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Abstract

Non-contact vital sign monitoring in Pediatric Intensive Care Units is challenged by fre-
quent occlusions, data scarcity, and the need for temporally stable anatomical tracking to
extract reliable physiological signals. Traditional detectors produce unstable tracking, while
video transformers are too computationally intensive for deployment on resource-limited
clinical hardware. We introduce Divided Space-Time Mamba, an architecture that decou-
ples spatial and temporal feature learning using State Space Models to achieve linear-time
complexity, over 92% lower than standard transformers. To handle data scarcity, we employ
self-supervised pre-training with masked autoencoders on over 50 k domain-specific video
clips and further enhance robustness with multimodal RGB-D input. Our model demon-
strates superior performance, achieving 0.96 mAP@0.5, 0.62 mAP50-95, and 0.95 rotated
IoU. Operating at 23 FPS (43 ms latency), our method is approximately 1.9 faster than
VideoMAE and 5.7x faster than frame-wise YOLOVS, demonstrating its suitability for
real-time clinical monitoring.

Keywords: self-supervised learning; state space models; non-contact vital sign monitoring;
PICU; multimodal RGB-D

1. Introduction

Monitoring vital signs in pediatric patients within Pediatric Intensive Care Units
(PICUs) is essential due to their fragile health conditions. Non-contact approaches,
such as remote photoplethysmography (rPPG) and respiratory monitoring, especially
for conditions like Acute Respiratory Distress Syndrome (ARDS) [1,2], depend on accu-
rate detection of anatomical regions, particularly the face and thoracoabdominal areas.
Accurate and anatomically consistent localization is essential for reliable vital sign es-
timation in PICU environments. Remote photoplethysmography (rPPG) depends on
stable face crops that preserve skin-only regions, as chrominance fluctuations are eas-
ily corrupted by background leakage or bounding box drift. Even minor spatial jit-
ter or rotation error can distort the rPPG signal, degrading heart rate accuracy and
introducing artifacts into the frequency spectrum. Similarly, thoracoabdominal detec-
tion must capture the cyclic expansion of the chest along the correct orientation axis
to extract respiratory motion cues. Boxes that drift or encompass non-thoracic re-
gions, such as blankets or bedrails, risk obscuring the subtle periodic deformations that
encode respiration.
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The PICU setting presents several challenges: patients are frequently obscured by
medical devices, lighting conditions, and patient orientations, and there is a lack of
annotated data necessary for training effective models for our specific clinical setting.
Notably, no existing public video datasets capture both facial and thoracoabdominal
regions simultaneously in PICU environments, necessitating the creation of our own
dataset. In addition to RGB inputs, depth information provides complementary geomet-
ric context that improves robustness to occlusions and illumination variability, both of
which are frequent in PICU environments. Unlike RGB, depth is invariant to lighting
changes and can help distinguish foreground anatomical structures from background
clutter such as tubing, blankets, or bedrails. This is particularly valuable when visual
cues are weak or partially obstructed. In such cases, depth enhances the stability of
region tracking and supports more reliable detection of subtle motion patterns. How-
ever, consistent acquisition and integration of depth data in real-world clinical settings
remain non-trivial, requiring careful sensor placement, calibration, and synchroniza-
tion with RGB streams to ensure reliable performance across patient conditions and
hardware setups.

Data scarcity remains one of the main challenges in the medical domain, primarily due
to strict privacy constraints and ethical considerations. Collecting large-scale, manually
annotated video datasets in a clinical environment like the PICU is exceptionally difficult
and costly. Furthermore, there is a significant domain gap between general-purpose
videos and clinical data; features learned from datasets such as Kinetics-400 often fail to
generalize to the unique PICU setting [3], limiting model performance across different
healthcare settings [4,5]. Downstream tasks in the PICU are especially challenging due
to the subtle motion patterns and unique anatomical features of pediatric patients, where
standard face detectors often fail because of underdeveloped facial structures and frequent
occlusions from medical equipment [6,7]. To address both data limitations and domain
discrepancies, self-supervised learning (SSL) provides a promising solution. Pre-training on
unlabeled hospital videos allows models to learn relevant spatiotemporal features directly
from the target environment, reducing dependence on manual annotations [8]. Among
SSL methods, masked autoencoders such as VideoMAE [9] have demonstrated strong
efficiency, offering robust representation learning for clinical settings where annotated data
is limited.

While convolutional neural networks (CNNs) have significantly advanced static object
detection and tracking, with strong performance on large-scale datasets such as COCO [10]
and PASCAL VOC [11], these models are not designed to capture the temporal dynamics
essential for physiological monitoring [12]. Reliable signal monitoring depends on stable
region-of-interest (ROI) tracking across time [1,13]. Frame-based detectors, including recent
YOLO variants, are limited in this context for two main reasons: first, they often suffer from
temporal inconsistencies such as bounding box jitter, which introduces motion artifacts into
the predicted signals [14,15]; second, their per-frame inference leads to high computational
overhead, making them less suitable for real-time applications.

The Video Vision Transformers (ViViT) model [16-18] relies on self-attention mech-
anisms to capture long-range dependencies and global context. However, it is computa-
tionally expensive and often struggles to generalize, especially when trained on limited
datasets. Its lack of inherent inductive biases, such as spatial locality, makes it less effective
in data-constrained environments. Moreover, its resource requirements increase quadrat-
ically when processing high-resolution inputs or integrating multimodal data like RGB
and depth, which makes it difficult to deploy in real-world clinical settings. In contrast,
3D convolutional neural networks (3D-CNNs) [19,20] possess strong inductive biases,
making them more suitable for limited-data scenarios. However, their localized kernel
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limits their ability to model long-range spatiotemporal dependencies, which are crucial for
understanding complex clinical settings.

PICU monitoring systems must process multiple patient video streams continuously
on shared, resource-limited workstations, often without dedicated accelerators or cloud
offloading due to privacy and maintenance constraints. Reliable bedside use therefore
requires low-jitter, real-time inference with a small memory footprint while coexisting
with other clinical software. Under these conditions, models whose time and memory
scale quadratically with the token length L (e.g., multi-head self-attention, O(L?)) become
impractical as resolution or temporal context grows. This motivates architectures with
linear-time complexity (O(L)) and low VRAM that maintain stable latency on longer clips
and higher resolutions.

Reliable face and thoracoabdominal localization is a prerequisite for contactless vital-
sign monitoring in the PICU. The face region provides the skin pixels needed for rPPG,
where minute chrominance fluctuations encode heart rate; any drift or background leakage
rapidly degrades signal-to-noise and produces unstable frequency peaks. The thoracoab-
dominal region carries respiratory motion, so bounding boxes must remain temporally
stable and orientation-aware to capture cyclic expansion/deflation without being contam-
inated by blankets, caregiver hands, or attached devices. Axis-aligned boxes are often
insufficient under infant pose changes, bed tilt, and off-axis cameras; oriented bounding
boxes (OBBs) yield tighter, rotation-consistent crops, improving both rPPG sampling using
skin-only pixels and respiration estimation with motion along the anteroposterior axis.
These constraints, coupled with frequent occlusions, specular lighting, and the need for
real-time processing on clinical hardware, motivate a detector that is robust, temporally
stable, and computationally efficient for face and thoracoabdominal ROIs, precisely the
focus of our approach below.

To address these challenges, we introduce Divided Space-Time (DST) Mamba, an SSM-
based detector for face and thoracoabdominal regions with oriented bounding boxes (OBBs).
The model is built on Selective State Space Models (SSMs) [21] and runs in linear time
O(L) with respect to sequence length L, which is essential for real-time monitoring. Unlike
VideoMamba, which processes space and time jointly, DST decouples them: a spatial stage
followed by a temporal stage. This factorization reduces cross-axis interference, preserves
temporal dynamics relevant to rPPG/respiration, and enables axis-specific optimization.
It also allows independent MAE pre-training for spatial masked patches and temporal
masked tube objectives. To handle PICU conditions, like occlusions and low contrast, we
use data-efficient masked-autoencoding pre-training and support multimodal input (RGB
+ depth) to improve perceptual robustness.

The primary contributions of this work are outlined as follows:

*  Reliable ROI detection in PICU videos: we successfully detect the face and thoracoab-
dominal regions with oriented boxes despite occlusions, devices, motion, and limited
labels in the PICU. This robustness is achieved via a Divided Space-Time Mamba
design that preserves temporal dynamics while remaining computationally efficient.

*  Data scarcity and domain gaps addressed: we mitigate scarce annotations and lab-to-
PICU domain shift by employing self-supervised masked-autoencoder pre-training
tailored to our clinical video distribution.

¢  Multimodal robustness under occlusion: we enhance detection accuracy and reduce
angle drift in occlusion-heavy scenes by integrating RGB with depth and analyzing
the accuracy—complexity trade-off for deployment.
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¢  (linical-grade efficiency and comparative gains: we achieve real-time throughput and
low FLOPs while outperforming strong frame-wise and video baselines on accuracy
and temporal stability through a factorized spatial-to-temporal SSM pipeline and
targeted ablations.

2. Related Works
2.1. Object Detection in Videos

Deep learning techniques have significantly advanced object detection. Initially, two-
stage detectors like R-CNN [22], Fast R-CNN [23] and Faster R-CNN [24] utilized region
proposals to achieve high accuracy. Single-stage detectors, including the YOLO family
of models [25-27] and the Single Shot Multibox Detector (SSD) [28], and highly efficient
architectures like EfficientDet [29], emerged as faster alternatives by predicting bounding
boxes and class probabilities in a single pass. More recently, transformer-based approaches
such as DETR [30], Deformable DETR [31], and Vision Transformer Detector (ViTDet) [32]
have been proposed, leveraging global context through Multi-Head Self-Attention to enable
end-to-end object detection.

However, these methods process frames independently, relying on separate tracking
modules (e.g., YOLO + DeepSORT [14]) for temporal coherence, which increases latency
and introduces jitter or artifacts that degrade vital sign signals in critical care [33,34]. This
gap highlights the importance of using factorized spatiotemporal modeling to maintain
temporal stability and orientation-aware detection under real-time constraints. By avoid-
ing reliance on external trackers and ensuring linear complexity, such designs support
consistent performance in PICU monitoring scenarios.

2.2. Face Detection in Complex Environments: NICU/PICU

Face detection in NICU/PICU settings has evolved from traditional hand-crafted meth-
ods like Haar cascades with AdaBoost [35] to deep learning models such as MTCNN [36],
RetinaFace [37], BlazeFace [38], and YOLOb5Face [39], which offer robustness to occlusions
and real-time performance.

Standard detectors struggle with neonatal morphology, medical occlusions, and clut-
tered backgrounds, as shown in NICU-specific adaptations such as NICU-Face (YOLOvV5-
based) [7], Hausmann’s model [40], and Grooby’s YOLOV? [41]. Integrated approaches
for vital sign estimation, including Huang et al. [42] for heart rate and Kyrollos et al. [43]
for respiration, still lack temporal consistency, often resulting in unstable region track-
ing and noisy physiological signals. In contrast, our approach leverages self-supervised
pre-training on domain-specific video data and incorporates multimodal RGB-D input
to improve robustness to occlusions and ensure stable tracking of anatomical regions for
continuous monitoring.

2.3. Thoracoabdominal Detection and Respiratory ROI Tracking

Thoracoabdominal detection for respiratory monitoring often relies on depth sensors
and classical approaches, including infrared imaging for torso motion [44], time-of-flight
cameras with anatomical landmarks [45], and segmentation-based techniques such as
normalized cuts [46] or probability masks [47]. Rehouma et al. [48] reconstructed a 3D
thoracoabdominal surface using dual Kinect v2 sensors to capture respiratory patterns.
Simpler pixel-tracking methods [49,50] and static deep learning models [51,52] have also
been proposed, although they lack the ability to capture temporal dynamics.

Frame-based approaches fail to preserve periodic respiratory motion under occlu-
sion, emphasizing the need for spatiotemporal continuity. The decoupled temporal de-
sign employed in our method captures subtle inter-frame motion patterns, while the use
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of oriented bounding boxes enables rotation-consistent localization in occlusion-heavy
PICU environments.

2.4. Video Understanding Models

To address the need for temporal continuity, models that process video data have been
developed. Three-dimensional convolutional neural networks (3D-CNNs) [19,20] extend
standard CNNs into the temporal dimension by convolving across successive frames.
While 3D-CNN s effectively learn short-term motion features, their fixed temporal receptive
field limits their ability to capture long-range dependencies, such as full breathing cycles
or prolonged occlusions. Increasing their depth or temporal window significantly raises
computational costs, making them impractical for long PICU video sequences [53-55].

More recent transformer-based video models, such as ViViT [16] and TimeSformer [17],
apply self-attention to sequences of frame patches, effectively modeling global spatiotem-
poral relationships. These approaches achieve strong performance on action recognition
benchmarks by capturing interactions across entire clips. However, their self-attention
mechanism has quadratic complexity with respect to the number of tokens (spatial
patches x temporal frames), resulting in high memory and computational demands. For
example, processing a 30-s PICU video at clinically meaningful resolution would involve
attending over a high-dimensional token sequence, making such models impractical for
real-time deployment without specialized hardware.

2.5. Self-Supervised Video Representation Learning

In data-limited environments, self-supervised learning (SSL) offers an efficient strategy
for pre-training models on unlabeled videos by constructing surrogate tasks. This is particu-
larly relevant in medical contexts, where data collection is constrained by privacy concerns
and manual annotation is costly [8]. By learning directly from the data, SSL enables models
to acquire meaningful representations that can be transferred to downstream tasks such
as detection or segmentation. A common SSL approach for video is contrastive learning,
where models are trained to map different augmentations of the same video clip to similar
embeddings, while pushing apart embeddings from different clips. Momentum Contrast
(MoCo) [56] and SimCLR [57] are prominent examples using instance discrimination objec-
tives. More recent variants such as BYOL [58] and DINO [59] eliminate the need for explicit
negative samples by employing teacher—student architectures to learn invariant features
from augmented video data.

Another class of self-supervised learning (SSL) methods is generative or reconstruction-
based. These approaches involve masking or removing parts of the input and training
the model to predict the missing content, thereby encouraging it to learn contextual and
semantic structures. Masked image modeling (MIM) techniques, inspired by BERT in
natural language processing (NLP) [60], have shown strong performance in both image
and video domains. For example, iGPT [61] and BEiT [62] demonstrated the effectiveness
of tokenizing images and learning through masked token prediction. In particular, Masked
Autoencoders (MAE) [63] showed that a vision transformer can be pre-trained efficiently by
encoding only a small subset of visible image patches and training a lightweight decoder
to reconstruct the missing ones. VideoMAE [9] extended this concept to video by lever-
aging the high redundancy between frames. It employs an extremely high masking ratio
(90-95%) using a tube masking strategy, which masks consistent spatial regions across con-
secutive frames, enabling efficient learning of spatiotemporal representations. A common
challenge with reconstruction-based self-supervised learning (SSL) is that optimizing for
low-level pixel accuracy may not produce representations that capture high-level semantic
features. Recent advancements, such as Unmasked Teacher (UMT) [64], address this limita-
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tion by incorporating a teacher network that identifies informative tokens and provides
softer reconstruction targets, thereby guiding masked autoencoders toward learning more
semantic representations.

Nonetheless, a key advantage of the MAE approach in our context is that it enables
pre-training directly on our collected PICU video data, as well as on additional video
sequences created from real clinical images captured in PICU/NICU settings, without
requiring any labels. This allows the model to learn representations adapted to the hospital
environment, such as the appearance of neonatal skin under PICU lighting or the typical
motion patterns of breathing infants, effectively bridging the domain gap encountered
when using models pre-trained on general-purpose video datasets such as Kinetics-400.

2.6. State Space Models (SSMs)

Transformers have become the dominant architecture for sequence modeling in both
natural language processing (NLP) and computer vision due to their capacity for global
attention [65]. However, their O(n?) complexity with respect to sequence length makes
them less tractable for very long sequences or high-resolution video. State Space Models
(SSMs) offer an alternative sequence modeling paradigm with O(n) complexity, based
on simulating linear dynamical systems. The Structured State Space Sequence Model
(54) [66] introduced a parameterization that enables learning long-range dependencies via
a diagonal-plus-low-rank representation of the state transition matrix, achieving strong
performance on long-sequence tasks while maintaining linear time complexity. Subsequent
refinements, including S5 [67], H3 [68], and GSS [69], further improved the stability and
efficiency of SSM-based sequence layers.

Mamba [21], based on the State Space Model (SSM), introduced a data-dependent SSM
layer that enables efficient processing of long sequences while maintaining computational
efficiency. It incorporates Selective State Spaces by making the state transition matrices
input-dependent, allowing the model to selectively process information based on the
current input. In addition, it employs hardware-aware parallelism to optimize long-
sequence processing by avoiding unnecessary memory access through selective scans
and kernel fusion. This design minimizes latency, maximizes throughput on modern GPUs,
and achieves true linear-time scaling. Mamba outperforms Transformer architectures on
large-scale real-world datasets and scales linearly with sequence length. Recently, several
Mamba-based approaches have leveraged the strengths of SSMs to efficiently model long
sequences [70,71].

The Mamba architecture has been extended to computer vision tasks through several
adaptations. Vision Mamba (ViM) [72] generalizes Mamba from 1D to 2D sequences
by employing bidirectional scans, processing all tokens in both forward and backward
directions to enhance spatial representations. VMamba [73] introduces a different scanning
strategy using 2D Selective Scan (S52D), which processes tokens in four directions to
enrich contextual information. EfficientVMamba [74] proposes a lightweight model that
applies atrous sampling on feature map patches to reduce computational complexity. To
improve local representation, LocalMamba [75] divides the image into groups and scans
each group’s window independently. It also incorporates spatial and channel attention
modules to filter out redundant information and retain only the most relevant features. The
strong performance of Mamba-based backbones across diverse vision tasks has spurred the
development of specialized models tailored to specific applications [76-80].

3D convolutional neural networks (3D CNNSs) are computationally expensive and
memory-intensive, while video transformers suffer from poor scalability due to the
quadratic complexity of self-attention with respect to input length. Both approaches
tend to be slow, resource-demanding, and require substantial amounts of training data.
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To address these limitations, Mamba has recently been extended to video understanding
tasks, offering a more efficient alternative to 3D CNNs and video transformers. Video-
Mamba [81] is designed to maintain linear complexity for long-range video modeling. It
begins by dividing the input video into non-overlapping spatiotemporal patches using a
3D CNN, followed by the addition of learnable spatial and temporal positional embed-
dings. Spatial tokens are arranged according to their locations and stacked sequentially
across frames. Leveraging Mamba'’s linear-time Selective State Space mechanism, Video-
Mamba can efficiently process long, high-resolution video sequences. However, due to
the phenomenon of historical decay, where earlier tokens have limited influence on later
outputs; VideoMambaPro [82] improves upon the original model by introducing masked
backward computation in the bidirectional Mamba process and residual connections within
the Mamba transition matrices.

In contrast, we propose a Divided Space-Time Mamba architecture that explic-
itly decouples spatial and temporal sequence modeling. Inspired by the factorized
space-time attention in TimeSformer [17], our model processes spatial and temporal
information in separate stages: spatial Mamba layers first operate within each frame
to preserve high-resolution spatial details, followed by temporal Mamba layers that
model dependencies across frames using the spatially encoded features. The factorized
space—time design enables the model to develop specialized representations along each
axis, preserving high-resolution anatomical detail through spatial encoding while cap-
turing temporal dynamics. By decoupling spatial and temporal processing, the archi-
tecture avoids the representational and computational trade-offs inherent in joint spa-
tiotemporal models. This separation prevents subtle, time-sensitive signals from be-
ing overwhelmed by dominant spatial features, a limitation often observed in unified
attention-based approaches.

3. Proposed Method
3.1. Overview

In this work, we propose a Mamba-based approach for medical video detection that
reliably localizes the face and thoracoabdominal regions in PICU videos. The backbone
factorizes spatiotemporal modeling by stacking Divided Space-Time (DST) Mamba blocks,
which first consolidate spatial structure before modeling temporal dynamics. This se-
quential design allows the encoder to capture both coarse scene layouts and fine-grained
motion cues, all while preserving temporal signals with linear-time complexity. On these
features, a lightweight Mamba-based detection head predicts oriented bounding boxes
(OBBs), yielding rotation-consistent localization under pose changes, bed tilt, and off-axis
cameras, as shown in Figure 1. To address data scarcity and domain shift, we investigate
two SSL pre-training techniques: Masked Autoencoders (MAE) and Unmasked Teacher
(UMT). MAE reconstructs masked patches to learn robust local appearance priors, whereas
UMT distills higher-level spatiotemporal structure from a teacher without masking. We
quantify the contribution of SSL and depth by comparing VideoMamba and our DST-
Mamba with and without pretraining and with RGB versus RGB-D input. All models are
first pretrained on a combined set of CHU Sainte-Justine PICU clips and publicly avail-
able pediatric data, then fine-tuned on the PICU dataset for face and thoracoabdominal
OBB detection. This comparative design targets the core clinical video challenges of data
scarcity, heavy occlusions, and rapid domain shift, while favoring deployment through
linear-time inference.
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Figure 1. Overview of our framework: (a) Divided Space-Time Video Mamba integrates patch
embedding, positional embeddings, Mamba encoder layers, and a detection head for class labels,
bounding boxes, and angles. (b) The DST Mamba Block. Input tokens are first processed by a spatial
Mamba layer that operates within each individual frame. The output is then reshaped and processed
by a temporal B-Mamba layer across all frames. * denotes the CLS token position.

3.2. Preliminary Explanation: State Space Models

State Space Models (SSMs) map a 1-D function or sequence x(t) € R — y(t) using a
hidden state /(t) € RN. This system is described as linear ordinary differential equations
(ODEs), employing matrices A € RN*N to define how the hidden state evolves and
B € RN*! and C € R!*N for the projection of the input and the hidden state to the output:

=
-
—
~
=
I

Ah(t) 4+ Bx(t), W

54 [66] and Mamba [21] integrate a timescale parameter A to discretize the continuous
system and convert the continuous parameters A, B to discrete parameters A, B. The
transformation is defined as follows:

A =exp(AA), B = (AA) l(exp(AA) —1)-AB. )
After the discretization of A, B, the (1) is transformed into:

hy = Aht_l + Bxy,

®)
Yt = Cht.
A global convolution is employed to compute the model output:
K = (CB,CAB,...,CAY 'B), W
y=xxK.

Here M represents the length of the input sequence x, and K € RM is a structured convolu-
tional kernel.
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3.3. Divided Space-Time Video Mamba
3.3.1. Baseline: Joint Spatiotemporal Processing

We first implemented a baseline following VideoMamba [81] which processes spatial
and temporal information jointly through a unified bidirectional scanning mechanism,
Figure 2. VideoMamba extends the Mamba state space model to video understanding by
treating the entire video as a single sequence of spatiotemporal tokens. Given an input
video X € R3*TxHxW where T is the number of frames and H x W are spatial dimensions,
VideoMambea first applies a 3D convolutional patch embedding to obtain N spatiotemporal
patches X, € RN*D; where N = T'II;IQ'W for P is the patch size, and D is the embedding
dimension. Each token represents a local spatiotemporal cube containing information from

multiple consecutive frames. VideoMamba [81] applies a joint scanning strategy. All N
tokens are arranged in a single sequence according to a spatial-first ordering:

Sjoint = [xl,lz X2,1, -  XHW /P21, X127+ -4 XHW/PZ,T] )

This sequence is then processed by bidirectional Mamba blocks:

onrward = SSNIforwarcl (Sjoint; A, B,C, A) (6)
Ybackward = SSMbackward (Sjoint/' A,B,C, A) (7)
onint = Yforward + Ybackward 8)

where A € RN*N B € RN*1 C € R™N are the state space parameters, and A is the
time-scale parameter. The bidirectional scan enables each token to aggregate context from
both past and future tokens in the sequence. All the patches are processed and then L
Bidirectional Mamba blocks are used, where a spatial-first bidirectional scan is applied.The
joint approach may not allow for fine-tuning the balance between spatial and temporal
processing. By processing spatial and temporal information jointly, the model might not
develop specialized features for each dimension.

4

[
Linear
Projection

5
Ve
s Pe——

Q—
1
Forward Backward

SsSM SsmM

T 1
Forward Backward
Conv Conv

T Iy Iy
|
Linear Linear

Projection Projection
Y N

Activation

Embedded Patches

Bi-Directional Mamba Block

Figure 2. Detailed architecture of the Bidirectional Mamba block. The input sequence of Embedded
Patches is processed through two parallel streams to capture dependencies in both forward and
backward directions.

3.3.2. Divided Space-Time Processing

While TimeSformer [17] employs a Divided Space-Time Multi-Head Self-Attention
(MHSA), its quadratic complexity with respect to token count poses challenges for long
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video sequences, where token numbers grow linearly with input frames. To address this,
we propose a Divided Space-Time Mamba block that models intra- and inter-frame long-
range dependencies efficiently, resolving scalability issues without sacrificing performance.
We refined this approach by introducing a modified Vision Mamba architecture based
on a Divided Space-Time Mamba model, as illustrated in Figure 1. By separating Vision
Mamba into spatial and temporal modules, the architecture leverages specialized learning
for each dimension: the spatial module captures fine-grained details within individual
frames, while the temporal module tracks movement and event progression over time.
This division is particularly effective for medical video detection, enabling the model to
learn dynamic appearance and motion cues more efficiently.

Each frame in the input clip is divided into non-overlapping patches of size P x P. This
ensures that the N patches cover the entire frame, with N defined as N = HW /P2. Each
token is represented by x,, ;) € R3P*, where p and t are spatial locations and a frame index.

The sequence of tokens is initially arranged in X € RN*T*D

, where N represents the patch

position within each frame, T indexes time and D is the embedding size of each token.
The encoder blocks process temporal and spatial dimensions separately, one after the

other. Each block I, we first use X5P¢¢ ¢ R(BXT)xNxD 4 fix the temporal dimension. Then,

we perform a bidirectional scan across all frames to capture spatial dependencies:
yspaw(t) = SSMspatial(XSpace(t))' )

The output of the temporal B-Mamba scan is then fed forward to compute the temporal
B-Mamba encoder where all tokens are grouped based on frames X!"¢ ¢ R(EXN)xTxD The
temporal B-Mamba block performs bidirectional selective scans across frames, ensuring
that temporal dependencies are aggregated from both past and future contexts. Across
both time and space dimensions, separate parameters are learned: Af¢, Bt"e, Cti"e for the
temporal component and A®P#¢, BSP4¢¢ CSPA¢ for the spatial component.

3.4. Pretraining Approaches

To address the scarcity of labeled data in clinical video settings, we investigated two
distinct self-supervised learning (SSL) strategies for initializing our Divided Space-Time
Mamba model: a Teacher-Student approach based on semantic distillation, and a fully self-
supervised reconstruction strategy using masked autoencoding. The embedded tokens are
passed through the encoder and decoder parts, respectively. The encoder part consists of L
stacked Mamba blocks and aims to extract meaningful latent representations by processing
only masked input sequences. These representations capture the context and structure
of the visible data while learning to predict missing tokens. In the pretraining stage, the
learnable special token is removed.

Teacher-Student SSL: We first attempted a teacher-student SSL approach using
CLIP [83] as the teacher model providing semantic guidance. Inspired by previous
works [64,81], the decoder part aligns unmasked tokens directly with a linear projection to
the teacher model. For masking strategy, we employ a frame-by-frame semantic masking
approach, assigning higher probabilities to tokens that carry crucial clues [64,84]. In the
PICU setting, this strategy resulted in unstable convergence and poor generalization, which
is caused by the semantic gap between the teacher and the target domain and the mismatch
between the pretraining objectives. CLIP was trained on generic web images and captions
that emphasize everyday objects and scenes, while our clinical data involve subtle and
domain-specific patterns such as neonatal anatomy, occlusions, and the presence of medi-
cal equipment. The teacher often highlighted irrelevant elements like monitors or cables
instead of the anatomical regions required for detection. Additionally, CLIP’s training ob-
jective focuses on global image—text alignment, whereas our model requires precise spatial
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localization and temporal consistency. This misalignment likely led to conflicting gradients
during training, especially under high masking ratios and in visually degraded frames.

Masked Autoencoders SSL: UMT relies heavily on the semantic guidance from the
teacher model. If this model is pre-trained on general images that are vastly different from
PICU environments, the guidance might be less relevant or even misleading. Video Masked
Autoencoders’s self-supervised approach allows it to learn directly from the target domain
(PICU videos) without relying on potentially mismatched external knowledge. The decoder
part consists of stacked B-Mamba blocks with a final output projection to reconstruct the
masked video patches. VideoMAE’s masking strategy and reconstruction objective enable
it to capture domain-specific features and patterns present in PICU data, even if they’re
very different from general image datasets. In the Divided Space-Time Mamba model,
and to keep the structure, masked tokens are replaced with learnable parameters. These
learnable embeddings act as placeholders for the missing information and are processed
alongside the unmasked tokens. The learnable parameters allow gradients to flow through
the masked positions, which can improve model optimization.

3.5. Depth Information Integration

To enhance the ability of the model to learn subtle anatomical features and motion
cues within the complex PICU setting. We augment our Divided Space-Time Mamba
architecture by introducing depth maps as an additional input channel alongside RGB
frames. For each input video frame X; € R¥*H*W we incorporate a corresponding depth
map Dt € RI>HXW resulting in a four-channel input X¢ € R**H*W_ Each token is
represented by X, ) € R4P?,

Depth information is fused through early channel-level concatenation prior to tok-
enization, ensuring pixel-wise alignment between RGB and depth modalities. The fused
4-channel frames are processed by a shared patch-embedding layer and the same Divided
Space-Time Mamba encoder, without the use of a separate fusion or attention branch.

During the pretraining phase, we apply the same masking strategies to both RGB
and depth channels, encouraging the model to learn the relationships between appearance
and geometric features. Our experiments demonstrate that the incorporation of depth
information leads to improved performance in both pretraining and downstream tasks,
particularly in scenarios requiring precise spatial understanding of the PICU environment.

3.6. Fine-Tuning

The pretrained model undergoes fine-tuning on the PICU dataset for face and thora-
coabdominal detection. During fine-tuning, the decoder block is replaced with a lightweight
detection head comprising three projection layers for classification, bounding box regres-
sion, and orientation angle prediction.

The detection task in PICU environments necessitates a multi-component loss function
to address distinct challenges inherent to clinical video analysis. The total loss integrates
four components:

Liotal = Leis + Eangle +a - Lopox + B Liou (10)

where « and f balance the contribution of each component based on their typical value
ranges during training.

Classification Loss (Ls): Binary Cross-Entropy is employed for object presence predic-
tion. This choice addresses the non-mutually exclusive nature of face and thorax detection
in PICU frames, where medical equipment frequently occludes one region while leaving
the other visible.

Angle Loss (Langle): Orientation prediction utilizes Cross-Entropy loss with Circular
Spatial Layout (CSL), discretizing the 180° rotation space into 180 bins. The CSL formulation
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addresses the periodicity of angular measurements, where standard Cross-Entropy would
incorrectly treat adjacent angles (e.g., 179° and 1°) as maximally different.

Bounding Box Regression (Lppox): L1 loss optimizes the coordinate predictions for
bounding box parameters (x,y, w, ). We selected L1 over L2 loss due to its robustness to
annotation outliers present in clinical data.

Oriented IoU Loss (Loy): The rotated Intersection over Union loss directly optimizes
the spatial overlap between predicted and ground truth oriented bounding boxes:

B Area(Bpreq N Bgt)
Area(Bpreq U Bgt)

Loy =1 (1)

This component ensures spatial alignment beyond coordinate accuracy, particularly
crucial for oriented boxes where axis-aligned IoU would penalize correctly oriented predic-
tions. In cases involving patient rotation, bed tilt, or oblique camera angles, a predicted
box may be geometrically correct yet misjudged by axis-aligned IoU metrics due to mis-
alignment with image axes. The rotated IoU (rloU) metric accounts for both position
and orientation, providing a more accurate measure of overlap under rotation. This is
particularly important for respiratory motion analysis, where chest orientation must be
tracked precisely, and penalizing correctly rotated predictions would compromise model
evaluation and training.

4. Experimental Protocol
4.1. Data Acquisition

To evaluate our approach, we collected two datasets. The first was gathered at the
PICU of CHU-Sainte-Justine Hospital (CHU-SJ). To our knowledge, this represents the only
available video dataset that captures both facial and thoracoabdominal regions in a PICU
setting, as existing datasets typically focus on either face detection or respiratory monitoring
in isolation. Due to privacy and ethical constraints, acquiring large-scale annotated PICU
video datasets is challenging. Our method overcomes this by generating video-like data
from publicly available images, enabling effective pre-training with limited real video data.

4.1.1. CHU-S]J Videos Collection

At CHU-Sainte-Justine Hospital’s PICU, videos are collected using a Microsoft Azure
RGB-D sensor color camera with 30 FPS (ultra-HD 12-megapixel RGB camera). Approx-
imately 485 different patients admitted to the PICU of CHU-SJ were recorded for 30 s
each [85]. Patients, especially infants and young children, frequently moved or shifted posi-
tions, causing their faces and thoraxes to move out of the camera’s field of view. Variability
in lighting, including low light during nighttime or shadows from medical equipment, sig-
nificantly affected video quality. The presence of medical devices such as ventilator tubes,
masks, or monitoring leads often obscures key regions, complicating the detection process.
To quantify these environmental challenges, Figure 3 provides a statistical breakdown of
common occlusion sources. As shown, medical necessities like oxygen masks (6.0%) and
patient coverings such as cloths (5.8%) and hats (4.4%) are the most significant contributors,
underscoring the need for an occlusion-robust detection model.

Faces and thoracoabdominal regions within each video frame were manually anno-
tated using oriented bounding boxes. For face detection, the oriented bounding box was
drawn around the face, from the forehead to the chin and from ear to ear. For thoracoab-
dominal detection, the oriented bounding box covered the area from the upper chest to
the diaphragm, including the region of the thorax and abdomen. The dataset comprises
individuals with varied attributes, such as skin color, ethnicity, and an age range spanning
from 0 to 18 years. This diversity ensures that our dataset captures a wide spectrum of the



Life 2025, 15,1706

13 of 28

population across skin tones, genders, and age groups. The institutional ethics committee
of Sainte-Justine Hospital approved the study and database construction (protocol code
2016-1242) on 31 March 2016. Prior to video recording, parental consent was obtained by a
research assistant trained in human ethics.

Average Occlusion Area by Type in PICU Dataset

% Area of Image

Figure 3. Average image area occluded by common sources in the CHU-S] PICU dataset. Medical
equipment (e.g., oxygen masks, 6.0%) and patient coverings (e.g., cloths, 5.8%) are the dominant
occlusion types.

4.1.2. Public Data Collection

To address the scarcity of labeled data in medical settings, we constructed a new
dataset derived from publicly available images with hospital settings, with a specific focus
on neonatal, infant, pediatric, and intensive care units. Approximately 5000 images were
collected using these keywords and transformed into video sequences using a domain-
specific sequential data augmentation strategy. To simulate the temporal and spatial
dynamics of real videos, each image was duplicated into multiple frames, creating the
illusion of continuity. Temporal variations, such as adjustments in brightness, contrast, and
color, were applied progressively across frames to replicate real-world changes in lighting
conditions and image intensity over time. Spatial variations were carefully introduced to
enrich the dataset with dynamic visual effects. These included random shifts to simulate
minor positional changes, random rotations to emulate natural camera movements, and
the addition of subtle noise for enhanced texture realism. Collectively, these augmentations
resulted in over 15 k video clips, providing a rich resource for pre-training models. This
approach addresses the challenge of limited annotated video data while maintaining
high relevance to medical environments, thereby supporting feature learning for our
specific environment.

4.2. Implementation Details
4.2.1. Pre-Training Stage

We first conduct experiments on the self-supervised pre-training approaches using
both datasets simultaneously. Each 30-s patient video is divided into video clips, sampled
with a temporal stride of 4 to address the temporal redundancy often present in consecutive
frames. Each video clip consists of 16 frames of size 224 x 224. For both SSL pre-training
methods, we follow most of the hyperparameter settings described in [9,64], but we use
a masking ratio of 80% for both of them. The models are pre-trained on both datasets
of 50 k video clips using the AdamW optimizer over 2500 epochs. The training process
employs a base learning rate of 1.5 x 104, weight decay of 0.05, and a warm-up period
of 40 epochs. We adjust the base learning rate in direct proportion to the total batch size,
using the formula Ir = base learning rate x batch size/256. The encoder architecture is set
to a depth of 12 with an embedding dimension of 768, while the decoder has an embedding
dimension of 384. To encourage the student model to learn high-level representations in
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Teacher-Student SSL, we use Mean Squared Error (MSE) to align unmasked tokens from
the student with those from the teacher model. For the reconstruction task in Masked
Autoencoders SSL, MSE is applied to measure the difference between the normalized
masked pixels and their reconstructed counterparts.

4.2.2. Fine-Tuning Stage

The pre-trained models are fine-tuned on downstream tasks, specifically face and
thoracoabdominal detection in the PICU. This evaluation assesses their effectiveness in
learning from small, specialized datasets while demonstrating data efficiency, how effec-
tively the model can train on a dataset with a complex setup. We evaluate the model’s
data efficiency and transfer learning capabilities through three training scenarios: (1) train-
ing from scratch, (2) pre-training on Kinetics-400 followed by fine-tuning on the PICU
dataset, and (3) using our VideoMAE pre-trained weights based on Vision Transformer. The
fine-tuning architecture consists of a Mamba Encoder backbone with specialized predic-
tion heads for classification, bounding box regression, and rotation angle prediction with
180 categories for each detected object. In order to capture representative frames across the
entire video, we employed a uniform sampling strategy with 16 segments per video. For
CHU-S] dataset, we generated 7216 samples, with the first 373 patients used for training
and the remaining 112 subjects for testing. We report the results based on the remaining
patients. Given the limited dataset size, we additionally performed 5-fold patient-wise
cross-validation to verify model stability. Patients were randomly divided into 5 folds
ensuring no patient appears in multiple folds. Each fold maintained approximately the
same age distribution and occlusion severity. To assess the influence of frame resolution
on model performance, we experiment with three resolutions: 224 x 224 and 640 x 640.
The training was carried out using the Rectified Adam (RAdam) optimizer, with a learning
rate of 1 x 1073, Training was conducted for 100 epochs, with a batch size of 32. All
experiments were implemented in PyTorch version 2.0.1), and the network was trained on
a single NVIDIA Montréal, QC, Canada Tesla V100S-PCIE-32GB GPU.

4.3. Evaluation Metrics
4.3.1. Detection Metrics

We evaluate detection performance using mean Average Precision (mAP), following
standard protocols adapted for oriented bounding boxes. This includes mAP at specific
IoU thresholds of 0.50, 0.60, and 0.75, as well as the comprehensive mAP50-95 metric,
which averages performance across IoU thresholds from 0.50 to 0.95. The rotated IoU (rIoU)
is computed by determining the exact intersection area of the two convex polygons that

define the boxes:
Area(Bpred N Bgt)

rloU =
Area(By.q U Bgt)

where Bpred and Bg; are oriented rectangles parameterized by (x¢, Ye,w,h,0).

4.3.2. Temporal Consistency Metrics

Temporal IoU measures detection stability across consecutive frames, quantifying
tracking smoothness by averaging the IoU of an object’s bounding box between adjacent
frames. A higher value indicates less jitter.

1 Tl
Temporal IoU = T—1 t; IoU(Bt, By11)

where B; represents the detected bounding box at frame ¢.
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4.3.3. Angle Evaluation

Oriented bounding box angles are predicted using Circular Spatial Layout (CSL),
which frames the task as a classification problem. We discretize the 180° orientation space
into 180 classes, resulting in a 1° resolution. This approach, trained with a Cross-Entropy-
based loss, naturally handles the 180-degree periodicity of oriented bounding boxes without
discontinuities. Performance is evaluated using Angle Accuracy, defined as the percentage
of predictions where the model correctly identifies the exact 1-degree ground truth bin.

5. Results
5.1. Comparison of Pre-Training Approaches

Figure 4 presents qualitative results comparing predicted outputs with ground truth
annotations for representative frames, demonstrating the model’s ability to detect and
localize regions of interest accurately.

Figure 4. Subfigures (a—f) illustrate representative PICU frames from different patients under varying

levels of occlusion and lighting conditions. Solid lines indicate ground truth annotations (green: face,
blue: thorax), and dashed lines represent model predictions (cyan: face, yellow: thorax).

The comparative results of various pre-training strategies highlight the challenges of
applying them in specialized domains such as the PICU, where data scarcity and distinct
visual characteristics complicate transfer learning. Pediatric data differs significantly from
adult datasets, and the presence of uncontrolled lighting, occlusions from medical equip-
ment, varying poses, and intra-domain variability exacerbates the difficulty of learning
robust representations. As shown in Table 1, models trained from scratch or fine-tuned
from supervised pre-training on Kinetics-400 struggle to converge effectively in this set-
ting. Scratch training suffers from overfitting risks due to the simultaneous need to learn
both low-level and domain-specific features, while Kinetics-400 pre-training, designed
for action recognition, offers limited benefit for fine-grained spatial tasks like face and
thoracoabdominal detection.

This performance gap is reflected in the training and validation curves shown in
Figure 5. The scratch-trained model shows slow mAP improvement and high variance,
while the Kinetics-400 pre-trained model converges faster but fails to generalize well due to
domain mismatch. In contrast, masked self-supervised pre-training achieves smoother loss
curves and consistently better mAP, indicating stronger domain alignment and robustness
to PICU-specific challenges.
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Table 1. Performance comparison of pre-training strategies using rotated IoU (rloU), mean Average
Precision (mAP) at different thresholds, and angle accuracy. The best results are bolded.

Model rloU mAP@0.50 mAP@0.60 mAP@0.75 Angle
From Scratch 0.85 0.56 0.41 0.22 0.25
K400 0.88 0.61 0.44 0.24 0.28
Teacher-Student 0.95 0.92 0.76 0.50 0.35
MAE (CHU-S] Only) 0.94 0.94 0.82 0.65 0.37
PreTrain-MAE (Synth.) 0.96 0.95 0.85 0.70 0.40

Training & Validation Loss Training & Validation mAP

=== PreTrain-K400 - Val 0.8
Y —— MAE (CHU-S] Only) - Train
1.75 N ~=~ MAE (CHU-SJ Only) - Val

--- n-K400 - Val
—— MAE (CHU-S] Only) - Train
0.50 0.0 === MAE (CHU-S Only) - Val

0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Figure 5. Comparison of training strategies. The PreTrain-MAE model, which was pre-trained using
an augmented dataset of video clips generated from real clinical images, shows faster convergence
and achieves a higher final mAP compared to the other baselines.

While the Teacher-Student paradigm (UMT) outperforms both baseline models, its
reliance on a CLIP-based teacher, which is trained on generic image distributions, limits its
effectiveness in medical settings. In the PICU, where scenes often include tubes, blankets,
and neonatal anatomy, this external guidance can introduce noise, misdirecting the student
and destabilizing convergence. As shown in Table 1, UMT achieves only 0.50 mAP@0.75,
compared to 0.70 for the Masked Autoencoder (MAE). Unlike UMT, MAE operates without
an external teacher and learns directly from the target data through high-ratio tube masking.
This purely self-supervised strategy captures subtle appearance cues and motion patterns
intrinsic to the PICU, enabling higher rloU, mAP, and angle accuracy. Overall, MAE's
domain-native learning approach proves more effective and reliable in clinical video
environments characterized by data scarcity and complexity.

Furthermore, the effectiveness of our self-supervised approach is significantly en-
hanced by our data augmentation strategy. As illustrated in Figure 5, a direct comparison
between the model pre-trained on clinical data alone (MAE (CHU-S] Only)) and the one
augmented with augmented clips (PreTrain-MAE) reveals a substantial performance gain.
The model leveraging augmented sequences derived from real clinical data not only con-
verges significantly faster but also achieves a higher final mAP and a lower training loss.
This result, quantified in Table 1, provides direct evidence that our augmented data genera-
tion is a key contributor to the model’s success, serving as an effective method to overcome
data scarcity and improve generalization in this challenging clinical domain.

5.2. Model Validation

To verify the robustness of our best-performing model, we conducted 5-fold patient-
wise cross-validation using the 373 training patients. The 112 test patients were held out
exclusively for final evaluation and were not included in cross-validation. Patients were
randomly divided into 5 folds of approximately 74-75 patients each, ensuring no patient
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appeared in multiple folds. Each fold maintained similar distributions of age groups,
occlusion severity, and recording conditions to avoid bias.

The cross-validation results in Table 2 demonstrate highly consistent performance
across all folds, with minimal variance in key metrics (mAP@0.5: o = 0.006, rloU: ¢ = 0.005).
This low variability indicates that our model generalizes well across different patient
populations and is not overfitting to specific patient characteristics.

Table 2. Five-fold patient-wise cross-validation results for DST-Mamba model demonstrating stability
across different patient subsets.

Fold Train/Test mAP@0.5 mAP@0.75 rloU Angle MAE Temporal IoU
1 298/75 0.948 0.682 0.952 0.41 0.94

2 299/74 0.962 0.705 0.961 0.39 0.96

3 298/75 0.951 0.693 0.958 0.42 0.95

4 300/73 0.957 0.701 0.963 0.40 0.95

5 297/76 0.960 0.698 0.955 0.38 0.94
Mean - 0.956 0.696 0.958 0.40 0.95

+SD - +0.006 +0.009 +0.005 +0.015 +0.008
95% CI - (0.949, 0.963) (0.685, 0.707) (0.952, 0.964) (0.382, 0.418) (0.940, 0.960)

5.3. Comparison with State-of-the-Art Methods

To evaluate the effectiveness of our DST-Mamba approach, we compared it against
established frame-based and video-based detection models, as summarized in Table 3.
Frame-based models such as YOLOv8-m achieve high single-frame accuracy (0.892 mAP)
but lack temporal coherence, resulting in unstable region-of-interest (ROI) tracking and
jitter, which negatively impacts physiological signal estimation. This instability introduces
motion artifacts into pixel-level signals, degrading the accuracy of downstream heart rate
and respiratory estimation pipelines, particularly in neonates with subtle physiological
cues. Furthermore, applying YOLOVS across 16 frames incurs substantial computational
load (634.6 GFLOPs) and high latency (243 ms). Incorporating DeepSORT [14] improves
temporal consistency (0.82 temporal IoU) but further increases inference time. ViTDet [32]
was also benchmarked in a per-frame configuration. While it achieved reasonable localiza-
tion performance (0.60 mAP50-95), its high latency (115 ms) and parameter count (102M)
reduce its suitability for real-time clinical deployment.

In contrast, video-based models such as I3D-FPN [20] and TimeSformer [17] ei-
ther suffer from low detection accuracy (e.g., 0.360 mAP for I3D-FPN) or require sig-
nificantly more parameters (up to 121M for TimeSformer) while still falling short in
temporal stability. VideoMAE (ViT-B) [9] achieves stronger performance (0.920 mAP,
0.90 temporal IoU) but with higher memory requirements and moderate latency. No-
tably, VideoMamba [81] achieves competitive performance across the board (0.940 mAP,
0.420 mAP50-95, 0.92 temporal IoU) while maintaining the lowest GFLOPs (5.71) and
latency (35 ms), making it a strong benchmark for efficiency.

Our proposed DST-Mamba model directly addresses this challenge by achieving
the highest detection accuracy (0.960 mAP) and the highest localization precision, with a
0.620 mAP50-95. Despite a modest increase in GFLOPs (7.56) and latency (43 ms) compared
to VideoMamba, DST-Mamba offers a better overall trade-off between efficiency and
accuracy. This advantage stems from its Divided Space-Time architecture, which enables
specialized spatial and temporal learning without the overhead of joint attention. These
findings suggest DST-Mamba is potentially suitable for real-time processing, pending
clinical validation, balancing accuracy, stability, and efficiency critical for downstream
physiological signal extraction.
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Table 3. Comprehensive comparison of models on accuracy, efficiency, and temporal stability for a
16-frame sequence.

Model GFLOPs Params (M) Latency (ms) mAP@0.5 mAP50-95 Temporal IoU
Frame-based Models

YOLOVS-m 634.6 26 243 0.892 0.445 0.75

YOLOv8-m + DeepSORT 634.6 28 352 0.926 0.465 0.82

ViTDet (per-frame) 270 102 115 0.69 0.60 0.80
Video-based Models

I3D-FPN 174.38 35 180 0.360 0.200 0.50

TimeSformer 380 121 75 0.785 0.240 0.65

VideoMAE (ViT-B) 101.9 86 83 0.920 0.330 0.90

VideoMamba 5.71 54 35 0.940 0.420 0.92

DST-Mamba (Ours) 7.56 73 43 0.960 0.620 0.95

5.4. Ablation Studies
5.4.1. Space-Time Mamba Architecture

We compared our sequential Mamba architecture with joint and parallel design vari-
ants, as shown in Table 4. While the joint model demonstrated slightly better computational
efficiency (1.39 GFLOPs, 35 ms), it yielded lower detection accuracy (0.91 mAP). In contrast,
the parallel architecture exhibited a severe performance drop (0.31 mAP), clearly indicating
that independently modeling spatial and temporal features is insufficient for accurate
region-of-interest (ROI) detection in PICU environments.

Table 4. Ablation study on Mamba-based architectures. Performance is evaluated for a 16-frame
sequence at 224 x 224 resolution.

Model Variant GFLOPs Params (M) Latency (ms) mAP@0.5
Parallel Space-Time 1.92 81 90 0.31
Joint Space-Time 1.39 54 35 091
Sequential (Ours) 1.85 73 43 0.95

Our proposed sequential design achieves the best balance, delivering the highest
accuracy (0.95 mAP) with only a modest increase in computational cost (1.85 GFLOPs,
43 ms). These results strongly support our hierarchical design choice: extracting spatial
features first, followed by temporal modeling, leads to more robust and reliable detection
in complex clinical video settings. As illustrated in Figure 6, DST-Mamba converges faster
and more smoothly than joint processing, ultimately reaching higher accuracy.

Training Performance: DST-Mamba vs. Joint Processing
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Figure 6. Training progression of DST-Mamba compared to the joint processing baseline. DST-Mamba
achieves smoother convergence and consistently higher mAP.
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5.4.2. Comparative Analysis of Model Architectures

Table 5 compares the trade-off between computational efficiency and detection accu-
racy across three video models. While ViT achieves strong performance (0.91-0.95 mAP),
it incurs significantly higher computational costs, ranging from 50.92 to 415.71 GFLOPs,
and has a large parameter count (86.23M). In contrast, VideoMamba delivers competitive
results (0.90-0.94 mAP) with substantially lower FLOPs (0.69-5.71) and a smaller model
size (54.14 M parameters). Notably, the Divided Space-Time Mamba model achieves the
highest accuracy (0.96 mAP) at 16 frames and 6407 resolution, while maintaining a moder-
ate computational footprint (7.56 GFLOPs). This result highlights the effectiveness of its
factorized design in achieving a favorable balance between accuracy and efficiency.

Table 5. Model performance and efficiency comparison. This table details the computational cost
(FLOPs), model size (Parameters), and mean Average Precision (mAP) for different architectures,
input resolutions, and frame counts.

Model Frames Input Size  FLOPs (G) Para:ﬁt;ters mAP
ViT 8 2247 50.92 86.23 0.91
ViT 16 2242 101.85 86.23 0.93
ViT 16 6402 415.71 86.23 0.95
VideoMamba 8 2242 0.69 54.14 0.90
VideoMamba 16 2242 1.39 54.14 0.91
VideoMamba 16 6402 5.71 54.14 0.94
Divided Space-Time 8 2242 0.93 73.65 0.89
Divided Space-Time 16 2242 1.85 73.65 0.95
Divided Space-Time 16 6402 7.56 73.65 0.96

5.4.3. Model Components

The results in Appendix A Table A1 demonstrate the impact of different architectural
components on detection performance. Removing the angle loss function (Without Angle
Loss) leads to the lowest performance across all metrics (IoU = 0.81, mAP@0.50 = 0.33,
MAE = 0.37), confirming the importance of angle supervision for accurate localization
and orientation. The fixed-angle variant (Without Orientation), which assumes vertical
alignment, achieves high IoU (0.92) and zero angle error by design, but only moderate
mAP (0.487), indicating limited adaptability to real-world orientation variability. Omitting
the rotated IoU (Without rloU) preserves high IoU (0.90) and mAP (0.92), but yields poor
angular precision (MAE = 0.40), underscoring the importance of including orientation-
aware overlap metrics. The depth-enabled model (With Depth) achieves the highest
IoU (0.96) and mAP@0.50 (0.95), though with a slightly elevated MAE (0.52), suggesting
that while depth improves spatial localization, it may increase complexity in estimating
precise object orientation. These results underscore the necessity of integrating angle loss,
orientation modeling, and rotated IoU, alongside depth information, for robust detection
in complex clinical scenes.

5.4.4. Pre-training Masking Ratio

In Appendix A Table A2 shows how different masking ratios affect both the efficiency
of self-supervised pre-training and the performance on the downstream detection task.
Among the configurations tested, a ratio of 80% provides the best trade-off: it achieves the
highest mAP@0.5 (0.95), requires fewer fine-tuning epochs (70), and significantly reduces
GPU memory usage (7.73 GB). This ratio introduces enough reconstruction difficulty to
promote strong representation learning while preserving sufficient spatial context. In
contrast, higher masking ratios (90-95%) reduce memory even further but slightly degrade
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accuracy, likely due to excessive information removal during pre-training. On the other
end, lower ratios (50-70%) offer more visual cues but result in higher memory usage and
slower convergence. These results confirm that 80% masking provides the best balance
for our setting, optimizing resource usage while improving both learning speed and final
detection accuracy. Figure 7 shows how different masking ratios affect pre-training and
downstream detection. An 80% masking ratio provides the best trade-off, achieving the
lowest pre-training loss and the highest fine-tuned mAP@0.5, while also reducing GPU
memory usage and convergence time.

Impact of Masking Ratio on Pre-training and Fine-tuning
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Figure 7. Impact of pre-training masking ratio on downstream detection performance. An 80%
masking ratio achieves the lowest pre-training loss and highest mAP@0.5.

5.4.5. Model Depth and Qualitative Results

Table A3 in Appendix A summarizes the impact of encoder depth on model perfor-
mance and computational efficiency. Increasing the number of layers from 4 to 12 leads
to a substantial improvement in mAP@0.50 (from 0.88 to 0.95) and rloU (from 0.90 to
0.96). However, further increasing the depth to 16 layers provides only marginal gains
(0.96 mAP@0.50) while significantly increasing parameters and FLOPs. Thus, the 12-layer
configuration (73.7 M parameters, 1.85 GFLOPs) offers the best trade-off between accuracy
and efficiency.

5.5. Robustness to Clinical Occlusions

To better understand the limitations of our DST-Mamba model in clinical practice, we
conducted a detailed error analysis across varying occlusion conditions. Test set predictions
were manually categorized into four occlusion severity levels based on the percentage of
anatomical region visibility, as shown in Appendix A Table A4. For the None category (less
than 10% occlusion), the model achieved IoU of 0.96 and mAP@0.50 of 0.98, demonstrating
robust performance under ideal visibility conditions. Light occlusion (10-25%), typically
caused by medical tubes or monitoring leads, resulted in minimal performance degradation
with an IoU of 0.95 and a mAP@0.50 of 0.96. Moderate occlusion (25-70%), including
scenarios where blankets or oxygen masks partially covered the regions of interest, showed
more substantial impact with IoU dropping to 0.88 and mAP@0.50 to 0.89. The mAP50-95
metric decreased from 0.61 to 0.52 between light and moderate occlusion levels, indicating
reduced localization precision at higher IoU thresholds. Severe occlusion (exceeding 70%
coverage) represented the primary failure mode for our model. Performance degraded
significantly with an IoU of 0.61 and a mAP@0.50 of 0.58. The mAP50-95 dropped to 0.31,
reflecting poor localization accuracy across all IoU thresholds. The 0.27 IoU drop from mod-
erate to severe occlusion indicates substantial detection instability when most of the target
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region is obscured. These results demonstrate that while DST-Mamba maintains acceptable
performance under partial occlusion, severe occlusion remains a significant challenge.

6. Discussion

Our results indicate that the Divided Space-Time (DST) Mamba architecture directly
addresses the core obstacles of PICU video detection, setting a new state of the art for face
and thoracoabdominal localization. By factorizing spatiotemporal modeling space-to-time,
the model preserves temporal dynamics under motion and occlusions, while oriented
boxes (OBBs) with circular smooth label (CSL) supervision explicitly handle orientation
variability and camera skew, improving rloU and reducing angle error. Domain-native
self-supervised pretraining (MAE/UMT) mitigates data scarcity and domain shift, yielding
higher mAP and more reliable convergence than training from scratch or Kinetics-400
finetuning. Integrating depth (RGB-D) further improves localization in occlusion-heavy,
low-contrast scenes, with a measured compute trade-off and occasional angle-error increase
that we report. Finally, the state-space formulation confers linear-time complexity and
real-time, deployment-oriented efficiency (e.g., ~23 FPS at 16 x 640% with ~7.56 GFLOPs)
while outperforming strong frame-wise and video baselines on accuracy and stability.
Representative failure cases are presented in Appendix A Figure Al, illustrating reduced
detection accuracy under severe occlusion, low illumination, and partial patient rotation.

6.1. From High-Accuracy Detection to Clinical Reliability

The extraction of physiological signals using non-contact methods like remote photo-
plethysmography (rPPG) is highly sensitive to the stability and consistency of the input
ROIL. Frame-based detectors process each frame independently, which introduces spatiotem-
poral jitter and increases inference time, limiting real-time applicability in clinical settings.
In contrast, our DST-Mamba model achieves a high temporal IoU of 0.95, ensuring tem-
porally coherent and stable ROIs. This stability reduces non-physiological motion noise
and improves the signal-to-noise ratio (SNR), which is essential for reliable physiological
monitoring. A mean Average Precision of 0.96 reflects both technical accuracy and clinically
meaningful consistency in anatomical localization across frames. This level of performance
minimizes gaps in region tracking, reducing the risk of signal disruption during rPPG
or respiratory extraction. In critical care settings, even short detection lapses can lead to
missed events or delayed alerts, making stable and accurate detection essential for con-
tinuous, high-fidelity monitoring. Additionally, the high rotational IoU ensures precise
anatomical localization, preventing signal contamination from surrounding regions and
reducing the risk of false alarms in intensive care environments.

6.2. Limitations & Future Work

The results of this study must be considered in the context of several key limitations.
First, the model was developed and validated using data from a single institution. Its
performance on data from other PICUs, which may differ in lighting conditions, camera
configurations, and clinical protocols, remains untested. To our knowledge, no other
publicly available PICU video datasets exist that capture both facial and thoracoabdominal
regions simultaneously, which necessitated our reliance on single-center data. To address
potential site-specific bias, our framework integrates multimodal RGB-Depth inputs, which
are inherently less sensitive to lighting variations and camera-specific color calibration.
In addition, we perform self-supervised pre-training on a heterogeneous corpus of over
50,000 video clips comprising both real PICU recordings and synthetically generated
hospital scenarios with diverse illumination, contrast, and viewpoints. This domain-
diverse pretraining strategy serves as an implicit form of cross-institutional regularization
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and enhances the model’s robustness to unseen acquisition conditions. A multi-center
validation is therefore a critical next step to assess whether the model can generalize.
Although this study incorporates depth maps during training, real-time depth capture
is not yet standard in most PICU monitoring systems. Future work should assess the
feasibility and clinical value of integrating low-cost depth sensors at the bedside to enable
robust 4D video analysis.

Second, the dataset is limited to 485 patients due to the practical and ethical challenges
of data acquisition in pediatric critical care. The absence of public video datasets for this task
necessitated our use of a synthetic data generation strategy. This strategy, while beneficial
to pre-training performance in our experiments, is itself a limitation. We acknowledge
that this method primarily provides rich spatial augmentation and does not capture true,
physiologically relevant temporal dynamics. However, our results demonstrate that this
spatial pre-training provides a crucial foundation, allowing the model to generalize much
more effectively when subsequently fine-tuned on real clinical videos where it learns the
relevant temporal patterns. Further work is required to determine if this method captures
meaningful temporal dynamics or primarily provides spatial augmentation. Third, this
study’s scope is confined to the detection and tracking of anatomical regions. The work
does not validate whether the improved detection metrics translate to more accurate
downstream vital sign extraction. Establishing this link between technical performance
and clinical utility is a crucial future step.

Finally, the model has not been tested in a live clinical workflow. Any claims regard-
ing deployment readiness are premature, as real-world use requires prospective testing,
integration with hospital IT systems, and navigating regulatory pathways.

Future work involves integrating our DST-Mamba architecture with vital sign extrac-
tion algorithms for prospective clinical validation against contact monitors. To address
data scarcity and foster collaboration, we will release our open-source code and aug-
mented data generation methodology upon publication. The code will be made publicly
available at: https:/ /github.com/mkbensalah/Divided-Space-Time-Mamba, accessed on
29 October 2025.

7. Conclusions

In this paper, we presented the Divided Space-Time Video Mamba framework for med-
ical video detection in Pediatric Intensive Care Unit (PICU) environments. By decoupling
spatial and temporal processing, our approach achieves high accuracy (0.95 mAP@0.50)
while maintaining computational efficiency. The incorporation of masked autoencoder
pre-training further improves performance, reaching 0.96 rloU and 0.95 mAP@0.50, and
shows improved performance on our single-center dataset. Additionally, integrating
depth information enhances the model’s robustness to occlusions and variable lighting
conditions. The efficiency of DST-Mamba supports its integration into real-time clinical
systems. With 7.56 GFLOPs and 73M parameters, the model processes 16-frame inputs at
640 x 640 resolution in 43 ms, achieving 23 FPS. Its linear complexity ensures predictable
scalability with respect to input resolution and sequence length, unlike transformer-based
models that scale quadratically. This makes it suitable for deployment on edge devices
such as bedside monitors or portable diagnostic tools in the PICU. Furthermore, the di-
vided space-time structure promotes interpretability by isolating spatial and temporal
contributions. This separation facilitates the analysis of detection failures and helps verify
consistency across frames. The use of oriented bounding boxes produces rotation-aware
outputs that align with clinical requirements, especially in respiratory monitoring where
thoracic orientation directly influences signal quality. In addition, saliency-based visualiza-
tions or attribution maps can be employed to reveal the specific regions within each frame
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that most influence the model’s predictions. Such visual feedback allows clinicians to verify
that the model attends to relevant anatomical features, rather than being misdirected by
medical equipment, patient coverings, or shadows. Future work will focus on extending
DST-Mamba toward cross-device generalization by evaluating its robustness across dif-
ferent RGB-D sensors and acquisition settings, and by incorporating domain-adaptation
techniques to mitigate sensor-specific variability. We will also investigate lightweight
pruning, quantization, and token-reduction strategies to enable efficient deployment on
embedded and bedside monitoring systems. This study was conducted under institutional
ethical approval from CHU Sainte-Justine, with all video data processed within secure
research servers. Future work will explore privacy-preserving edge Al and federated learn-
ing frameworks to ensure patient data remain local while enabling continuous, on-device
model adaptation for real-time bedside use.
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Appendix A. Tables

Table Al. Ablation study on model components. This table shows the impact of removing or adding
specific features, such as angle loss, fixed orientation, rotated IoU (rloU), and depth information, on
overall detection performance.

Model Variant IoU mAP@0.50 Angle
Without Angle Loss 0.81 0.33 0.37
Without Orientation 0.92 0.487 0.00
Without rloU 0.90 0.92 0.40

With Depth 0.96 0.95 0.52




Life 2025, 15, 1706 24 of 28

Table A2. Impact of masking ratio on self-supervised pre-training efficiency and downstream

task performance.

Masking Ratio Fine-Tune Epochs mAP@0.5 Memory (GB)
50% 95 0.89 12.28
60% 85 091 10.73
70% 80 0.93 9.22

80% 70 0.95 7.73

90% 70 0.94 6.21

95% 75 0.92 5.45

Table A3. Impact of Mamba encoder depth on model performance and efficiency. All experiments
use 224 x 224 input resolution with 16-frame clips. The optimal configuration is bolded.

Layers Parameters (M) FLOPs (G) mAP@0.50 rloU
4 43.2 0.85 0.88 0.90
8 53.1 1.15 0.92 0.93
12 73.7 1.85 0.95 0.96
16 96.4 2.45 0.96 0.97

Table A4. Performance across occlusion levels.

Occlusion Level IoU mAP@0.50 mAP50-95
None 0.96 0.98 0.68
Light 0.95 0.96 0.61
Moderate 0.88 0.89 0.52
Severe 0.61 0.58 0.31

(b)

Figure A1. Representative failure cases under challenging conditions. (a) partial patient occlusion of

the face or thoracoabdominal region by medical equipment or coverings. (b) severe occlusion from
medical devices. (c) low-illumination scene.
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