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ABSTRACT

Urban Heat Islands (UHIs) pose a significant global urban challenge, exacerbating heat stress, increasing energy
demand, and negatively impacting public health. This review critically analyzes the application of machine
learning (ML) strategies for UHI mitigation through an integrated lens encompassing sensing, prediction, opti-
mization, control, and adaptive management. This review starts with a comprehensive evaluation of various data
acquisition techniques, such as remote sensing, mobile surveys, and ground-based sensor networks, along with
their respective strengths and limitations. Subsequently, the review explores advanced data processing meth-
odologies leveraging ML algorithms for the analysis and interpretation of complex UHI datasets, enabling ac-
curate forecasting and timely interventions. ML-driven prediction and forecasting techniques for UHI are then
presented, underscoring the importance of precise and timely predictions for effective mitigation. Further
investigation delves into the optimization of UHI mitigation strategies, examining how ML can enhance the
effectiveness of approaches such as green infrastructure, cool materials, urban water bodies, and urban planning
and design. Finally, the integration of ML insights into flexible adaptation strategies and urban planning pro-
cesses is discussed, highlighting the necessity for long-term, climate-responsive urban development. The review
concludes by assessing the transformative potential and inherent limitations of ML approaches in this domain,
outlining critical challenges and promising future research directions for advancing UHI mitigation within
rapidly evolving urban environments and under changing climate conditions.

1. Introduction

The escalating convergence of rapid urbanization and global climate
change is intensifying the Urban Heat Island (UHI) effect, presenting a
critical and multifaceted challenge for cities worldwide (Leal Filho et al.,
2018; Aghamohammadi et al., 2021; Kim & Brown, 2021). The UHI is
characterized by significantly higher temperatures in urban areas
compared with their rural surroundings, a phenomenon driven by
altered land cover and increased anthropogenic heat emissions (Jusuf
et al., 2019; Nwakaire et al., 2020; Dijoo, 2021). This temperature
disparity, often more pronounced during nighttime, leads to increased
energy demand, compromised air quality, adverse human health out-
comes, and reduced thermal comfort (Heaviside et al., 2017). Conse-
quently, as cities continue to grow and climate change intensifies, a
comprehensive understanding of the UHI effect and the development of
effective mitigation approaches are crucial for building sustainable and
resilient urban futures (Lee et al., 2014; Larsen, 2015; Irfeey et al., 2023;
Han et al., 2023; Rajagopal et al., 2023; Yang et al., 2024).
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Historically, UHI research has been predominantly conducted using
a combination of experimental measurements, field observations, and
computational modeling. These established methodologies have pro-
vided valuable insights, with in situ measurements from sensor networks
and mobile platforms capturing localized thermal variations (Rodriguez
et al., 2020), and high-resolution remote sensing offering synoptic per-
spectives on urban thermal patterns (Zhou et al., 2018; Almeida et al.,
2021). Furthermore, computational fluid dynamics (CFD) models have
been instrumental in simulating complex urban airflow and heat trans-
fer, elucidating the drivers of thermal accumulation in dense urban
environments (Mirzaei & Haghighat, 2010; Silva et al., 2021). More-
over, experimental wind tunnel studies and laboratory experiments have
served to validate these models and deepen the understanding of
microclimatic phenomena (Yan et al., 2022; Zhao et al., 2023). How-
ever, the increasing availability of large and diverse datasets has spurred
the adoption of machine learning (ML) techniques as a transformative
paradigm in UHI research (Ngarambe et al., 2025). In the realm of
environmental science and urban studies, ML has emerged as a powerful
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paradigm for analyzing intricate environmental phenomena and
extracting meaningful patterns from large, diverse datasets in urban
contexts. The inherent complexity of the UHI effect, influenced by a
multitude of interacting factors such as urban morphology, land cover
characteristics, and prevailing meteorological conditions, makes it
particularly amenable to analysis using advanced computational tech-
niques like ML. These approaches leverage advanced analytical tools to
process heterogeneous data from sources like satellite imagery and IoT
sensor networks (Pioppi et al., 2020). ML models, including convolu-
tional neural networks (CNNs), random forests (RF), and support vector
machines (SVMs), are now being employed to predict urban heat pat-
terns and optimize mitigation strategies, offering potentially faster and
more adaptive solutions (Shi et al., 2021b; Zumwald et al., 2021; Du
et al., 2024). The integration of these ML methods with established CFD
models and experimental protocols holds significant promise for
enhancing predictive accuracy, streamlining data processing, and
achieving a more nuanced understanding of urban thermal dynamics.
This synergy not only builds upon the strengths of conventional tech-
niques but also opens new avenues for real-time monitoring, adaptive
control, and informed urban planning, fundamentally reshaping the
strategies for UHI mitigation (Milojevic-Dupont & Creutzig, 2021; Wang
et al., 2022).

Building upon the increasing interest in ML for UHI research, this
review paper presents a comprehensive review of ML strategies across
various UHI applications, highlighting both their transformative po-
tential and inherent limitations. Recognizing that robust data acquisi-
tion is fundamental to the success of ML approaches, the review first
examines diverse data collection techniques, including remote sensing,
mobile testing, and ground-based sensor networks, emphasizing their
relevance and reliability in capturing urban thermal dynamics. Subse-
quently, the paper explores advanced data processing using ML tech-
niques and their crucial role in extracting actionable insights from raw
data. The application of ML for accurate and timely UHI prediction and
forecasting, vital for effective intervention, is then reviewed. This is
followed by a critical examination of ML optimization of UHI mitigation
strategies, encompassing the strategic deployment of cool roofs, the
placement of green infrastructure, improvements in building energy
efficiency, and enhancements to urban ventilation. Furthermore, the
review discusses the role of ML control and monitoring systems in
enabling real-time management and adaptive responses to UHI. Finally,
the integration of ML insights into flexible adaptation strategies and
urban planning frameworks is explored to support long-term, climate-
resilient urban development. By synthesizing existing literature and
identifying key challenges and future research directions, this paper
aims to advance the development of more effective and sustainable UHI
mitigation strategies in the context of a changing climate.

2. Background and methodology

This section provides a concise overview of the UHI phenomenon
and its analysis using ML. It reviews UHI origins, mechanisms, and im-
pacts, and briefly outlines ML’s role in these studies. The methodology,
covering the systematic literature search, selection criteria, and con-
ceptual framework, is also detailed.

2.1. The UHI effect

The UHI effect is broadly characterized by higher temperatures in
urban areas compared to their rural surroundings (Oke, 2011). This
phenomenon is observed in two primary forms: the canopy-layer UHI,
defined as an air-temperature difference between urban and rural sites,
and the Surface Urban Heat Island (SUHI), quantified from land-surface
temperature (LST) retrieved via thermal infrared remote sensing. The
Surface Urban Heat Island Intensity (SUHII) is defined as the urban-
—rural LST difference, (SUHII = LSTpqn — LSTrrq) (Santamouris et al.,
2015). It is crucial to distinguish their typical diurnal patterns: the
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canopy-layer UHI is most pronounced at night under calm, clear con-
ditions due to the slow release of stored heat from urban materials,
whereas SUHI often reaches its maximum intensity during the daytime
when urban surfaces absorb intense solar radiation. Thus, UHI effect is
amplified by numerous factors. First, urban landscapes, with prevalent
impervious surfaces like roads and buildings, have high solar radiation
absorption and thermal storage capacities (Zhao et al., 2018). Second,
limited urban vegetation reduces evapotranspiration, decreasing natural
cooling (Taha, 1997; Ramakreshnan et al., 2018). Third, anthropogenic
heat from dense urban activities, including traffic, industry, and air
conditioning, adds substantial heat (Sailor, 2011). Additionally, urban
geometry, often involving the formation of deep street canyons, can
impede ventilation and trap radiant heat (Rizwan et al., 2008). Finally,
urban air pollution exacerbates UHI by absorbing and re-emitting
longwave radiation (Wu et al., 2024).

2.2. Impacts of the UHI

The UHI intensifies environmental, health, and economic burdens.
On the environmental side, elevated cooling demand increases elec-
tricity consumption, driving higher greenhouse-gas emissions and urban
air pollution (Li et al., 2019). UHI can exacerbate photochemical smog
by promoting ground-level ozone and, through warmer stormwater and
baseflow, degrade receiving-water quality (Mathew et al., 2024). Social
and health impacts include greater risk of heat exhaustion and heat-
stroke, with disproportionate effects on older adults, people with
pre-existing conditions, and communities with limited access to cooling
(Ebi et al., 2021). Thermal discomfort also reduces well-being and labor
productivity (Aznarez et al., 2024). Population exposure is increasingly
assessed with thermal comfort metrics such as Humidex, Wet-Bulb
Globe Temperature (WBGT), Universal Thermal Comfort Index
(UTCI), and Temperature-Humidity Index (THI) to quantify heat stress
during hot spells (Kim et al., 2024). Economically, UHI-driven energy
consumption raises electricity costs for individuals and businesses, and
peak demand can strain energy infrastructure. Additionally, extreme
heat can damage transportation and energy systems, increasing main-
tenance costs. The combined effects of heat-related health issues and
reduced worker productivity can also negatively impact economic
output.

2.3. Background of machine learning

Machine learning (ML), a dynamic branch of artificial intelligence,
develops algorithms to learn patterns and make predictions from data
(Tyagi & Chahal, 2020; Sarker, 2021). Urban studies has seen a signif-
icant transformation with increasing integration of ML techniques in
recent decades (You et al., 2021). Initially reliant on traditional statis-
tical methods and simulation models, urban analysis now widely adopts
ML algorithms, due to the growing availability of large, diverse datasets
and increased computational power (Ghorbany et al., 2024). This shift
acknowledges ML’s capacity to provide novel insights into urban phe-
nomena that conventional approaches may find difficult to obtain.
Specifically, in UHI studies, ML has become a powerful tool to unravel
the complex interplay between urban form, land use, and microclimatic
processes (Bansal & Quan, 2024). The vast data from satellite imagery,
in situ sensors, and simulation outputs enables ML methods to model
spatial and temporal variations in urban temperatures with high
precision.

ML methodology encompasses a sequential process of data collec-
tion, preprocessing, training, evaluation, and hyperparameter tuning.
ML model performance depends on input data quality and quantity. In
UHI research, high-resolution thermal maps, environmental datasets,
and building/surface characteristics are crucial inputs for training al-
gorithms. These trained models predict temperature distributions,
identify high-risk areas, and provide insights for urban planning. ML
methods are categorized into supervised, unsupervised, semi-
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supervised, and reinforcement learning (Fig. 1), each offering distinct
analytical strategies for contemporary UHI studies.

Supervised learning employs labeled datasets for predictive tasks like
regression and classification (Cunningham et al., 2008; Nasteski, 2017).
In UHI research, regression models, such as feed-forward and deep
neural networks, forecast surface temperature variations (Tran et al.,
2024; Zaka et al., 2025). Similarly, classification models like support
vector machines (Suthaharan, 2016) and random forests (Breiman,
2001) segment urban areas by thermal characteristics, identifying heat
islands and cooler islands (Li et al., 2024b; Gonzalez-Collazo et al.,
2024). Unsupervised learning offers alternatives when labeled datasets
are limited (Boccalatte et al., 2023; Naeem et al., 2023). These methods
automatically discern data patterns without predefined labels. Clus-
tering algorithms, like k-means (Hartigan & Wong, 1979), group areas
by thermal characteristics (Chen et al., 2024a). Furthermore, dimen-
sionality reduction techniques, including principal component analysis
(Abdi & Williams, 2010) and autoencoders (Zhai et al., 2018), extract
features from high-dimensional urban datasets, simplifying analyses.

Semi-supervised learning combines supervised and unsupervised
methods, using a small amount of labeled data with a larger pool of
unlabeled data (Van Engelen & Hoos, 2020). This is advantageous in
UHI research, where annotating large datasets is challenging. Various
techniques fall under this category, including self-training (Amini et al.,
2025), where models refine predictions by labeling unlabeled data, and
co-training (Zhou & Li, 2005), which uses multiple models to improve
label accuracy. Graph-based methods propagate labels across networks
of similar data points (Song et al., 2022), while generative models, like
variational autoencoders (Kingma & Welling, 2019) and generative
adversarial networks (Goodfellow et al., 2020), learn data distributions
to create synthetic examples for augmenting labeled data. Reinforce-
ment learning (RL) trains agents to make decisions through environ-
mental interaction, guided by rewards and penalties (Kaelbling et al.,
1996; Sutton & Barto, 1998). In urban planning, RL can develop
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adaptive control strategies for mitigating UHI, such as optimizing green
space or reflective surface placement (Vazquez-Canteli & Nagy, 2019).
RL methods include model-based approaches (Moerland et al., 2023),
which construct environment models for planning future actions, and
model-free approaches (Huang, 2020), which learn policies from inter-
action experiences. These are divided into value-based methods, esti-
mating state rewards (Byeon, 2023); policy-based methods, optimizing
actions (Nachum et al., 2017); and actor-critic methods, integrating
value and policy learning (Grondman et al., 2012).

2.4. Methodology

This review follows a structured literature-search and evidence-
synthesis workflow designed to remain distinct from the background
material. Records were retrieved from Scopus, Web of Science, and IEEE
Xplore using combinations of urban-heat terms (e.g., urban heat island,
surface urban heat island, sensing, prediction/forecasting, optimization,
mitigation, control, adaptation) and machine-learning terms (e.g., ma-
chine learning, physics-informed machine learning, deep learning,
random forest, convolutional neural network), with database-specific
syntax. Studies were eligible for the core synthesis if they directly
applied ML to a UHI question and reported quantitative results. Papers
that were purely conceptual, addressed non-UHI topics, or discussed ML
without a relevant application were excluded from the core but could be
retained for contextual framing. The search yielded approximately 350
records; after deduplication, titles and abstracts were screened and 280
articles proceeded to full-text assessment. Following full-text review,
187 studies met the inclusion criteria and formed the core evidence set
used for the synthesis, with an additional 64 publications retained for
background/context, for a total of 251 cited works. Each core study was
coded to one of the review’s organizing themes, which align with the
conceptual framework in Fig. 2 and structure the synthesis that follows.

The resulting distribution is: Sensing & Data Analysis (n = 52),

L Clustering

Dimensionality
* Reduction

Unsupervised
Learning

Reinforcement
Learning

Model-Based RL
Model-Free RL

-

-
Value-Based RL

Policy-Based RL

Fig. 1. Machine learning categories.
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Prediction & Forecasting (n = 53), Optimization & Control (n = 59), and
Flexible Adaptation (n = 23). These counts are used descriptively to map
research activity across subfields and to guide the narrative emphasis in
Sections 3-6, where representative works are synthesized to charac-
terize datasets and methods, compare performance and limitations, and
identify gaps that motivate future directions. The thematic distribution
is visualized in Fig. 3, which complements the conceptual framework
(Fig. 2) and connects the evidence base to the review’s structure.

3. Machine learning for sensing and data analysis
3.1. Data acquisition techniques

Effective UHI monitoring requires diverse data sources with unique
spatiotemporal resolutions and coverage. A comprehensive under-
standing of UHI is best achieved by integrating data from remote
sensing, mobile measurement campaigns, and ground-based sensor
networks. This integration enhances analysis reliability and facilitates
calibration and validation across platforms.

3.1.1. Remote sensing

Remote sensing is fundamental to SUHI research, providing consis-
tent observations of urban features, especially land-surface temperature
(LST) which serves as a primary proxy for the broader UHI phenomenon
(Azevedo et al., 2016; Fernandes et al., 2023). Satellite observations
offer a broad view of urban areas, capturing LST, land cover, and
vegetation indices. Moderate-resolution sensors (e.g., Landsat) provide
long-term data for trend analysis, while higher-resolution sensors (e.g.,
Sentinel-2) enable detailed mapping (Santra, 2017). For instance,
several studies using MODIS LST data show that urban structures and
materials significantly influence thermal retention (Zhou et al., 2018;
Qiao et al., 2024).

Contemporary satellite platforms also offer multi-spectral capabil-
ities for computing indices like the Normalized Difference Vegetation
Index (NDVI) or the Enhanced Vegetation Index (EVI) and the
Normalized Difference Water Index (NDWI), which are crucial for
assessing factors influencing SUHI intensity (Almeida et al., 2021).
Advanced processing algorithms correct for atmospheric distortions,
cloud masking, and calibrates thermal infrared data to enhance LST
measurement accuracy (Ayanlade & Jegede, 2015). Recent advance-
ments, like geostationary satellites, enable near real-time monitoring of
SUHI dynamics, beneficial for understanding diurnal temperature fluc-
tuations (Hurduc et al., 2024). Combining data from multiple missions,
such as MODIS and Sentinel-2, overcomes individual sensor limitations,
improving spatial detail and temporal frequency in SUHI monitoring.
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Despite these advancements, trade-offs exist between resolution, revisit
times, and sensitivity, necessitating sophisticated data assimilation and
ML techniques to refine UHI assessments (Zhou et al., 2018).

3.1.2. Ground-based sensors

Ground-based sensor networks provide continuous, high-resolution
measurements of essential meteorological parameters (Pathak et al.,
2022; Cheval et al., 2024). Traditional meteorological stations provide
essential data like temperature, humidity, wind speed, and solar radia-
tion for long-term analyses. However, their often sparse distribution can
limit the capture of fine-scale microclimatic variations (Nguyen &
Henebry, 2016). To address this limitation, specialized sensors and
recent technological advancements, including infrared radiometers,
miniaturized energy-efficient sensors, and low-cost IoT networks, are
increasingly deployed (Fauzandi et al., 2021; Xia et al., 2022; Hu &
Uejio, 2024). Despite these advancements, challenges persist in sensor
calibration, data management, and security (Mendez-Astudillo et al.,
2021). Regular recalibration is essential to prevent measurement errors
from drift and interference. Additionally, handling large IoT data vol-
umes while ensuring security and privacy requires standardized
frameworks and strong cybersecurity measures (Malings et al., 2018).

3.1.3. Mobile testing methods

Mobile testing, including vehicle-mounted sensors and drone-based
thermal imaging, dynamically captures urban temperature variations
at high spatial and temporal resolution (Rodriguez et al., 2020; Lee &
Lee, 2024). Vehicle-mounted sensors in mobile transects record tem-
perature fluctuations to identify thermal hotspots (Sun et al., 2019; Yin
etal., 2020). Drones with thermal cameras provide ultra-high-resolution
data at the neighborhood scale, enabling detailed analyses of microen-
vironmental variations (Henn & Peduzzi, 2024; Hu et al., 2024). These
platforms may also carry other sensors for humidity, wind speed, and air
quality, offering a multidimensional perspective on urban climate dy-
namics (Hu et al., 2024) and enabling researchers to assess environ-
mental interactions affecting UHI intensity, guiding urban planning and
public health strategies (Rickens & Tonekaboni, 2023). To manage and
analyze the large volumes of high-resolution imagery from mobile sur-
veys, advanced ML algorithms are increasingly employed (Kim et al.,
2021). Despite their advantages, mobile testing methods face limitations
like restricted drone flight durations, limited spatial coverage, and
intensive computational resources for processing complex datasets
(Kaya & Erener, 2024).

N=251

250 -

[

(=3

(=}
T

100 -

Publications (count)
9
(=]
T

52(27.8%) 53(28.3%) 59 (31.6%)
0
Total Sensing Prediction Optimization
reviewed & & & Adaptation
papers Data analysis Forecasting Control

Fig. 3. Thematic distribution of the reviewed papers.
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3.2. ML-based data analysis

UHI analysis increasingly uses a multi-step ML approach, integrating
and refining diverse datasets like satellite imagery, land cover maps,
ground sensor measurements, and socio-economic data. These are
merged using a geographic information system (GIS) for detailed UHI
maps, capturing macro- and micro-scale temperature variations (Du
et al., 2024). Advanced ML techniques, such as neural and Bayesian
networks, and ensemble methods, are then applied to identify complex
patterns and correlations often missed by traditional statistics (Zhang
et al., 2018; Ghorbany et al., 2024). By automating the processing and
analysis of large, heterogeneous datasets, these methods improve UHI
prediction accuracy and provide insights into relationships between
urban morphology, land use, and thermal dynamics (Liu et al., 2024b),
supporting better urban planning and targeted heat mitigation (Liu
et al., 2021; Eslamirad et al., 2023). ML models also correct bias and
downscale temperature predictions, improving urban heat map resolu-
tion (Blunn et al., 2024).

3.2.1. Data preprocessing

Raw urban environmental data requires preprocessing for reliable
analysis. UHI datasets often have missing values, such as from cloud
obstruction or sensor malfunctions. ML techniques, like K-Nearest
Neighbors (KNN), can impute these missing values (Shi et al., 2021a;
Tanoori et al., 2024). Data cleaning also involves removing noise and
outliers using methods like Gaussian or median filters (Sailaja et al.,
2024). Normalization, scaling data to a common range, is crucial for
many ML algorithms. Specific normalization strategies may be needed
for certain data, like remote sensing imagery (Bhamjee et al., 2023).
Additionally, geometric corrections use ground control points to rectify
spatial distortions in remotely sensed imagery from satellites, Un-
manned Aerial Vehicles (UAVs), and ground sensors (Miniandi et al.,
2025). Radiometric corrections also normalize sensor outputs across
platforms and time, ensuring temperature measurement consistency
(Zhou et al., 2018). These steps create a strong foundation for ML models
to accurately predict and analyze UHI dynamics (Almeida et al., 2021;
Addas, 2023).

3.2.2. Data fusion

Data fusion integrates data from multiple heterogeneous sources for
more comprehensive and accurate information. This approach leverages
diverse data acquisition techniques to create unified, high-resolution
representations of the urban thermal environment by combining data
from sources like satellite imagery, UAV surveys, ground sensors, and
IoT networks (Shen et al., 2016; Shi et al., 2021a; Ezimand et al., 2021;
Miniandi et al., 2025). It addresses challenges related to varying spatial
and temporal resolutions, data formats, and uncertainties. For instance,
satellite-derived LST data can be fused with more accurate ground-based
air temperature measurements.

ML algorithms, including neural and Bayesian networks, are well-
suited for data fusion, learning interrelationships between data sour-
ces to generate more reliable UHI maps and datasets. Specialized data
fusion algorithms, like the extreme learning machine and spatiotem-
poral adaptive data fusion algorithm for temperature mapping (STAFF),
enhance LST retrieval using multi-source data, refining LST maps (Weng
etal., 2014; Bai et al., 2015). Similarly, ensemble methods and Bayesian
networks integrate socio-economic variables with thermal data to reveal
UHI drivers (Addas, 2023). Techniques like ML-adapted Kalman
filtering facilitate real-time updates of fused datasets for continuous
monitoring of urban heat patterns (Acosta et al., 2021). These strategies
improve predictive accuracy and help urban planners design
climate-resilient cities (Wang et al., 2017; Pan et al., 2023).

3.2.3. Feature extraction and data analysis
Feature extraction and data analysis convert processed data into
model-ready predictors and insights for urban heat studies. Feature
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extraction creates input variables (features) from raw data and derived
layers. Common features include vegetation indices (e.g. NDVI), built-
up indices (e.g., NDBI), water indices (e.g., NDWI), land-cover classes,
urban density metrics (e.g., impervious fraction, floor-area ratio),
building height and morphology (plan/frontal-area indices), sky-view-
factor (SVF) proxies, long- and short- wave radiation factors including
surface albedo; emissivity and absorptivity and distance-to-water/green
space. These capture key characteristics of the urban environment that
influence temperature. Beyond hand-crafted variables, ML can learn
features automatically: convolutional/attention networks extract hier-
archical spatial-spectral representations directly from multispectral and
thermal tiles, while dimensionality-reduction models (e.g., PCA or
autoencoders) compress inputs into informative latent embeddings that
can be used alone or concatenated with tabular features.

Advanced ML models then perform data analytics. CNNs classify
urban materials from multispectral and thermal imagery, enabling
detailed urban surface maps to predict temperature distributions
(Johannsen et al., 2024; Mohamed & Zahidi, 2024). For example, CNNs
detect building footprints in satellite imagery to show how urban
morphology impacts heat distribution (Ramani et al., 2024; Li & Stouffs,
2024). Deep learning models also automate the identification of urban
hotspots and cool zones. Time-series analyses further reveal UHI effects
over time (Xiong et al., 2022). Clustering algorithms can also be
employed to classify urban thermal environments (Chen et al., 2024a).
Additionally, statistical and geostatistical methods, like kriging and
spatial regression, interpolate temperature data in areas with sparse
measurements (Wang & Zhang, 2023). GIS remains a central tool in
these efforts, integrating spatial datasets, from temperature readings to
land use patterns, and vegetation indices. By analyzing these layers,
researchers visualize correlations between urban features and thermal
behavior, generating essential heat maps for decision-making and urban
planning (Eslamirad et al., 2023). These analytical processes consider
data and model uncertainties to ensure robust conclusions.

4. Prediction and forecasting of UHI

Accurate prediction and forecasting of UHI intensity are of para-
mount importance for the development and implementation of proac-
tive mitigation and adaptation strategies. The ability to identify the
timing and spatial extent of severe UHI effects enables targeted in-
terventions, such as the activation of public cooling centers, optimiza-
tion of energy consumption, and implementation of adaptive traffic
management plans. However, the prediction of UHI phenomena pre-
sents inherent complexities due to the intricate interactions between
urban morphology, meteorological factors, land cover dynamics, and
anthropogenic activities (Oliveira et al., 2022). Contemporary predic-
tive frameworks increasingly leverage ML methodologies that integrate
diverse datasets, ranging from satellite-derived LST measurements to
socio-economic indicators, to generate detailed and actionable insights
(Fig. 4). The efficacy of these models is contingent not only on the so-
phistication of the algorithms employed but also on the spatial and
temporal fidelity of the input data.

4.1. ML predictive frameworks

ML paradigms have become pivotal tools in the accurate forecasting
of UHI intensities (Ashtiani et al., 2014; Han et al., 2022; Yin et al., 2023;
Wang et al., 2025). These methodologies typically establish functional
relationships between urban features, with LST as a primary target
variable, and a range of environmental determinants. These de-
terminants encompass meteorological factors such as air temperature,
humidity, wind speed, and solar radiation; land cover transformations,
including changes in vegetation, impervious surfaces, and water bodies;
and anthropogenic impacts, such as urban development metrics like
building density, energy consumption, and traffic patterns (Rehman
et al., 2022; Suthar et al., 2024; Tanoori et al., 2024).
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Fig. 4. Machine learning for UHI prediction.

A diverse spectrum of ML and deep learning algorithms has been
employed to model these complex relationships. These include multi-
layer perceptrons (Li et al., 2021), decision trees (DT)
(Samardzi¢-Petrovic et al., 2017; Phiri et al., 2020; Karimi et al., 2021),
random forests (RF) (Li et al., 2021; Suthar et al., 2024), support vector
machines (SVM) (Karimi et al., 2019), XGBoost regression (XGB)
(Madaan et al., 2021; Mohammad et al., 2022; Khanifar & Khade-
malrasoul, 2022), and AdaBoost (Chen et al., 2017). The advent of deep
learning has further refined LST prediction by effectively modeling
intricate nonlinear relationships and leveraging high-dimensional
remote sensing data. CNNs have proven particularly effective in this
domain Li et al. (2024a), while ensemble techniques such as adaptive
boosting further enhance forecasting accuracy (Bhandari et al., 2022; Li
et al., 2022; Pande et al., 2023; Siqi et al., 2023; Tanoori et al., 2024).
These advanced methodologies enable the detection of subtle patterns
and complex correlations that traditional statistical methods might
overlook, ultimately leading to more precise and reliable UHI forecasts.

4.2. Integration of high-resolution data and temporal dynamics

High-resolution remote sensing data (e.g., Landsat, Sentinel, LIDAR)

has markedly improved urban-heat prediction at fine spatial scales,
enabling observation of temperature variations down to individual
buildings (Rodriguez et al., 2020). ML models leverage this detail for
more accurate LST and air temperature predictions. For example,
LiDAR-derived 3D metrics combined with RF accurately predict tem-
perature variations (Voelkel et al., 2016). Consistent with 3D LiDAR
information, recent ML studies show that building height and its vari-
ability are among the most influential predictors of (S)UHI when 3D
morphology is included. This is because incorporating mean building
height (MBH) and height variability (e.g., standard deviation/differ-
ence) substantially improves SUHI/LST modeling over 2D-only land-
scapes (Han, 2023; Yuan et al., 2024; Zhu et al., 2023; He et al., 2025;
Zhou et al., 2022b; Chen et al., 2023b). Explainable-ML analyses (partial
dependence/SHAP) reveal non-linear, scale-dependent responses; that
is, cooling often emerges once low-rise thresholds are exceeded, with
strongest predictability at neighborhood scales (hundreds of meters)
(Han, 2023; He et al., 2025; Chen et al., 2023b). Empirically, low-rise,
high-density blocks tend to warm more, whereas taller or more
height-variable blocks can reduce LST via shading and canyon ventila-
tion, with direction and magnitude varying by season and urban context
(Zeng et al., 2022; Zhou et al., 2022b; Chen et al., 2023b). In practice,
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height/morphology descriptors can be ingested as tabular features
computed from 3D footprints or learned as embeddings from rasterized
3D/DSM tiles via convolution/attention encoders; ensemble models (e.
g., Random Forest, XGBoost) repeatedly rank building height and its
variability among dominant SUHI drivers, particularly in dense cores
(Han, 2023; He et al., 2023; Ding et al., 2025). Model accuracy increases
with data resolution, which enables detection of localized thermal var-
iations crucial for understanding urban structure (Liu et al., 2023; Zhong
et al., 2024). Combining high-resolution LST data with urban feature
details (e.g., green spaces, building materials, street design) significantly
improves prediction accuracy by capturing these fine-scale thermal
variations.

Incorporating temporal dynamics is essential for capturing the
changing nature of urban heat. UHI intensity varies diurnally, season-
ally, and interannually (Das & Ghosh, 2019; Lee et al., 2019; Cureau
et al., 2024). Short-term changes driven by weather can be analyzed
with time-series methods and RNN/LSTM models, while long-term
trends linked to urbanization (Zhou et al., 2024) and climate change
(Eunice Lo et al., 2020) are better captured by models that incorporate
socio-economic drivers and climate projections. Processing
high-resolution spatiotemporal data is computationally intensive (Shi
et al., 2021a); efficient algorithms and optimized data pipelines, often
leveraging high-performance computing (HPC) systems and GPUs, are
therefore critical. Considering both high spatial resolution and temporal
dynamics enables spatially precise and temporally robust predictions
that support real-time heat responses and long-term urban planning.

4.3. Modeling positive feedbacks

Urban heat can be self-reinforcing: higher outdoor temperatures in-
crease cooling demand, and Air-conditioning systems (AC) waste heat in
turn warms the near-surface environment, especially under weak winds.
Data-driven studies operationalize this pathway by estimating anthro-
pogenic heat flux (AHF) with ML and embedding it as a dynamic pre-
dictor in UHI/SUHI models. Recent work produces fine, spatiotemporal
AHF maps, capturing building/energy 'metabolic’ heat and mobility
signals that scale with AC use (Qian et al., 2022; Ao et al., 2024). ML
temperature models that include AHF and related human-activity vari-
ables reveal non-linear relations consistent with AC-UHI feedbacks (Kim
et al., 2022), while explainable learners (e.g., histogram-based gradient
boosting with SHAP) quantify interaction effects between energy/hu-
man drivers and urban morphology (Hoang, 2025; Yang et al., 2025).
ML models trained on long time series of urban-rural temperature dif-
ferences (AT) can capture temporal persistence pathways through which
feedback mechanisms manifest (Varentsov et al., 2023). Although fully
closed-loop feedbacks are often simulated with coupled urban-climate
and building-energy models, these ML approaches provide opera-
tional, data-driven representations of feedback-amplified heating for
predictive UHI/SUHI frameworks.

4.4. Model validation and uncertainty analysis

A critical step in UHI prediction is to rigorously validate models and
analyze associated uncertainties. Given the complexity of the data and
the non-linear dynamics of UHI, robust validation techniques are
essential (Vogel & Afshari, 2020). Common methods include splitting
data into training and testing sets (Coproski et al., 2024), and
cross-validation. Quantifying uncertainty in UHI predictions is also very
important (Narock et al., 2025). Uncertainty analysis measures confi-
dence in model outputs and helps understand possible outcomes.
Sensitivity analysis identifies how input parameters affect model out-
puts (Bavarsad et al., 2023), while methods like Monte Carlo simulations
and Bayesian inference provide a clear understanding of confidence
levels and potential error margins (Maracchini et al., 2022). Some ML
techniques, such as Bayesian methods and ensemble models, inherently
estimate prediction uncertainty (Shafi et al., 2022). Understanding
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uncertainty is essential for informed decision-making and risk assess-
ment, especially for extreme heat events (Narock et al., 2025).

Common performance metrics for ML models in UHI prediction
include Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and R-squared. High R-squared values and low MAE and RMSE values
indicate better model performance. These practices ensure ML models
reliably capture urban thermal dynamics, highlight limitations, and
guide improvements. Ultimately, thorough validation and uncertainty
analysis ensure credible and actionable predictive insights, informing
effective urban planning and heat mitigation strategies.

5. Optimization of UHI mitigation strategies
5.1. UHI mitigation strategies

A range of strategies has been advanced to mitigate the UHI effect
(Fig. 5). A cornerstone approach is the expansion of vegetation and
green infrastructure through policies that support interconnected green
corridors, urban parks, street trees, green roofs and walls, and perme-
able pavements (Mitra et al., 2024; Karan et al., 2025). Vegetation cools
primarily via latent heat flux (evapotranspiration), and it also provides
shade, reduces short-wave thermal radiation absorbed by built surfaces,
and improves outdoor air quality. Co-benefits include better stormwater
management, enhanced biodiversity, and carbon sequestration. Cool
materials represent a complementary pathway. High-albedo and other
reflective surfaces, implemented as cool roofs, reflective paints, cool
pavements, and spectrally selective facade coatings, reduce shortwave
solar absorption and sensible heat storage, lowering surface and
near-surface temperatures (Li et al., 2025).

Improved urban planning and design approaches are also crucial for
achieving better natural ventilation and diminishing the "urban canyon
effect” (Chen et al., 2024b). This involves designing building and street
layouts to maximize airflow, reducing the trapping of hot air between
tall structures. Techniques include orienting buildings to prevailing
winds, creating wider streets, and incorporating open spaces to facilitate
air circulation. The urban canyon effect, created by tall buildings lining
narrow streets, can impede airflow and trap heat, an effect these plan-
ning strategies aim to mitigate. Digital twins, which are virtual repre-
sentations of urban environments, can be used to test the impact of
different planning decisions on UHI before physical implementation
(Koeva et al., 2024).

Urban waterbodies and blue-green spaces, such as ponds, lakes,
rivers, canals, wetlands, and vegetated riparian zones, can cool sur-
rounding areas primarily via evaporative cooling and enhanced heat
storage-release cycles (Ramaiah, 2021; Manteghi et al., 2015; Liu &
Weng, 2008; Zhao et al., 2017; Kang et al., 2023). Water absorbs heat
and releases it more slowly than most built surfaces, moderating local
temperatures, while permeable pavements that promote infiltration and
evaporation can further aid cooling. Because evaporative cooling adds
moisture to the near-surface air, the net benefit depends on background
humidity and wind that increase or decrease the absorbed latent heat
compared to the sensible heat. In arid and semi-arid climates (or dry
summer conditions), large vapor-pressure deficits support stronger
evaporation and typically yield larger air-temperature reductions and
improved thermal comfort indices; however, in humid climates, the
added moisture can offset air-temperature decreases and, under weak
winds, may increase heat-stress indices even when air temperature
drops. Cooling footprints and magnitudes vary with waterbody size and
shape, wind exposure and orientation to prevailing winds (downwind
advection), edge shading and adjacent vegetation, and seasonal hydro-
climate. Accordingly, evaluations should pair temperature-based in-
dicators with heat-stress metrics (e.g., Heat Index) and report both
microclimatic and comfort outcomes to determine when and where
waterbodies provide net benefits (He et al., 2023).

Additionally, the use of district cooling systems, which distribute
chilled water from a central plant to buildings, can reduce energy
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Fig. 5. Illustrative non-exhaustive examples of key UHI mitigation strategies.

consumption and heat emissions compared to individual AC units (Gros
et al., 2016; Lake et al., 2017; Eveloy & Ayou, 2019). Furthermore, the
implementation of smart monitoring technologies, such as sensors and
data analytics, can optimize energy use and urban planning to mitigate
UHI effects by monitoring temperature variations and adjusting urban
systems accordingly (MacLachlan et al., 2021; Lyu et al., 2022; Jang
et al., 2024; Chakrabortty et al., 2025). Other control strategies include
the use of irrigation systems (Gao et al., 2020) to cool surfaces through
evaporation and the implementation of artificial shading structures
(Balany et al., 2020). Finally, reducing anthropogenic heat emissions
through energy efficiency measures in buildings and transportation can
contribute to overall UHI mitigation.

5.2. ML applications in UHI mitigation and control

ML optimization is reshaping UHI mitigation by enabling targeted
and multi-objective interventions (Islam et al., 2024; Guan et al., 2025).
Integrations of LST, detailed building attributes, and solar radiation
maps within GIS and ML frameworks help identify locations with the
highest potential for cool-roof deployment, thereby maximizing re-
ductions in heat exposure. When LST is combined with

Table 1
ML applications in UHI mitigation and control.

urban-morphology metrics and microclimate modeling, planners can
position parks, green roofs, and street trees to enhance cooling while
improving air quality. At the building scale, ML models trained on his-
torical and real-time energy data reveal opportunities for retrofits and
operational adjustments that reduce cooling demand. Surrogate models
and flow-aware learners further support the design of block layouts and
street orientations that strengthen natural ventilation within urban
canopies. In practice, multi-objective optimization driven by ML pre-
dictions helps balance implementation costs, energy and comfort gains,
and environmental co-benefits so that strategies are both effective and
feasible at city scale. Table 1 summarizes the principal ML applications
for UHI mitigation and control; detailed treatments are provided in
Sections 5.2.1-5.2.5

5.2.1. ML applications for green infrastructure

ML provides scalable tools to site, size, and manage green infra-
structure for UHI mitigation (Koeva et al., 2024; Zhang et al., 2025b;
Ganjirad et al., 2025). Tree-based surrogates such as Random Forest and
XGBoost accelerate design exploration when compared with workflows
that rely solely on computational fluid dynamics, which reduces
computational burdens while preserving fidelity for decision support

Area ML objectives Typical inputs

Representative methods Targets / metrics

Green infrastructure

Cool materials

Urban water bodies

Planning and design

UHI control

Site, size, and manage trees/parks/green
roofs; accelerate design vs CFD (e.g. Envi-
met® tool) only workflows; monitor and
operate assets

Infer material properties and siting;
evaluate lifecycle performance and cost
trade-offs

Design and place blue infrastructure;
quantify cooling drivers; monitor
performance

Evaluate scenarios and optimize urban
form; identify ventilation corridors; and
enable morphology-aware comparability

Forecast-informed, real-time adaptive
operations at building/district/city scales

LST; NDVI/EVI; 3D morphology
(height, density, SVF); LCZ; street
geometry; meteorology; in-situ/RS time
series

Albedo/emittance; solar exposure;
orientation; building density; pavement
type; aging/soiling; and energy demand
NDWI/MNDWI; water area/shape/
dispersion/depth; winds; adjacency
vegetation; LST/ET; land-use and
hydrologic constraints

3D morphology (MBH, BHSD, H/W,
SVF); LCZ; LST; winds; land use; and
socio-economic layers

Dense sensors; short-term forecasts;
mobility and load data; and building
telemetry

RF, XGBoost; CNN/attention
surrogates; time-series learners;
SHAP for attribution

Neural net works; RF; meta-
models; evolutionary search

RF/ExtraTrees; CNNs for ET
with footprint/physics; PSO +
microclimate or LST surrogate

Surrogates + genetic algorithms;
ridge/SVR/GBDT; UVNM; and
digital twins

Model predictive control;
supervised controllers; hotspot
prediction; and traffic flow ML

ALST/SUHII; UTCI/WBGT/
Heat Index; mortality risk;
and ventilation potential

ALST; building energy; net
GHG impact; durability/
cost

ALST/SUHII; UTCI; cooling
footprint radius; land/cost

Urban thermal comfort;
energy/emissions;
ventilation; multi-objective
trade-offs

Peak demand; comfort;
congestion heat; and spatial
targeting efficacy
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(Ahn et al., 2024). Recent applications illustrate these advantages. In
Turin, a GIS-integrated ML assessment of urban regeneration docu-
mented a 19.46 % increase in vegetation cover accompanied by a
measurable reduction in SUHII (Mutani et al., 2024). In Tokyo,
ML-based scenario evaluation indicated that ground-surface greening
and related measures reduce outdoor temperatures and associated
heat-related mortality (Ohashi et al., 2025).

Model choice also informs species and trait selection. ML analyses
rank vegetation types by evapotranspiration and shading potential
under local climate conditions (Marando et al., 2022) and identify tree
traits such as trunk circumference and crown volume that most strongly
predict cooling outcomes (Helletsgruber et al., 2020). For green roofs,
hybrid deep models such as SSA-CNN-LSTM provide accurate
thermal-performance predictions that aid both design and operation
(Wang et al., 2024a; J. Wang et al., 2024b). During implementation and
maintenance, ML applied to remote-sensing and in-situ data streams
supports continuous monitoring of green-infrastructure performance
and enables adaptive interventions. Learning-based controllers can also
optimize irrigation schedules, improving cooling efficiency while
reducing resource consumption.

5.2.2. ML applications for cool materials

ML supports the design and deployment of cool materials by relating
spectral and thermal properties, such as albedo and thermal emittance,
to surface and air temperature responses under diverse urban condi-
tions. Data-driven models help identify properties and configurations
that minimize heat absorption and maximize cooling benefits at building
and street scales. Neural-network models have been used to predict
urban albedo for reflective coatings with good accuracy, including
Gaussian-process and hyperbolic-tangent architectures conditioned on
solar radiation and surface orientation (Yuan et al., 2023).
Random-forest analyses of surface modifications report that modest al-
bedo increases (about 3.09 %) are associated with measurable SUHII
reductions (Mutani et al., 2024). Meta-modeling has been applied to
estimate the net greenhouse-gas impact of pavement albedo changes by
jointly accounting for air temperature and building energy demand at
high resolution (Xu et al., 2020). Evolutionary search has also been used
to optimize paving layouts by assigning materials with different albedo
levels while considering material costs (Green et al., 2019). Beyond
material selection, ML can target deployment by ranking locations
where reflective roofs and pavements yield the largest impact given
building density, solar exposure, and baseline LST, and it can forecast
long-term performance and energy savings to inform cost-benefit and
policy decisions (Visvanathan et al., 2024).

A central challenge is balancing multiple objectives. Materials should
maximize solar reflectance and thermal emittance, retain performance
under aging, soiling, and weathering, and remain cost-effective to install
and maintain. ML frameworks are well suited to this trade-space because
they can fuse laboratory measurements with field observations, learn
degradation trajectories, and drive multi-objective optimization that
evaluates cooling, durability, and cost simultaneously. Such workflows
support choices that perform well in controlled tests and remain robust
in the complex operating conditions of real urban environments.

5.2.3. ML applications for monitoring and managing urban water bodies
Urban blue-green spaces, including water bodies, are recognized as
effective elements in mitigating UHI effects by reducing LST (Budzik
et al., 2025; Wang et al., 2024c¢; Zhang et al., 2025a). Cooling efficiency
depends on physical characteristics and spatial configuration, with size,
shape, depth, and distribution all influencing performance and more
complex shapes often enhancing cooling (Liu et al., 2024a). ML supports
planning and design by linking water features to observed thermal re-
sponses, frequently within GIS and digital-twin environments.
Tree-based learners such as Random Forest and Extremely Randomized
Trees capture the relationship between water presence and LST with
high robustness, enabling city-scale prediction of cooling effects (Wang
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et al., 2024c). Convolutional models assist mechanistic understanding
by estimating urban evapotranspiration (ET); incorporating
flux-footprint information and basic physical constraints improves the
fidelity of ET simulations and clarifies the role of blue infrastructure in
surface cooling (Chen et al., 2023a).

Optimization workflows increasingly pair ML with population-based
search to design waterbody layouts that maximize cooling under prac-
tical constraints. Particle swarm optimization (PSO) encodes decision
variables such as water area share, centroid locations, shape or
compactness, and dispersion, and evaluates candidates with a micro-
climate model or LST-based surrogate subject to land-use and hydrologic
limits. At city scale, PSO has been used to allocate land-use classes,
explicitly including waterbodies, to reduce LST (Xiao et al., 2025). At
microclimate scale, PSO has optimized tree placement to lower UTCI
(Shaamala et al., 2024), illustrating a simulation—optimization pattern
that extends directly to waterbody layout for UHI and SUHI mitigation.
In operation, ML applied to remote-sensing and in-situ networks sup-
ports continuous monitoring of waterbody performance, detection of
deterioration or anomalies, and adaptive management. Together, these
ML-driven approaches enable more informed and efficient use of urban
waterbodies as a core element of UHI mitigation.

5.2.4. ML applications for urban planning & design approaches

ML is increasingly central to optimizing planning and design stra-
tegies for UHI mitigation (Koomen & Diogo, 2017). Models trained on
historical links between urban morphology and observed temperatures
enable rapid evaluation of counterfactual layouts and development
scenarios (Koomen & Diogo, 2017). Digital twins that integrate
three-dimensional city models enriched with synoptic real-time data and
ML provide practical platforms to visualize and predict cooling out-
comes under alternative plans (Koeva et al., 2024).

Recent applications illustrate the breadth of ML-enabled planning
tools. Hao et al. (2023) introduced an ML-Enhanced Design Optimizer
that couples a neural-network surrogate with a genetic algorithm to
explore cooling strategies efficiently, demonstrating advantages for
early-stage decision making in Southern China. Lépez-Guerrero et al.
(2024) combined several ML models, including SVR, MLP, and Gradient
Boosting with the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) and the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) to optimize building and district-scale designs,
yielding notable reductions in energy loads and heat emissions. Okumus
and Terzi (2021) used Ridge Regression to quantify the contribution of
urban fabric components (e.g., building coverage ratio, vegetation
index) to surface UHI formation, providing actionable guidance for
climate-sensitive layouts. For wind-driven relief, an Urban Ventilation
Network Model (UVNM) identified ventilation corridors by accounting
for building height and prevailing winds, subsequently validated with
LST patterns (Qiao et al., 2017). At the block scale, a performance-based
workflow integrating CFD with evolutionary algorithms improved
ventilation potential by ~16 % relative to initial layouts (Lim & Ooka,
2021). Genetic algorithms have also been used to optimize land-use
patterns for thermal benefit by exploring scenarios that minimize heat
accumulation.

The Local Climate Zones (LCZ) framework provides a standardized,
morphology-aware typology that pairs naturally with ML for climate-
aware planning and attribution. Global ~100 m LCZ layers produced
with Random Forests are now available (Demuzere et al., 2022), while
deep-learning benchmarks such as So2Sat LCZ42 have accelerated
cross-city LCZ classification using Sentinel-1/2 (Zhu et al., 2019; Zhou
et al., 2022a; Liu & Shi, 2020; Cui et al., 2022). In UHI/SUHI modeling,
LCZ can function as a categorical feature, a stratification layer for
training/evaluation within homogeneous forms, or a bridge integrating
morphology with spectral/land-cover indices. LCZ-aware ML has been
shown to improve skill and interpretability, including diurnal cycle
characterization (Oliveira et al., 2022). Building on this framework, a
recent study proposed a multi-scenario optimization method based on
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local climate zones, employing genetic algorithms to adjust the quantity
and structure of these zones, thereby enhancing the overall urban
thermal environment (Chen et al., 2024c). More broadly, ML can
analyze airflow patterns in urban environments to identify layouts that
promote better ventilation, aiding in heat dissipation (Koomen & Diogo,
2017), and can support sustainable urban transformation by analyzing
various layers of environmental, social, and economic data to guide the
development of urban plans and designs that minimize UHI effects and
enhance overall urban resilience.

5.2.5. ML applications for UHI control

ML enables a shift from static mitigation to adaptive control guided
by real-time data. Dense sensor networks and short-term weather fore-
casts feed ML models that anticipate heat intensity and spatial patterns,
allowing city services to target interventions where they matter most.
Examples include dynamically operating misting systems and deploy-
able shading in public spaces, and prioritizing streets or plazas with the
highest projected thermal stress. Such workflows coordinate actions
across departments while balancing comfort gains, water use, and
operational constraints.

At the building and district scale, ML-based controllers improve the
efficiency of cooling systems by learning the relationship between out-
door conditions, UHI amplification, and indoor demand. Studies
demonstrate adaptive HVAC control that responds to moment-to-
moment conditions to optimize energy use and comfort (Hassan &
Abdelaziz, 2022; Gaidhani et al., 2024). Forecast-informed building
management systems further adjust setpoints and schedules in antici-
pation of UHI-driven peaks, reducing electricity demand and costs while
maintaining thermal comfort (Attarhay Tehrani et al., 2024). In parallel,
mobility analytics use ML to redistribute traffic flows in real time, easing
congestion hotspots and associated anthropogenic heat emissions at
street level (Vihurskyi, 2024). Together these dynamic control strategies
extend the impact of traditional measures by delivering timely,
location-aware responses to evolving urban heat conditions.

6. Flexible adaptation for UHI mitigation

Traditional UHI mitigation strategies often rely on static in-
terventions, such as fixed cool roofs, predetermined green spaces, and
permanent urban layouts (Chen & You, 2020). However, UHI mitigation
necessitates not only immediate interventions but also long-term plan-
ning and flexible adaptation strategies that can dynamically adjust and
evolve in response to changing climate conditions and urban develop-
ment patterns (Cakmakli & Rashed-Ali, 2022). Unlike mitigation stra-
tegies that aim to reduce the root causes of UHI, adaptation focuses on
adjusting to the effects of increased urban heat to minimize negative
impacts (He et al., 2023). Adaptive measures offer a dynamic approach,
enabling cities to respond in real-time to fluctuating environmental
conditions. These measures involve deploying smart materials that
dynamically adjust their thermal properties in response to ambient
temperature and sunlight intensity (Irfeey et al., 2023; Turhan et al.,
2023), alongside sustainable techniques such as incorporating recycled
aggregates (Moretti & Loprencipe, 2018; Jeong et al., 2019),
phase-change materials (PCMs) (Reyez-Araiza et al., 2021; Marani &
Nehdi, 2019; Wong et al., 2021), and thermochromic coatings (Jamei &
Tapper, 2019; Hu & Yu, 2020). These materials can modulate surface
temperatures by reflecting more solar radiation, storing and releasing
latent heat, or even changing color to optimize thermal absorption based
on the time of day and season (Irfeey et al., 2023; Andoni & Wonor-
ahardjo, 2018). Such adaptive systems not only reduce surface tem-
peratures and greenhouse gas emissions but also enhance overall energy
efficiency by using locally sourced, eco-friendly building components
(Santamouris et al., 2019; Irfeey et al., 2023). Moreover, adaptive urban
design can integrate modular green spaces that expand or contract based
on real-time thermal data, and ventilation corridors that adjust with
evolving wind patterns and urban growth (Fadhil et al., 2023). By
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continuously monitoring and responding to fluctuating urban climate
conditions, adaptive strategies provide a more resilient and flexible
framework to mitigate the effects of UHI (Qi et al., 2020).

ML plays an increasingly important role in enabling these flexible
adaptation strategies for UHI (Ghorbany et al., 2024). One key appli-
cation lies in the dynamic deployment of resources based on real-time
UHI data and heat wave predictions generated by ML models. For
example, ML can analyze sensor network data and weather forecasts to
predict periods of extreme heat, triggering the activation of cooling
centers in vulnerable neighborhoods or the deployment of additional
emergency medical services. ML algorithms can analyze the large vol-
umes of real-time data from sensors, satellites, and IoT devices across
urban environments to identify emerging heat patterns, predict
short-term temperature fluctuations, and determine the optimal timing
for activating adaptive cooling systems (Liu et al., 2021; Zumwald et al.,
2021). Predictive models can forecast when and where a city might
experience a heat surge, allowing automated systems to dynamically
deploy smart materials or adjust ventilation pathways. Furthermore, ML
can optimize the performance of adaptive infrastructures by learning
from historical data and continuously refining intervention strategies
(Okumus & Terzi, 2021).

ML-based simulations can also help urban planners develop adaptive
urban planning and design solutions (Koomen & Diogo, 2017). By
modeling different climate change scenarios and urban growth pro-
jections, ML can inform the design of flexible infrastructure and green
spaces that can effectively mitigate heat under a range of future condi-
tions. Additionally, ML can be used to identify vulnerable populations
within cities based on factors like age, income, and health status,
allowing for the tailoring of adaptation strategies to their specific needs.
This could include targeted heat alert systems delivered via mobile apps
or the provision of cooling assistance programs for low-income house-
holds. Community involvement and citizen science initiatives, poten-
tially facilitated by ML-powered data collection and analysis tools, can
also contribute to flexible adaptation by empowering local communities
to monitor heat conditions and implement localized solutions
(Zuccarini, 2024).

Finally, ML can be applied to enhance the resilience of urban infra-
structure to extreme heat. By analyzing historical data on infrastructure
failures during heat waves and incorporating climate projections, ML
models can predict the potential impacts of future heat events on roads,
power grids, and other critical systems. This information can then
inform the development and deployment of more heat-tolerant mate-
rials and proactive maintenance strategies. Developing digital twins of
cities that integrate real-time data, urban models, and climate change
projections provides a powerful tool for testing and evaluating different
urban planning and adaptation scenarios (Du et al., 2024). Moreover,
ML models can be trained on urban data to identify effective policy in-
terventions for UHI mitigation, such as assessing the impact of different
incentives for cool roof adoption or green infrastructure development.
By integrating real-time environmental feedback with adaptive control
systems, ML not only enhances the efficiency of UHI mitigation mea-
sures but also supports the development of a responsive urban envi-
ronment capable of evolving with climate challenges.

7. Discussion and synthesis

This review has illuminated the progressively central role of ML
methodologies in the comprehension, prediction, mitigation, and
adaptation strategies concerning the UHI effect. The synergistic inte-
gration of diverse data streams, sophisticated analytical techniques, and
advanced modeling tools has unlocked novel avenues for tackling this
complex and multifaceted urban challenge. This section synthesizes the
key findings of the review, critically evaluates the potential and inherent
limitations of ML approaches in this context, and proposes promising
directions for future research endeavors.

A significant portion of the current body of research on ML
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applications in UHI has been dedicated to data analysis, prediction, and
forecasting. These efforts have yielded a more granular and nuanced
understanding of UHI dynamics by uncovering intricate relationships
between urban morphology, land cover characteristics, and meteoro-
logical variables. Furthermore, the enhanced accuracy and timeliness of
ML-driven forecasts are enabling more proactive and targeted mitiga-
tion measures through improved predictions of urban temperature dis-
tributions (Ghorbany et al., 2024). However, this review has revealed a
notable imbalance in the current research landscape. While predictive
capabilities have advanced considerably, there is a comparatively
limited focus on leveraging ML for the optimization of UHI mitigation
strategies. Even fewer studies have explored flexible, adaptive ap-
proaches that can dynamically respond to evolving climate conditions
and shifting urban development patterns. Given that effective UHI
management necessitates not only precise forecasting but also the ca-
pacity to optimize interventions and adjust strategies in real time, this
disparity represents a critical area demanding greater scholarly atten-
tion in the future.

In light of this identified gap, future research efforts should prioritize
the development of ML-based frameworks that extend beyond the realm
of prediction. Such frameworks should integrate robust optimization
tools to maximize the effectiveness of mitigation measures while care-
fully considering and minimizing associated costs and potential trade-
offs (Turhan et al., 2023). Moreover, these frameworks should actively
support adaptive urban planning strategies capable of responding to
dynamic environmental and socio-economic changes. By incorporating
socio-economic and behavioral data alongside traditional environ-
mental variables, these sophisticated models can inform the develop-
ment of more equitable and resilient long-term urban policies (Parsaee
et al., 2019; Liu & Morawska, 2020).

Overall, while ML methods have undeniably made substantial con-
tributions to the understanding and forecasting of UHI, a greater
emphasis on the application of ML for optimizing and flexibly adapting
UHI mitigation strategies is urgently needed. Addressing this critical gap
will be essential for the development of holistic and sustainable solu-
tions to effectively manage urban heat in the face of a rapidly changing
climate. In the subsequent section, and as visually summarized in Fig. 6,
a more in-depth discussion of the key challenges and research gaps
identified throughout this review will be presented, along with prom-
ising prospects and future directions for advancing the impactful
application of ML in UHI mitigation.

7.1. Challenges and research gaps

7.1.1. Challenges in UHI data acquisition and quality

UHI research relies on a diverse and often fragmented collection of
data sources, including high-resolution remote sensing imagery, ground-
based sensor networks, and outputs from numerical models. While these
sources provide rich spatial and temporal information, several funda-
mental challenges persist in acquiring and ensuring the quality of UHI
data.

One significant challenge lies in the heterogeneous and sparse nature
of observations. Remote sensing platforms, although offering high
spatial resolution, often have limitations in temporal frequency and can
be affected by factors such as cloud cover and -calibration in-
consistencies. Ground-based weather stations provide valuable near-
surface air temperature data but are frequently spatially sparse,
exhibit wide variations in data quality, and can be influenced by sensor
placement and maintenance protocols. These disparities across data
sources necessitate careful consideration during integration and
analysis.

Another critical challenge is multi-scale and multi-format data
integration. Urban areas are characterized by complex and highly het-
erogeneous features arising from variations in land cover, building ge-
ometry, and surface materials. This inherent variability leads to
significant microclimatic differences that are not easily captured by any
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single data source. Integrating structured numerical data from simula-
tions, semi-structured remote sensing products, and unstructured met-
adata presents considerable hurdles in terms of data cleaning,
standardization, and effective aggregation to facilitate meaningful
analysis.

Temporal limitations and the scarcity of long-term records also pose
a substantial challenge. Many currently available datasets have rela-
tively short record periods compared to the extended time scales
required to thoroughly assess the impacts of long-term climate change
on UHI intensity. This limitation restricts the ability to examine long-
term variations and trends. Furthermore, capturing the full spectrum
of diurnal, seasonal, and interannual temperature variations, particu-
larly during nighttime when UHI effects are often most pronounced,
remains a significant hurdle.

Finally, the density and strategic placement of sensing infrastructure
constrain the comprehensive evaluation of the UHI effect. Existing
sensor networks may not adequately cover all targeted regions, limiting
the understanding of localized variations. A more comprehensive
assessment necessitates both an increase in the density of measurement
stations and the implementation of strategic placement planning in
adjacent areas to enable robust comparative analysis. This enhanced
data collection would facilitate a more thorough examination of the
various factors influencing UHIL

Collectively, these challenges underscore the pressing need for
improved data collection protocols, the establishment of longer-term
observational networks, and the development of sophisticated data
fusion techniques capable of effectively bridging the existing gaps in the
spatial, temporal, and qualitative dimensions of UHI data.

7.1.2. Challenges in ML algorithm application for UHI analysis

While ML offers powerful tools for advancing the understanding and
analysis of UHIs, its application presents several significant algorithmic
challenges that must be addressed to fully realize its potential in this
domain. One major hurdle stems from the complex, nonlinear, and
nonstationary dynamics inherent in UHI phenomena. These phenomena
arise from intricate and dynamic interactions among urban morphology,
land cover, meteorological conditions, and human activities. Many
standard ML algorithms, originally developed for fields like image
recognition or natural language processing, often struggle to effectively
capture these complex, nonlinear, and time-varying relationships.

Another significant challenge lies in the dependence on limited and
potentially biased labeled data. Supervised ML techniques typically
require substantial amounts of high-quality, labeled data. However, UHI
datasets frequently suffer from issues such as sparsity, uneven spatial
and temporal distribution, and a lack of comprehensive labeling for
specific UHI-related tasks. This scarcity of suitable data can lead to
problems like model overfitting, where the model performs well on the
training data but poorly on unseen data, or poor generalization in re-
gions or time periods that are underrepresented in the training data.
Furthermore, ML models trained on data from one city or climate zone
may face limitations in their generalization and transferability across
diverse urban environments. Differences in urban morphology, land
cover characteristics, and meteorological conditions necessitate region-
specific training data.

Furthermore, the interpretability challenges and the ’black box’
nature of many advanced ML models pose a significant obstacle. Com-
plex models, such as deep learning architectures and ensemble methods,
often operate as "black boxes," making it difficult to understand the
underlying physical mechanisms driving their predictions. In critical
applications like urban planning and climate adaptation, the ability to
understand and explain predictions is paramount for building trust and
gaining scientific insights. Consequently, there is a growing need for
more interpretable ML approaches in UHI research (Ang et al., 2024; Wu
& Snaiki, 2022).

Beyond these issues, practical challenges also exist in terms of
hyperparameter tuning, uncertainty quantification, and computational
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demands. Choosing the most appropriate model architecture and tuning
its hyperparameters often remains a largely trial-and-error process.
Moreover, while robust uncertainty quantification is essential, particu-
larly when ML predictions inform policy decisions, systematic ap-
proaches for assessing and propagating uncertainty in UHI predictions
are still underdeveloped. Additionally, processing and training complex
ML models, especially when dealing with high-resolution spatiotem-
poral data, can be computationally demanding, requiring significant
resources (Shi et al., 2021a). Finally, it is important to be mindful of the
distinction between correlation and causation when interpreting the
results of ML models, as purely data-driven approaches may sometimes
identify spurious relationships without capturing the underlying phys-
ical processes.

Addressing these multifaceted challenges will necessitate the devel-
opment of specialized ML frameworks specifically tailored for the
complex dynamics of UHIs. These frameworks should not only excel in
predictive performance but also incorporate physical principles, provide
transparent and robust uncertainty estimates, and be computationally
feasible for practical applications.

7.2. Prospects and future directions

While the application of ML to the study of UHIs has yielded
considerable progress, many challenges remain that also open up
exciting new avenues for research. This section outlines key prospects
for advancing the field, focusing on improvements in UHI data acqui-
sition and processing, the enhancement of ML algorithm performance,
the integration of physical principles into ML approaches, and the
incorporation of socio-behavioral insights through interdisciplinary
collaboration.

7.2.1. Prospects for UHI data

The future of UHI research is poised for significant advancements
driven by enhanced data acquisition capabilities and a growing
emphasis on integrating diverse data sources. To address current limi-
tations in UHI data, future work should prioritize the development and
integration of new data sources alongside sophisticated processing
techniques. Enhanced data acquisition will play a crucial role, with next-
generation satellite platforms and high-resolution aerial imagery
providing more detailed and frequent observations of land surface
temperature. Innovations in sensor technology and deployment strate-
gies will enable more accurate and continuous monitoring of urban
thermal environments, while advanced thermal imaging techniques will
further contribute to improved data quality. The deployment of denser
networks of low-cost ground-based sensors, including the expansion of
community-based monitoring initiatives, offers a practical solution to
fill observational gaps and provide near real-time air temperature data
at unprecedented spatial resolutions.

Furthermore, future research will increasingly focus on multi-scale
data integration to gain a more holistic understanding of UHI. UHI
phenomena manifest across a wide range of scales, from building-level
variations within neighborhoods to city-wide patterns. Advanced data
fusion techniques, such as advanced data assimilation techniques, ML-
based fusion algorithms, clustering, and dimensionality reduction, will
be essential to effectively integrate high-resolution remote sensing data
with in situ measurements and numerical simulation outputs. Beyond
these sources, there will be a growing emphasis on integrating diverse
data, including meteorological data, detailed urban morphology infor-
mation like building footprints and land use maps, socioeconomic data
to understand vulnerability, and even potentially incorporating social
media data to capture human experiences of urban heat. Establishing
common data standards and interoperable platforms will be critical to
facilitate the seamless aggregation, cleaning, and integration of data
from these diverse sources, ultimately improving the robustness and
coverage of UHI datasets.

Finally, given the profound impacts of climate change on urban
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thermal behavior, it is critical to establish long-term and heterogeneous
records. Long-term observational networks are necessary to capture
diurnal, seasonal, and interannual variations, enabling the study of long-
term trends and extreme events. In addition, creating standardized
protocols for data collection and processing will be essential to harmo-
nize heterogeneous datasets derived from different instruments and
sources, ensuring the consistency and comparability of data over time
and across various studies.

7.2.2. Prospects for ML algorithms

The continuous evolution of ML presents promising avenues to
address the complex, nonlinear nature of UHI phenomena and signifi-
cantly benefit future research in this area. It is anticipated that more
robust and generalizable ML models will be developed, exhibiting less
susceptibility to overfitting and greater applicability across diverse
urban environments. One key direction involves adopting advanced ML
architectures. Emerging ML algorithms, such as generative adversarial
networks (GANSs), convolutional neural networks (CNNs), recurrent
networks like LSTMs, and reinforcement learning, hold significant po-
tential for capturing the intricate spatiotemporal patterns characteristic
of urban thermal environments. These methods can be specifically
tailored to efficiently process grid-based data, like high-resolution maps
of land cover and temperature, as well as time-series measurements.
Furthermore, the continued development and application of advanced
deep learning architectures, such as graph neural networks (GNN) and
transformer networks, alongside ensemble learning methods, are likely
to lead to further improvements in UHI prediction and analysis.

Another crucial area of progress lies in reducing data dependency
and enhancing explainability. Given the challenges associated with
acquiring densely labeled UHI datasets, unsupervised and semi-
supervised learning techniques offer appealing alternatives. Tech-
niques such as self-supervised learning, active learning, and reservoir
computing may enable effective model training even when labeled data
are scarce. Moreover, there will be a growing focus on explainable Al
(XAI) methods (Attarhay Tehrani et al., 2024) to enhance the inter-
pretability of complex ML models used in UHI research. This will allow
researchers and practitioners to better understand the factors driving
urban heat and to have greater confidence in model predictions. Tech-
niques like sensitivity analysis and layer-wise relevance propagation
will be vital in this regard. Additionally, techniques like domain adap-
tation and meta-learning will likely play a key role in improving model
transferability across different urban environments. The integration of
physical constraints and knowledge into ML models, through the bur-
geoning field of physics-informed machine learning (PIML) (Shaeri
et al., 2025), holds significant promise for generating more accurate,
physically consistent, and interpretable UHI predictions.

Finally, developing robust and generalizable ML models for UHI
analysis will necessitate systematic hyperparameter optimization and
model selection. The use of automated optimization methods, such as
Bayesian optimization, grid or random search, or population-based
training, can help identify optimal model configurations that strike a
balance between performance and generalizability while mitigating the
risk of overfitting. This systematic approach to model development will
be crucial for building reliable and trustworthy ML tools for UHI
research and urban planning applications.

7.2.3. Prospects for physics-informed ML

Integrating physical principles into ML models represents a prom-
ising direction for UHI research, offering a way to bridge the gap be-
tween purely data-driven ML models and traditional physics-based
models (Shaeri et al., 2025). Embedding physical laws into ML frame-
works, known as physics-informed machine learning (PIML), involves
incorporating known physical constraints, such as energy conservation,
radiative balance, and heat transfer equations, directly into the learning
process (Snaiki & Wu, 2019). This can be achieved by adding
physics-based regularization terms to the loss function, ensuring that
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model predictions remain consistent with established thermal dynamics
even when observational data are sparse. One such option is illustrated
in Fig. 7, where the network takes as input various factors, including
meteorological variables (e.g., air temperature, humidity, wind speed,
and solar radiation), land cover transformations, and anthropogenic
factors. The model predicts the spatial distribution of LST while also
minimizing residuals from the corresponding partial differential equa-
tions. This approach not only enforces physical consistency, even in
data-sparse regions, but also improves extrapolation to unseen urban
conditions. By incorporating known physical laws and principles, such
as those governing heat transfer and fluid dynamics, into the learning
process of neural networks and other ML architectures, PIML can lead to
models that are not only accurate in fitting observed data but also
respect the underlying physical processes (Shaeri et al., 2025). This
integration can significantly improve the interpretability of ML models
and enhance their ability to generalize to unseen urban environments
and future climate scenarios (Shaeri et al., 2025).

Hybrid and transfer learning models also present a valuable avenue
for future research. A hybrid modeling framework that combines
physics-based numerical simulations (e.g., a CFD or energy balance
simulation) with ML bias-correction techniques can leverage the
strengths of both approaches. For example, high-fidelity urban energy
balance simulations can be used to pre-train ML models, which are then
fine-tuned using observational data with embedded physical con-
straints. Another approach consists of constructing a two-stage frame-
work where a conventional physics-based urban climate model produces
a baseline temperature field. An ML model is then trained to “correct”
this output by learning the biases between the simulation and observed
data. Such models not only improve prediction accuracy but also
enhance interpretability by ensuring that predictions adhere to the un-
derlying physics.

Furthermore, ML discovery of new physical insights is a compelling
prospect of PIML. By jointly learning from data and enforcing physical
constraints, these models can reveal unexpected interactions between
urban morphology, land cover, and meteorological conditions that
might be overlooked by traditional analysis methods, thereby advancing
the fundamental understanding of UHI dynamics.

Finally, enhanced uncertainty quantification can be achieved by
embedding physics into ML models. This approach can constrain the
solution space to physically plausible regimes, which improves the
reliability of uncertainty estimates. Further research is needed to
develop systematic methods for propagating uncertainties from both
data and model parameters, a critical requirement for decision making
in urban planning. PIML also has the potential for accurate estimation of
urban thermal comfort metrics (such as UTCI) by directly embedding
physical relationships into the model structure. Furthermore, PIML can
be used to downscale coarse-resolution climate model outputs to the
urban scale while ensuring that the downscaled data adheres to funda-
mental physical constraints.

(Air temperature, humidity, wind speed, solar
radiation, land cover ...)

ML model

Fig.
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Each of these approaches brings the strengths of both ML and
established physical theory, potentially reducing the reliance on large
training datasets while also increasing interpretability and extrapolation
ability for urban climate predictions.

7.2.4. Socio-behavioral insights and interdisciplinary collaboration

Beyond technical advancements in data acquisition and ML algo-
rithms, effective UHI mitigation increasingly recognizes the importance
of understanding the human and social dimensions that influence urban
climate dynamics. Future research should consider proactive human-
centered approaches by integrating socio-behavioral insights. Miti-
gating UHI is not solely a technical challenge; it also involves under-
standing human behavior and community dynamics. Incorporating
socio-behavioral data, such as patterns of energy use, population expo-
sure, thermal comfort, vulnerability, and community response strate-
gies, into UHI analyses can yield more effective and equitable mitigation
measures. By capturing the interplay between built environments and
human activity, models can better inform policy decisions that address
both physical and social vulnerabilities (Degirmenci et al., 2021). This
integration should also include socioeconomic factors, such as income
levels, racial demographics, and age distributions, along with behavioral
data related to energy consumption patterns and adaptation strategies,
to provide a more nuanced understanding of vulnerability and inform
more equitable mitigation efforts.

Addressing the complex challenges of UHI effectively requires
fostering interdisciplinary collaboration between experts from diverse
fields, including urban planning, climate science, computer science,
social science, public health, and engineering (Zuccarini, 2024). Pro-
moting interdisciplinary research will be key to developing innovative,
robust solutions that are scientifically sound and practically applicable.
By bridging disciplinary boundaries, researchers can develop integrated
frameworks that leverage state-of-the-art data and ML techniques while
also accounting for human and societal factors. Engaging communities
and leveraging citizen science initiatives in data collection and the
implementation of local mitigation measures will also be crucial
(Zuccarini, 2024).

Furthermore, there is a need to develop user-friendly ML-powered
tools and platforms that can be used by urban planners, policymakers,
and the public to visualize UHI data, explore different mitigation sce-
narios, and make informed decisions. Finally, as the use of ML in this
domain expands, it will be essential to address ethical considerations
related to data privacy, algorithmic bias, and ensuring equitable access
to information and resources. By embracing these socio-behavioral and
collaborative approaches alongside technical advances, future UHI
research can achieve a more holistic understanding of urban heat dy-
namics and support the development of comprehensive adaptation
strategies.

Data

Governing equations

[ Constrained loss function }

7. Schematic of the physics-informed ML model for LST prediction.
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8. Conclusion

This review has systematically examined the burgeoning application
of ML methodologies within the domain of UHI research. By synthe-
sizing insights across diverse data acquisition modalities, sophisticated
processing pipelines, and cutting-edge ML models, this work elucidates
the significant potential of these approaches to enhance the under-
standing of complex urban thermal dynamics and inform the develop-
ment of more efficacious mitigation strategies. The integration of
satellite-derived observations, mobile in-situ measurements, and dense
sensor networks, coupled with advanced data fusion and analytics, has
underscored the transformative capacity of ML methodologies in accu-
rately forecasting UHI patterns and optimizing targeted interventions.

Despite these considerable advancements, several critical challenges
warrant careful consideration. The robustness and reliability of ML-
driven insights are intrinsically linked to the quality and consistency
of the underlying data. Issues pertaining to sensor calibration, data
heterogeneity across sources, and substantial computational resource
demands continue to present significant obstacles. Furthermore, the
inherent ‘black-box’ nature of certain ML architectures raises valid
concerns regarding the interpretability of their outputs, while ethical
and privacy implications associated with the collection and analysis of
large-scale urban datasets necessitate rigorous attention and the devel-
opment of responsible data governance frameworks. These limitations
underscore the imperative for ongoing refinement of analytical frame-
works and the development of more robust and transparent models
capable of effectively capturing the intricate complexities of urban
environments.

Looking towards the future, research efforts should prioritize
enhancing data quality through improved sensor technologies and
rigorous calibration protocols, alongside expanding the spatial and
temporal coverage of urban monitoring networks to bolster the gener-
alizability of predictive models. Notably, the integration of physics-
informed machine learning (PIML) represents a promising frontier for
overcoming current limitations. By embedding fundamental physical
principles and constraints directly into ML models, PIML offers the po-
tential to enhance model interpretability, reduce the reliance on
extensive datasets, and improve the robustness of predictions, particu-
larly in data-scarce urban settings. This approach ensures that model
outputs are not only data-driven but also physically plausible, thereby
increasing their reliability for real-world applications. Moreover, the
synergistic integration of digital twin technologies, real-time adaptive
control systems for urban infrastructure, and interdisciplinary collabo-
rations holds significant promise for translating data-driven insights into
tangible urban planning and management strategies. By diligently
addressing these challenges and strategically leveraging emerging op-
portunities, ML methodologies can play a pivotal role in fostering the
development of sustainable, resilient, and thermally comfortable urban
environments in the face of accelerating urbanization and the pervasive
impacts of climate change.
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