap information and the solu-
tion data inside a single CGNS file. We finally leverage the array jobs
from the Slurm workload manager on our computer clusters to launch 
multiple simulations simultaneously. In this manner, we can generate 
solution databases in just a few hours of real-time. This process was 
used in [36] and is also used here.

3.  Methodology

The calibration methodology outlined in this paper involves two 
main stages: the development of a surrogate model for the high-
performance computing code and the calibration of Manning’s coeffi-
cients using numerical optimization algorithms.

3.1.  Surrogate modeling

Surrogate models are simplified mathematical and computational 
frameworks that replicate the input-output relationships among param-
eters within a complex high-fidelity model. In the realm of numerical 
simulations, these models play a crucial role in swiftly predicting out-
puts for new, unseen input values without necessitating the full original 
computational model. In this study, deep neural networks (DNNs) are 
used to build our surrogate model in place of the high-fidelity solver. 
To mitigate the uncertainties associated with neural network approxi-
mations, this surrogate model is based on an ensemble of DNNs.

3.1.1.  Deep neural networks
Deep neural networks are a generalization of artificial neural net-

works (ANNs), inspired by the intricate workings of the human brain. 
At the core of an ANN lies the neuron, also known as a node. Neurons 
receive input signals from other neurons or external sources, undergo 
computations on these inputs, and generate an output signal. Neurons 

are organized into layers, forming a hierarchical structure, and are in-
terconnected in a feed-forward manner. The initial and final layers are 
called the input and output layers, respectively, while those in between 
are termed hidden layers. The diagram in Fig. 2 below provides a visual 
representation of a single-layer artificial neural network.
DNNs are characterized by multiple hidden layers. The output response 
of a DNN is computed through a process known as forward propagation, 
wherein input data progresses through the network layer by layer, un-
dergoing computations at each stage. Values from each layer are trans-
mitted to nodes in successive hidden layers by being multiplied by spe-
cific weights. Ultimately, the final output is derived from the output 
layer after passing through all the hidden layers. The new value in each 
node is determined by
𝑎(𝑘)𝑗 = 𝜎(𝑧(𝑘)𝑗 ), ∀𝑗 ∈ {1,… , 𝑛𝑘}, (6)

with

𝑧(𝑘)𝑗 =
𝑛𝑘−1
∑

𝑖=1
𝑤(𝑘)
𝑗𝑖 𝑎

(𝑘−1)
𝑖 + 𝑏(𝑘)𝑗 , ∀𝑗 ∈ {1,… , 𝑛𝑘}, (7)

where

• 𝑘 represents the layer index and 𝑛𝑘 the size of the activation vector 
𝐚𝐤,

• 𝑎(𝑘)𝑗  is the activation unit of the node 𝑗,
• 𝑤(𝑘)

𝑗𝑖  are the weight parameters associated with each node 𝑖 whose 
state is given by 𝑎(𝑘−1)𝑖  with 𝑎(0)𝑖 = 𝑥(𝑖𝑛)𝑖 ,

• 𝑧(𝑘)𝑗  is the net input value at node 𝑗,
• 𝜎(⋅) is the activation function that helps to introduce the non-
linearity and has to be derivable. The ReLU function and hyperbolic 
tangent are the most widely used activation functions for the hid-
den layers, while the linear function is used for the output layer in 
regression problems.

The number of nodes in the input and output layers is equal to the num-
ber of input and output variables, respectively. Eqs. (6) and (7) can be 
rewritten in the following vector relationship:
a(𝑘) = 𝜎(z(𝑘)), (8)

with

z(𝑘) =W(𝑘)z(𝑘−1) + b(𝑘), (9)

where

• z(𝑘) is the net input vector of the kth layer,
• W(𝑘) is the weight matrix connecting layer 𝑘 − 1 and 𝑘,
• b(𝑘) is the bias vector (composed of one bias unit per hidden node).

In the same way, the output layer is calculated by the relationship below, 
in which 𝐿 represents the number of hidden layers:
z(𝑜𝑢𝑡) =W(𝑜𝑢𝑡)z(𝐿) + b(𝑜𝑢𝑡), (10)
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Fig. 2. Illustration of a single layer feed-forward ANN.

Fig. 3. Example of a four-layer deep neural network used in our study.

which is then passed to the activation function 𝜙 of the output layer 
(usually linear) to calculate the model response as follows:

Y(𝑜𝑢𝑡) = 𝜙(z(𝑜𝑢𝑡)). (11)

In this study, after experimenting with several architectures, neural 
networks with four hidden layers were considered. Each neural network 
is developed using a dataset of high-fidelity flow solutions correspond-
ing to a sample of Manning’s coefficients generated randomly within an 
interval of realistic values. More precisely, the flow domain is subdi-
vided into 𝑚 zones, where each zone 𝑖 potentially has a distinct Man-
ning’s value 𝑛𝑖 (𝑖 = 1, ., 𝑚) to be identified, constrained to 𝑛min ≤ 𝑛𝑖 ≤
𝑛max. A vector of Manning’s coefficients is denoted by 𝐧 = (𝑛1,… , 𝑛𝑚)
and constitutes an example of the input parameters to the neural net-
works. A dataset of Manning’s vectors is generated randomly (for in-
stance, using a uniform distribution and a sampling algorithm, such as 
Sobol’s [37]). The flow solver is then used to compute the correspond-
ing flow solutions. The output dataset is constructed by extracting the 
hydraulic variables of interest (water level or velocity) at the location 
points where measurements are taken.
Fig. 3 shows an example of a four-layer deep neural network. In this 
configuration, the input layer consists of 𝑚 = 5 neurons, corresponding 
to the number of distinct Manning’s zones, while the output layer en-
compasses 𝑡 = 82 nodes, representing the hydraulic variable of interest 
at specified locations in the domain. The neural network takes Man-
ning’s roughness vectors as parameters, passes them through the hidden 

layer, and predicts the hydraulic variables. The selection of the number 
of hidden layers and the number of neurons within each layer was re-
fined through several tests guided by the observation of validation and 
test errors. To determine the weights and bias parameters, the network 
undergoes training on the dataset to minimize the loss (error) function, 
formulated as a mean square error [38]. In this process, 70% of the 
data was allocated for training the neural network, 15% was reserved 
for model validation, and the remaining 15% was used to test the effi-
ciency of the neural model. To build our neural network model, we used 
Matlab’s Deep Learning Toolbox User’s Guide [39].

3.1.2.  Ensemble of models
The integration of multiple predictions from various neural network 

models has proven to be an effective strategy for enhancing performance 
over a single network [40]. Known as ensemble modeling in the field 
of machine learning, this approach involves merging predictions from 
multiple models to generate a more reliable final prediction. With each 
model associated with a prediction error, the objective of ensemble mod-
eling is to reduce this error by independently training several networks, 
fed with the same data, and then combining their results. When handling 
datasets, different configurations of neural networks can be obtained by 
adjusting various parameters, such as the number of layers, the number 
of neurons per layer, and the learning optimization algorithm.A simple 
yet effective method involves utilizing multiple random initial weights 
[36,38,41]. Given 𝑝 (typically between 5 and 12) neural networks, the 
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prediction of the ensemble model is characterized by the Gaussian prob-
ability distribution with the mean Y(𝑜𝑢𝑡)

𝑒𝑛𝑠 , such that:

Y(𝑜𝑢𝑡)
𝑒𝑛𝑠 = 1

𝑝

𝑝
∑

𝑖=1
Y(𝑜𝑢𝑡)
𝑖 (12)

with Y(𝑜𝑢𝑡)
𝑖  the response vector generated by the 𝑖𝑡ℎ network. In our 

study, ensemble models were constructed by merging 10 distinct neural 
networks, each created with randomly varying weight initializations.

3.1.3.  Dataset preparation
The first step in high-fidelity modeling involves creating an appro-

priate data sample. In this work, samples of Manning’s coefficients of 
size 𝑁 were generated from Sobol sequences. Each example in the sam-
ple consists of a vector (𝑚-tuples) which is subsequently utilized to solve 
the shallow-water equations using the high-fidelity solver. The results of 
interest are extracted to serve as the output data for the neural network 
training and the construction of the ensemble surrogate model. Finally, 
optimization algorithms use this surrogate model for the calibration pro-
cess, i.e., to determine the optimal values of the Manning coefficients 
by minimizing the objective function. Algorithm 1 summarizes the vari-
ous steps of the proposed dataset preparation and Manning’s roughness 
coefficients’ calibration process.

Algorithm 1 General algorithm.
1. Stage 1: Generate a dataset of 𝑁 high fidelity solutions

(a) Generate a sample of 𝑁 Manning’s vectors 
𝐧 ∶ (𝐧𝟏,𝐧𝟐,… ,𝐧𝐍).

(b) For each sample, run the flow solver.
(c) Extract from the 𝑁 solutions the set of flow variables 

(water, height, velocity, etc.) of interest, denoted as 𝚿 =
(𝜓1, 𝜓2,… , 𝜓𝑀 ), at 𝑀 predefined locations: (𝐱𝟏, 𝐱𝟐,… , 𝐱𝐌).

2. Stage 2: Construct the surrogate model
(a) Build a neural network architecture to approximate the 

mapping 𝐧 → 𝚿.
(b) Train the network 𝑝 times with different initializations us-

ing 𝐧 as input and 𝚿 as output.
(c) Get the 𝑝 predictions Y(𝑜𝑢𝑡)

𝑖 .
(d) Compute the ensemble prediction Y(𝑜𝑢𝑡)

𝑒𝑛𝑠 = 1
𝑝
∑𝑝
𝑖=1 Y

(𝑜𝑢𝑡)
𝑖 .

3. Stage 3: Optimization using surrogate model
(a) Define the objective function (Eq. 18) as the discrepancy 

between the surrogate model prediction and reference/ob-
served data.

(b) Choose and configure an optimization algorithm (e.g., GA, 
PSO, or hybrid with fmincon), including population size, 
iteration limit, and convergence criteria.

(c) Run the optimization algorithm.
At each iteration, the optimizer:

• generates a candidate Manning’s vector 𝐧.
• Feeds 𝐧 into the surrogate model.
• Computes the predicted hydrological response 𝚿.
• Calculates the objective function value based on pre-
diction error.

(d) Repeat until the termination criteria of the optimizer are 
met (e.g., convergence tolerance or maximum number of 
iterations).

(e) Get the calibrated Manning’s coefficient vector 𝐧∗ that 
minimizes the objective under the defined constraints 
(Eq. 19).

3.2.  Optimization algorithms

To calibrate Manning’s roughness coefficients, we studied two op-
timization algorithms and their hybrid forms: the Genetic Algorithm 

(GA) and the Particle Swarm Optimization (PSO) algorithm. These al-
gorithms, implemented using Matlab’s optimization toolbox, are briefly 
described in the following subsections.

3.2.1.  Genetic algorithm (GA)
Genetic Algorithms (GAs) are heuristic and adaptive search algo-

rithms inspired by natural selection. They were first proposed by John 
Holland (Holland, J.H. (1992), as cited in [41]), and they rely on the 
principle of Darwinian evolution by natural selection. GAs mimic the 
process of human genetics, where hereditary traits are passed from par-
ent to offspring, with the basic unit being the gene. Classified as a guided 
random search method, GAs are among the most prevalent optimization 
techniques, effectively leveraging randomness to address problems with 
robustness.

A GA consists of five key components working together iteratively, 
as illustrated in Fig. 4: initialization, selection, crossover, mutation, and 
termination. Initially, a population (𝐍𝐩) of individuals, typically en-
coded in binary strings, is randomly generated while adhering to bound-
ary constraints. This population serves as the first generation and un-
dergoes an eligibility test, in which a fitness function evaluates each 
individual. Individuals with higher scores are selected and undergo var-
ious transformations, including crossover and mutation, to produce im-
proved offspring. Once these transformations are completed, the vari-
able values are computed by decoding the binary strings and then eval-
uated using the fitness function. The process repeats until a termina-
tion criterion is reached, which could be reaching a maximum number 
of iterations, finding a satisfactory solution, or exceeding a predefined 
computational cost.

As in natural processes, the crossover step involves exchanging a se-
quence between two selected chromosomes in the population based on 
a crossover probability (𝑃𝑐𝑟) to then generate two descendants. Muta-
tion, on the other hand, randomly alters specific parts of an individ-
ual, with the mutation frequency determined by the mutation proba-
bility (𝑃𝑚𝑢𝑡). In this work, the genetic algorithm is implemented using 
functions integrated into the MATLAB software toolbox. MATLAB’s GA 
supports various data types for representing individuals, including bi-
nary strings and floating-point (double) values. In our implementation,

Fig. 4. Genetic algorithm flowchart.
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Table 1 
Implementation parameters of the genetic algorithm.
    Population size (𝑁𝑝)  25
  Maximum number of generations  50
  Selection method  Roulette wheel
  Crossover probability (𝑃𝑐𝑟)  0.8
  Mutation probability (𝑃𝑚𝑢)  0.1
  Tolerance 1 × 10−6

Table 2 
Implementation parameters of the particle swarm optimization.
 Swarm size (𝑁𝑝)  25
 Maximum number of iterations  50
 Best personal position weighting coefficient (𝑐1)  1.5
 Best-known position of the global swarm weighting coefficient (𝑐2)  1.5
 Function tolerance 1 × 10−6

instead of the classical binary encoding, individuals are represented us-
ing decimal (double precision) values. This choice allows for a more ac-
curate representation of real-valued parameters, such as Manning’s coef-
ficient, by avoiding quantization errors associated with binary encoding. 
Moreover, MATLAB is optimized for operations on floating-point arrays, 
so this representation improves computational efficiency by eliminat-
ing the need for binary-to-decimal conversions and enabling faster, na-
tive vectorized processing. The parameters considered in our study are 
grouped in Table 1 below:

3.2.2.  Particle swarm optimisation (PSO)
The Particle Swarm Optimization (PSO) technique is a method in-

spired by the social behavior of groups of animals or insects, such as 
bird flocks or fish schools. Initially proposed in 1995 by Eberhart and 
Kennedy [41], this approach also serves as an evolutionary method to 
solve global optimization problems. It begins by generating a random 
population, where each particle represents a candidate solution - in our 
case, a set of Manning’s roughness coefficients - and then iteratively 
searches for the optimal solution by evaluating each solution’s quality 
using a fitness function. Unlike genetic algorithms, PSO is distinguished 
by the simplicity of its rules and the absence of transformation steps 
such as crossover or mutation. In this animal behavior-based approach, 
each individual in the crowd is termed a particle and is characterized by 
its position and velocity in a multidimensional search space. The posi-
tion corresponds to specific values of the calibrated parameter (i.e., the 
Manning’s coefficient), and the velocity governs how these values are 
ajusted from one iteration to the next.After evaluating each solution’s 
fitness using the surrogate model, which rapidly estimates the hydrolog-
ical response (such as water depth or flow velocity) for each candidate 
Manning’s coefficient, the positions and velocities of each particle in the 
global search space are updated based on their personal best (𝑝𝑏𝑒𝑠𝑡) and 
the global best (𝑔𝑏𝑒𝑠𝑡) solutions found so far, using the following two 
equations: [42]:
𝑣𝑘+1𝑖 = 𝑣𝑘𝑖 + 𝑐1𝑟1(𝑝

𝑘
𝑖 − 𝑥

𝑘
𝑖 ) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥

𝑘
𝑖 ), (13)

𝑥𝑘+1𝑖 = 𝑥𝑘𝑖 + 𝑣
𝑘+1
𝑖 , (14)

where 𝑣𝑘+1𝑖  is the new velocity of particle 𝑖 at time 𝑘 + 1, 𝑥𝑘𝑖  is the former 
position of particle 𝑖, 𝑟1 and 𝑟2 are random variables taken in [0, 1], 𝑐1
and 𝑐2 are weighting coefficients for the best personal position 𝑝𝑘𝑖  and 
the best-known position of the global swarm 𝑔𝑏𝑒𝑠𝑡, respectively, such that
𝑔𝑏𝑒𝑠𝑡 = min(𝑝𝑘𝑖 ) (15)

For our study, the values of 𝑐1 and 𝑐2 have been fixed both at 1.5. Fig. 5 
shows the flowchart of the particle swarm optimization algorithm and 
Table 2 summarizes the implementation parameters.

Fig. 5. Particle swarm optimization flowchart.

3.3.  Hybrid algorithms

In optimization, hybridization involves combining two or more al-
gorithms that solve the same problem, capitalizing on their complemen-
tary strengths and mitigating individual weaknesses. Metaheuristic al-
gorithms, such as GA and PSO, are useful optimization methods for ex-
ploring a search space but often face challenges in exploitation and in 
converging to the optimal solution. These methods may require numer-
ous function evaluations to achieve convergence. To accelerate this pro-
cess, a hybrid approach has been developed by integrating a gradient-
based method, specifically Matlab’s fmincon function, into these evolu-
tionary algorithms. This synergistic combination leverages the ability 
of metaheuristics to navigate complex, high-dimensional spaces while 
utilizing the efficiency and precision of gradient-based optimization for 
local searches.

There are various methods to integrate a local search strategy into 
optimization heuristics like GA or PSO [43]. The approach proposed in 
this study is outlined in two steps below:

1. Exploration phase: GA or PSO is used to explore the search space 
and identify an initial set of potential solutions (e.g., Manning vec-
tor 𝐧𝟎). The metaheuristic search is intentionally limited to a small 
number of iterations and a small population size to allow for quick 
exploration without incurring excessive computational cost. In this 
study, the number of iterations and the population size are set to 5 
and 10, respectively.

2. Explotation phase: The best candidate solution found in the first 
phase is then passed to the fmincon function as a starting point for 
local optimization. fmincon is a gradient-based algorithm that by de-
fault, uses the interior-point method; an approach well-suited for 
constrained nonlinear problems and effective in handling both small, 
dense problems and large, sparse ones. The algorithm estimates gra-
dients using finite differences and is capable of converging reliably 
even from distant starting points; however, providing a good initial 
guess, as done here, significantly improves its efficiency and con-
vergence rate. In this study, fmincon refines the candidate solution 
by minimizing the objective function until it meets the termination 
criteria. This criterion is defined by a convergence threshold (e.g. 
changes in the objective function below a tolerance of 1−8).
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Fig. 6. Flow in a divergent canal mesh, segmented into 5 subdomains.

Fig. 7. Flow in a divergent canal: location of data measurement stations.

Fig. 8. Numerical results of the preliminary flow study: Froude number- divergent channel for (𝑛min = 0.01; 𝑛max = 0.05, (𝐹𝑟 < 1)).

Fig. 9. Numerical results of the preliminary flow study: Water depth - diverging channel for (𝑛min = 0.01; 𝑛max = 0.05).
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Fig. 10. Flow in a divergent channel. Convergence history for the GA, HGA, PSO and HPSO.

Fig. 11. Different measurement line location for the second transversal line.

Fig. 12. Normalized error on Manning parameters with respect to measurement points location.

This hybrid optimization framework enhances both speed and precision, 
resulting in faster convergence, more accurate solutions, and improved 
robustness across various optimization problems.

3.3.1.  Objective function
Considering the predicted variables Y(𝑜𝑢𝑡)

𝑒𝑛𝑠  and the observed variables 
Y(𝑜𝑏𝑠), the objective function can be defined as a mean squared error 
function (MSE). The solution to the calibration problem is a real vector 
𝐧∗ ∈ ℝ𝐦, and each component of this vector is constrained to an appro-

priate interval. Optimization aims at determining the 𝐧∗ that minimizes 
the objective function:

𝑓 𝑜𝑏𝑗 (𝐧) = 𝟏
𝐍𝐩

𝐍𝐩
∑

𝐢=𝟏
(Y(𝐨𝐮𝐭)

𝐞𝐧𝐬 − Y(𝐨𝐛𝐬))𝟐, (16)

under constraints

𝑛𝑖 ∈ [0.01, 0.05] ∀ 1 ≤ 𝑖 ≤ 𝑚, (17)
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Table 3 
Flow in a divergent channel: Calibration parameters.
    Number of mesh elements  832
  Number of mesh nodes  4893
  Number of zones  5
  Sample size  256
  Ensemble model size  10
  Number of measurement stations  108
  Coefficient of variation CV  5%

Table 4 
Flow in a divergent channel: Roughness coefficients in each zone.
    Zones  Bathymetry  Search space  Ground truth
 𝑛1  Concrete [1.26 − 1.54] × 10−2 1.40 × 10−2

 𝑛2  Sand [1.53 − 1.87] × 10−2 1.70 × 10−2

 𝑛3  Rock cuts [2.26 − 2.75] × 10−2 2.50 × 10−2

 𝑛4  Cobble [3.16 − 3.84] × 10−2 3.50 × 10−2

 𝑛5  Gravel [2.53 − 3.07] × 10−2 2.80 × 10−2

with 𝑁𝑝 representing the number of observation points, Y(𝑜𝑢𝑡)
𝑒𝑛𝑠  the vector 

of values predicted by the surrogate model, and Y(𝑜𝑏𝑠) the values of the 
ground solution.

4.  Numerical experiments

Three benchmark tests are proposed to evaluate the performance and 
robustness of the developed methodology and algorithms for the effi-
cient calibration of Manning’s coefficients, specifically within the con-
text of sub-critical flows. For each test, we generate a ground-truth flow 
solution in a domain divided into 𝑚 sub-domains, each with assigned 
ground-truth values 𝑛𝑖. The dataset for training the ensemble model is 
generated as described in Section 3.1.3. The input Manning’s samples 
were generated using Sobol’s algorithm, assuming a uniform distribu-
tion around the reference values and a coefficient of variation (𝐶𝑉 ) set 
at 5% or 10%. The optimization algorithms use the established Man-
ning’s intervals for their search domains and start the iterative process 
from arbitrary values.

For each of the given reference tests, results were obtained from an 
ensemble model based on the water depth at the measurement points. 
Simulations were carried out using 4 GPUs on the GRAHAM cluster of 
the Canadian Digital Research Alliance, where Cuteflow was hosted. 
Simulation results were then visualized and extracted using ParaView, 
version 5.11.2. In addition, neural networks and optimization algo-
rithms were developed using Matlab libraries and built-in functions. 
Finally, the calibration tests were performed on a computer equipped 
with an Intel(R) Xeon(R) E3-1225 v5 @ 3.30GHz CPU, a 9.9 GB NVIDIA 
Quadro K420 graphics card, and 16 GB of RAM.

4.1.  Flow in a divergent channel

The aim is to evaluate the proposed calibration methodology on a 
simple, variably-shaped domain. The selected channel, previously stud-
ied in [8], spans 16m, comprising a 6-meter long, 1-meter wide narrow 
section and a 10-meter long, 2-meter wide broader section. The bottom 
slope is 10−3, with an exit depth of 0.2m. The domain is discretized 
using a structured triangular mesh of 832 elements and 489 nodes, as 
shown in Fig. 6.

Before calibrating Manning coefficients, a crucial preliminary step is 
to thoroughly analyze the flow model to establish a robust knowledge 
base, including understanding the flow hydrodynamics and identifying 
areas for data comparison. In this study, these analyses considered ex-
treme values (min and max) of the Manning roughness coefficient. The 
results for the divergent channel case, shown in Figs. 8 and 9, provide 

Table 5 
Flow in a divergent channel: Results from the Genetic algorithm, Hybrid 
genetic algorithm, Particle swarm optimization and Hybrid particle swarm
optimization.
    Zones 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5

  Ground truth (×10−2) 1.40 1.70 2.50 3.50 2.80

 Genetic Algorithm (GA)
  Predictions (×10−2) 1.533 1.650 2.432 3.516 2.747
  Relative error (%) 9.50 2, 94 2.72 0.46 1.9

 Hybrid Genetic Algorithm (HGA)
  Predictions (×10−2) 1.406 1.686 2.486 3.505 2.806
  Relative error (%) 0.43 0.82 0.56 0.14 0.21

 Particle Swarm Optimization (PSO)
  Predictions (×10−2) 1.396 1.619 2.459 3.478 2.921
  Relative error (%) 0.29 4.76 1.64 0.63 4.32

 Hybrid Particle Swarm Optimization (HPSO)
  Predictions (×10−2) 1.407 1.698 2.488 3.505 2.805
  Relative error (%) 0.5 0.12 0.48 0.14 0.18

Fig. 13. Flow in a river with piers. Mesh decomposition divided into 4 subdo-
mains; locations of data measurement stations.

essential insights for effective calibration and help to identify suitable 
measurement locations (Fig. 7).

As input parameters and starting values for this test, a flow rate of 
0.50 m3∕s is imposed at the inlet, and a water level of ℎ = 0.2 m is fixed 
at the exit. Slip conditions are applied along the solid walls. This test 
considers five different parameter zones presented in Table 4. Observa-
tions are taken at 108 points as shown in Fig. 7), and the coefficient of 
variation is fixed at 𝐶𝑉 = 5%. The calibration parameters used in this 
test are recorded in Table 3.
Table 5 presents the values of the Manning coefficients obtained from 
the calibration. The results are remarkably satisfactory, with maximum 
relative errors below 10%. Fig. 10 compares the convergence of the four 
different algorithms considered (GA, HGA, PSO, and HPSO) for a fixed 
maximum number of iterations. The graph confirms the observations 
made from Table 5 and reveals that the HPSO achieves the highest 
precision, while the GA and the HGA show a noticeable gap in precision 
compared to the top-performing HPSO. This gap is due to the limited 
number of iterations and would be much less for a larger number 
of iterations. Furthermore, it is important to observe that the hybrid 
algorithms demonstrate faster convergence with higher precision than 
their basic forms. These results demonstrate the efficiency and inherent 
speed of the proposed hybrid methodology for accurately identifying 
Manning’s coefficients. Additionally, it is essential to emphasize the 
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Fig. 14. Numerical results of the preliminary flow study: Froude number and water depth - river with piers (𝑛min = 0.01; 𝑛max = 0.05).

importance of selecting appropriate measurement stations during
calibration. Hydraulic engineers must have a thorough understanding 
of the watercourse under study and make informed decisions regarding 
field measurement points.

4.2.  Sensitivity analysis to measurement points location

In Section 4.1, we emphasized the importance of carefully selecting 
measurement stations during the calibration process. Here, we extend 
this analysis by investigating the sensitivity of the calibrated results to 
the location measurement points. In hydrology, such testing is often part 
of a measurement campaign, where the position of observation lines 
across the riverbed is systematically varied to capture different aspects 
of the flow field.

To illustrate this approach, we revisit the divergent channel case 
study. All measurement lines remain fixed at their initial locations ex-
cept for the second line, which is progressively displaced within the 
channel.The initial position of this second line (shown in blue in Fig. 7) 
is progressively shifted to four alternative positions denoted as posi-
tions 1–4 in Fig. 11. For each configuration, the model is recalibrated 
using the updated set of observation points, and the robustness of the 
calibration is assessed by comparing the resulting Manning’s roughness 
parameters.

Table 6 
Flow in a River with non-submersible piers: 
calibration parameters.
    Number of mesh elements  1408
  Number of mesh nodes  767
  Number of zones  4
  Sample size  256
  Ensemble model size  10
  Number of measurement stations  28
  Coefficient of variation CV  5%

Table 7 
Flow in a River with non-submersible piers: Roughness coefficients 
of each zone.
    Zones  Bathymetry  Search space  Ground truth
 𝑛1  Fine gravel [2.16 − 2.64] × 10−2 2.40 × 10−2

 𝑛2  Gravel [3.16 − 3.84] × 10−2 3.50 × 10−2

 𝑛3  Sand [1.80 − 2.20] × 10−2 2.00 × 10−2

 𝑛4  Cobble [2.71 − 3.29] × 10−2 3.00 × 10−2

Fig. 12 shows the normalized error values obtained for the calibrated 
Manning parameters as a function of the displaced line position. This 
provides direct insight into how the spatial distribution of measurement 
stations affects the stability of the calibration.
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Fig. 15. Flow in a River with non-submersible piers. Convergence history for the GA, HGA, PSO and HPSO.

Fig. 16. The domain of the Mille_îles river overlaid on a satellite image. Adapted from [19].

The results reveal that not all sections contribute equally to a robust 
calibration. Positions 1 (upstream) and 4 (downstream) yield parame-
ters closer to the ground truth, whereas intermediate positions, partic-
ularly after the expansion zone, lead to larger deviations. This suggests 
that upstream and downstream sections capture the global momentum 
distribution and boundary-layer development more effectively, while 
midstream sections are dominated by local flow features that provide 
less representative information for Manning’s parameter estimation.

These findings reinforce the importance of strategically placing mea-
surement stations to ensure robust parameter calibration in river flow 
modeling.

4.3.  Flow in a river with non-submersible piers

The second benchmark test was conducted in a river domain with 
pier obstacles, modeled after a similar setup examined by [8]. This ex-
perimental scenario aims to assess the methodology’s robustness in a 
complex geometry context, mimicking real-world conditions while re-
maining relatively simple to replicate.

The channel measures 28.5 m by 20 m, with a constant depth of 4
m and two 4-meter diameter cylindrical obstacles. Fig. 13 shows the 
domain divided into 4 subdomains, with 28 strategically positioned 
measurement points. These points were chosen both before and after 

the obstacles, as well as around them, following the preliminary study
detailed in Fig. 14. The domain’s unstructured mesh comprises 767 
nodes and 1408 elements.

A flow rate of 62 m3∕s is imposed at the inlet, with the water level 
fixed at ℎ = 0.0 m at the outlet. The flow simulation was initialized from 
rest and a horizontal plane, and then computed over six min. Boundary 
conditions remain consistent with those of the previous reference test. 
Table 6 summarizes the initial calibration parameters, while Table 7 
presents the Manning’s coefficients of the four different zones consid-
ered.

The results obtained after calibration are shown in Table 8, which 
displays the ground truth and calibrated distributions of Manning’s co-
efficients. The results reveal a high level of satisfaction, with relative 
errors of less than 10% overall. Fig. 15 illustrates the convergence his-
tory using the four algorithms. It can be observed, similar to the pre-
vious case, that the HPSO converges rapidly and with greater precision 
compared to the others, followed by PSO.

4.4.  Flow in the mille Îles river

The last benchmark test was conducted in the domain of the Mille-
Îles River, a 42-kilometer watercourse situated in the Montreal region, 
integral to the Saint Lawrence River hydrological system. Known for 

Computers and Fluids 304 (2026) 106884 

11 



I.G. Metcheka Kengne et al.

Table 8 
Flow in a River with non-submersible piers: Results from the Ge-
netic algorithm, Hybrid genetic algorithm, Particle swarm opti-
mization and the Hybrid particle swarm optimization.
    Zones 𝑛1 𝑛2 𝑛3 𝑛4  
  Ground truth (×10−2) 2.40 3.50 2.00 3.00  

 Genetic Algorithm (GA)
  Predictions (×10−2) 2.254 3.518 1.956 3.012 
  Relative error (%) 6.08 0.51 2.20 0.40  

 Hybrid Genetic Algorithm (HGA)
  Predictions (×10−2) 2.384 3.506 2.016 2.992 
  Relative error (%) 0.67 0.17 0.8 0.27  

 Particle Swarm Optimization (PSO)
  Predictions (×10−2) 2.306 3.511 1.966 3.015 
  Relative error (%) 3.92 0.31 1.70 0.50  

 Hybrid Particle Swarm Optimization (HPSO)
  Predictions (×10−2) 2.395 3.508 1.998 3.007 
  Relative error (%) 0.21 0.23 0.10 0.23  

Fig. 17. Mille_îles River channel divided into 3 subdomains.

its scenic islands, rich biodiversity, and recreational opportunities, this 
natural environment serves as the real-world setting to assess the ro-
bustness of the proposed calibration methodology. Fig. 16 provides an 
overview of the simulation domain overlaid on a satellite image from 
Google Earth. The domain is oriented with the y-axis pointing north-
ward, featuring an inlet at the bottom left and an outlet at the top right. 
For this test, utilizing real bathymetry data, the area is subdivided into 
four subdomains, as depicted in Fig. 17. The focus is on the riverbed 
flow, characterized by depths greater than 0.1m, with each subdomain 
assigned a specific Manning’s coefficient: zones 1, 2, and 3.

A preliminary study, shown in Fig. 18a, identified key zones suitable 
for placing measurement points. Flow parameters, particularly water 
depths, were gathered and compared at 420 points distributed along 
three strategically positioned lines within the channel. Fig. 18b depicts 
the locations of these observation lines on the numerical model.

Fig. 18. (a) Numerical results of the preliminary flow study: Streamlines with 
momentum-based coloring - Mille_Îles River, (b) Location of Data Measurements 
stations on Mille_îles River.

Table 9 
Flow in the Mille Îles River: calibration parameters.
    Number of mesh elements  481930
  Number of mesh nodes  243,161
  Number of zones  3
  Sample size  128
  Ensemble model size  10
  Number of measurement stations  420
  Coefficient of variation CV  5% & 10%

Table 10 
Flow in the Mille Îles River: Roughness coefficients and search space in 
each zone.
    Zones  Bathymetry Search space 

(CV=10%)
Search space 
(CV=5%)

 Ground truth 

 𝑛1  Sand [1.77 − 2.63] ×
10−2

[1.98 − 2.42] ×
10−2

2.20 × 10−2  

 𝑛2  Gravel [2.25 − 3.35] ×
10−2

[2.53 − 3.07] ×
10−2

2.80 × 10−2  

 𝑛3  Rock cuts [2.09 − 3.11] ×
10−2

[1.26 − 1.54] ×
10−2

2.60 × 10−2  

For this test, two scenarios were considered: firstly, with a coefficient 
of variation set at 5%, consistent with previous cases; and secondly, 
with a coefficient of variation set at 10%. Given the dense mesh (over 
400,000 elements), the number of samples was fixed at 128. Tables 9 
and 10 show the conditions and parameters used for the calibration.
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Fig. 19. Flow in the Mille Îles River. Convergence history for the GA, HGA, PSO and HPSO with 𝐶𝑉 = 10%.

Fig. 20. Flow in the Mille Îles River. Convergence history for the GA, HGA, PSO and HPSO with 𝐶𝑉 = 5%.

Table 11 
Flow in the Mille Iles River: Results from the Genetic algorithm, the Hybrid ge-
netic algorithm, Particle swarm optimization, and the Hybrid particle swarm 
optimization.
    CV=10%  CV=5%
  Zones 𝑛1 𝑛2 𝑛3 𝑛1 𝑛2 𝑛3  
  Ground truth (×10−2) 2.20 2.80 2.60 2.20 2.80 2.60  

 Genetic Algorithm (GA)
  Predictions (×10−2) 2.171 3.057 2.605 2.177 2.923 2.569 
  Relative error (%) 1.32 9.18 0.19 1.04 4.39 1.19  

 Hybrid Genetic Algorithm (HGA)
  Predictions (×10−2) 2.204 2.749 2.591 2.177 2.796 2.589 
  Relative error (%) 0.18 1.82 0.35 1.04 0.14 0.38  

 Particle Swarm Optimization (PSO)
  Predictions (×10−2) 2.215 2.498 2.571 2.159 2.826 2.586 
  Relative error (%) 0.68 3.92 1.12 1.86 0.92 0.54  

 Hybrid Particle Swarm Optimization (HPSO)
  Predictions (×10−2) 2.203 2.762 2.591 2.183 2.790 2.593 
  Relative error (%) 0.16 1.36 0.35 0.77 0.36 0.27  

The results are illustrated in Table 11. Again, the results were highly 
satisfactory in both scenarios. The convergence of the Manning’s coef-
ficient was obtained after a few iterations and with great precision for 

the HPSO (see Figs. 19 and 20). For large search spaces, PSO and the 
GA have larger relative errors, but the hybrid forms of both algorithms 
offer good performance.

5.  Conclusion

In this paper, we introduced a novel methodology for calibrating 
Manning’s friction coefficients in shallow water flows by combining op-
timization algorithms with an ensemble model of deep neural networks. 
The proposed approach involves minimizing a cost function that quan-
tifies the discrepancies between the numerical model solution and the 
given data. By leveraging deep neural networks and ensemble model-
ing, we constructed a surrogate model to replace the high-fidelity solver, 
thereby dramatically reducing the computational cost and convergence 
issues associated with optimization when using high-fidelity solvers di-
rectly. Four different optimization algorithms were then employed to 
calibrate the friction coefficients distributed over the riverbed.

Numerical tests on hypothetical and real bathymetry setups demon-
strated that the developed methodology is stable and converges with 
high precision within a short time interval. This attests to the ro-
bustness of the methodology and its applicability to real flow sce-
narios, particularly in contexts with limited time or data. The pro-
posed techniques produced calibrated Manning values with relatively 
small deviations from the ground truth values. Despite general satis-
faction with the performance of all the proposed algorithms, HPSO 
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stood out due to its superior precision and efficiency. Additionally, a 
performance test of the in-house multi-CPU/multi-GPU shallow-water 
equations high-fidelity solver, CuteFlow, was conducted to evaluate 
its capabilities. A detailed description of this test is provided in the
Appendix.

The proposed methodology leverages advanced computational 
methodologies, including a multi-GPU solver to build a large dataset 
of high-fidelity solutions, a surrogate model based on neural net-
works for fast inference, and hybrid algorithms for robust and ac-
curate optimization. This combination of techniques not only en-
hances the efficiency and accuracy of the calibration process but 
also demonstrates the potential for solving a wide range of in-
verse problems. Through extensive numerical experiments and a real-
world application, we demonstrated the effectiveness of the proposed
methodology.

Overall, this methodology represents a significant advancement 
in the field of hydraulic modeling and optimization. Its ability to 
integrate state-of-the-art computational techniques ensures superior 
performance and robustness. The versatility of this approach makes 
it applicable to various domains, offering a powerful tool for re-
searchers and practitioners facing complex inverse problems. Future 
work will further broaden the scope of applications by reformulat-
ing the inverse problem within a probabilistic framework, thereby 
explicitly incorporating field uncertainties. We believe this direction 
will provide the additional level of realism required for many prac-
tical scenarios, reinforcing the methodology’s potential across diverse
domains.
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Appendix A.  Evaluation of the parallel high calculation code 
CuteFlow

The aim of this section is to evaluate the CUTEFLOW code and 
demonstrate its functionality through a practical example. Extensive 
performance tests have been conducted in previous studies [19] and 
[21]. In this study, we use a numerical test to simulate a complex dam 
break scenario. This type of test, commonly employed in laboratory 
tsunami modeling, provides a concrete illustration of the code’s oper-
ational capabilities.

Specifically, we replicate an experimental complex dam break flow 
case over a dry bed using CUTEFLOW. This experiment was originally 
conducted at the Hydraulics Laboratory of the University of Parma by 
[44] and was later studied by [45].

A.1.  Experimental setup

Fig. A.1 shows the top view configuration of the experimental sys-
tem. The experimental setup consists of a rectangular container with 
a constant bathymetry, measuring 260 cm in length and 120 cm in 
width. This container is divided into two sections: one serving as a 
reservoir and the other as a dry area representing the flood zone. A 
barrier acting as a dam is positioned in the middle of the dividing
wall.

Fig. A.1. Dimensions (in cm) of the experimental complex dam-break experi-
mental system. Taken from [45].

The water level in the reservoir is 0.13m. Removing the barrier will 
cause water to flow into the flood zone, where a non-submersible obsta-
cle creates disturbances in the flow field.

A.2.  Initial conditions

This type of flow scenario is treated by CuteFlow as a Riemann one-
dimensional problem. Initial values selected for this test are as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

h = 
{

0.13 𝑖𝑓 𝑥 > 0.8𝑚
0.00 𝑖𝑓 𝑥 < 0.8𝑚

𝑢̄ = 0 [𝑚∕𝑠]
𝑣̄ = 0 [𝑚∕𝑠]

The simulation domain was discretized using unstructured triangular el-
ements generated by the GMSH software (https://gmsh.info/) and sub-
sequently imported into the computational code. For this study, the 
Manning roughness coefficient was fixed at 0.007 𝑠.𝑚−1∕3, as per the 
calibration by [44]. The Courant number 𝐶𝐹𝐿, ensuring numerical sta-
bility, was set to 0.2. To evaluate the computational efficiency of the 
CuteFlow code, various tests were conducted by varying the mesh ele-
ment sizes from 5𝑚𝑚 to 0.5𝑚𝑚. Table A.1 presents the mesh sizes used in 
these tests, while A.2 illustrates an example of the coarse and unstruc-
tured mesh of the domain, comprising 3456 elements.

Table A.1 
Caption.
    Test 1  Test 2  Test 3  Test 4
  Mesh type  Coarse  Medium  Fine  benchmark solution
  Element size (mm)  5  2.5  1.25  0.5
  Number of mesh elements  287,195  1,137,841  4,530,572  15690153
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Fig. A.2. Coarse mesh of 3456 elements for the case of a complex dam break.

A.3.  Results

We presented the solutions obtained at different time steps over the 
different mesh types, using two of the numerical schemes integrated into 
CuteFlow: the 1storder HLLC scheme and the 2nd order MUSCL scheme. 
Solutions were generated considering a Riemann problem at the dam.

Fig. A.3. Plan snapshots, from left to right, of experimental [44] and numerical (1st- and 2nd-order) water levels at different times (𝑡 = 0.4𝑠 ; 𝑡 = 0.75𝑠 ; 𝑡 = 1.45𝑠 ; 
𝑡 = 2.16𝑠 and 𝑡 = 2.86𝑠) on a 287,000 elements - mesh.

Table A.2 
Complex dam break test run time (Ts=10s).
    Test 1  Test 2  Test 3  Test 4
  Mesh type  Coarse  Medium  Fine  benchmark solution
  Element size (mm)  5  2.5  1.25  0.5
  Number of mesh elements  287,195  1,137,841  4,530,572  15690153
 Recorded Run Time
 Computational resources  4GPUs - 8GB  16GPUs - 32GB
  1st order - HLLC  24s  3min30s  9min26s  /
  2nd order - MUSCL  30s  3min37s  16min14s  15h27min15s

A.3.1.  Comparison to experimental data
We assess CuteFlow’s capability to simulate a real-world complex 

flow scenario. Fig. A.3 illustrates the comparison between experimental 
and numerical results of water height for two numerical schemes. It 
presents multiple snapshots of the water height in plan view. At the 
initial time (𝑡 = 0.4𝑠), the initial water flow is observed following the 
barrier opening. Discrepancies between experimental and numerical 
results may stem from the three-dimensional effect of water falling 
at the opening during the initial phase, a feature not accurately 
captured by CuteFlow’s two-dimensional Saint-Venant equation solver.
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Fig. A.4. Velocity field plot of numerical results with coloring based on Froude 
number, at instants (𝑡 = 1.45𝑠 and 𝑡 = 2.86𝑠).

Fig. A.6. Water level evolution along the viewing line.

Fig. A.5. Solution visualization polyline - case of a complex dam break.

Furthermore, contrary to real-world conditions, the model assumes a 
spontaneous gate break.

By 𝑡 = 0, 75𝑠, a shock wave emerges due to the collision between wa-
ter and a non-submersible obstacle. While various numerical models of 
CuteFlow successfully reproduce the hydraulic jump observed in experi-
mental snapshots, indicating the transition from supercritical (𝐹𝑟 > 1) to 
subcritical flow (𝐹𝑟 < 1), the chaotic effects observed in laboratory ex-
periments appear subdued in the numerical model. At subsequent times 
(𝑡 = 1.45𝑠 ; 𝑡 = 2.16𝑠 and 𝑡 = 2.86𝑠), the numerical model accurately repli-
cates upstream propagation of the hydraulic jump and the emergence 
of new shock waves resulting from flow interactions with side walls.
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Fig. A.7. evolution of 𝑢̄ velocity component along the viewing line.

Fig. A.4 depicts a velocity field plot with color-coded Froude num-
bers ranging from 0 (white) to 25 (dark red), delineated by 𝐹𝑟 = 1 (yel-
low). These visualizations identify flow transitions, from supercritical to 
subcritical, characterized by hydraulic jump development.

CuteFlow’s different numerical schemes effectively simulate the 
complex dam break phenomenon, with exceptions noted in areas dom-
inated by three-dimensional effects.

A.3.2.  Comparison between the numerical and reference solutions
The reference solution, used as a benchmark, is computed on an 

adapted mesh consisting of 1,569,0153 elements using a second-order 
numerical scheme. Here, we compare the water level and velocity results 
between the reference solution and the first- and second-order solutions 
on a medium mesh. The solutions are plotted along the line defined in 
Fig. A.5.

Fig. A.8 compares the momentum magnitudes obtained using the 
first-order HLLC and second-order MUSCL methods on a 15-million-
element mesh serving as the reference. This illustration provides insight 
into the accuracy and robustness of the different methods.

The obtained results are illustrated in Figs. A.6 and A.7.
The primary distinction between the two schemes is observed in 

Zone A, near the dam break, where a hydraulic jump occurs. The propa-
gation of the shock wave is more pronounced and clear with the second-
order MUSCL method. Additionally, fine vortex structures in the water 
flow movement within Zone A are also noticeable with this second-order 
scheme. In Zone B, the appearance of a reddish area, absent in the first-
order scheme, demonstrates the increased accuracy of the second-order 
method. Moreover, this method better reproduces flow regime transition 
zones and the propagation of shock waves following various impacts 
with the walls.

In its pursuit of closer alignment with experimental results, Cute-
flow, leveraging its multi-GPU version, also offers the ability to fur-
ther refine the mesh for significantly enhanced precision within a rea-
sonable time frame, even with modest computational resources. How-
ever, it should be noted that calculation time largely depends on the 
level of mesh refinement. Table A.2 summarizes the computational re-
sources used for these simulations, along with the recorded execution
times.
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Fig. A.8. Comparison of the first-order HLLC and second-order MUSCL methods on a 15-million-element mesh for a complex dam break scenario, computed using 
16 GPUs.
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