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Abstract

The recent progress of using graph based encoding of crystal structures for high throughput
material property prediction has been quite successful. However, using a single modality model
prevents us from exploiting the advantages of an enhanced features space by combining differ-

ent representations. Specifically, pre-trained Large language models can encode a large amount

of knowledge which is beneficial for training of models. Moreover, the graph encoder is able to
learn the local features while the text encoder is able to learn global information such as space
group and crystal symmetry. In this work, we propose Material MultiModal fusion, a fusion based
model which uses a multi-head attention mechanism for the combination of structure aware
embedding from the crystal graph convolution network (CGCNN) and text embeddings from the
SciBERT model. We train our model in an end-to-end framework using data from the materials
project dataset. We show that our proposed model shows an improvement compared to the vanilla
CGCNN and SciBERT model for all four key properties-formation energy, band gap, energy above
hull and Fermi energy. Specifically, we observe an improvement of 40% compared to the vanilla
CGCNN model and 68% compared to the SciBERT model for predicting the formation energy per
atom. Importantly, we demonstrate the zero shot performance of the trained model on small cur-
ated datasets of Perovskites, Chalcogenides and the joint automated repository for various integ-
rated simulation dataset. The results show that the proposed model exhibits better zero shot per-
formance than the individual plain vanilla CGCNN and SciBERT model. This enables researchers
to deploy the model for specialized industrial applications where collection of training data is pro-
hibitively expensive.

1. Introduction

Machine learning (ML) has been popular as a potent and adaptable technique in the hunt for materials
targeting a wide range of applications, especially when a thorough investigation of the materials space

is required [1, 2]. With the continuous expansion of high-throughput density functional theory (DFT)
datasets and the ongoing development of ML algorithms, it is anticipated that the use of ML for mater-
ials discovery will increase even more [3-5]. Historically, structural descriptors that meet rotational and
translational invariance had been used for encoding the crystal structures, ranging from Coulomb matrix
[6] and atom-centered symmetry functions to smooth overlap of atomic positions [7, 8].

First proposed more than 15 years ago, graph neural networks (GNNs) [9, 10] have drawn more
interest lately in material informatics as a way to overcome static descriptor limitations by learning the
representations on adaptable graph-based inputs [11]. Such GNNs have been implemented to predict
materials in complex systems including surfaces [12, 13] and periodic crystal arrangements [14, 15]. The
GNN models effectively encode and utilize the structure of the lattice. Particularly, the crystal graph con-
volution network (CGCNN) model [15] has shown exemplary performance in encoding the structure
property relation while handling periodic boundary conditions. However, the graph convolution based

© 2025 The Author(s). Published by IOP Publishing Ltd
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models require a large training dataset to learn generalizable structure property mapping. Moreover, the
instances of model failure are difficult to understand and interpret [16]. Most importantly, GNN models
are unable to incorporate global structural information like crystal symmetry, space group number and
rotational information.

Large language models (LLMs) provide a promising approach for knowledge discovery in materi-
als science due to their generalization and transferability [17]. Their success has motivated applications
in structure-property relationship discovery, particularly through pre-trained domain-specific language
models, which effectively capture latent knowledge from domain-specific literature. SciBERT, which has
been trained on a scientific corpus of 3.17 billion tokens has shown remarkable performance across a
diverse set of tasks [18]. Compared to GNN models, LLMs are able to incorporate global information
such as space group and crystal symmetry. Combining the strength of the GNN based models with
LLM models using multi modal data enhances the feature space, enabling the model to prioritize critical
features from diverse latent embeddings. While several studies have explored the potential of LLMs to
improve generalization, transferability, and few-shot learning, limited research has focused on integrating
information from natural language with structural-aware learning from GNNs for crystal property pre-
diction. Li efal [19] have used embedding concatenation for combining multiple modalities while, Ock
et al [20] have combined the graph structure of crystals with x-ray diffraction patterns for augmenting
the structure aware graph embedding with diffraction information. Lee et al [21] applied masked node
prediction pretraining strategy to train a multimodal model using a combination of text tokens and
information from lattice neighbors. However, this architecture might result in locally valid but globally
inconsistent structures. Das et al [22] have developed CrysMMNet which uses concatenation to combine
multiple modalities. These models have shown that using multimodal data with fusion models allows the
model to leverage the enhanced feature space. Concatenation uses static connections between modalities
and the model design does not focus on cross model connections. While, the proposed model uses cross
attention which enables the model to focus on long range dependencies across modalities. Moreover,
compared to concatenation, cross attention gives clear attention weights that can be interpreted. To the
best of our knowledge, this is the first work, which explores a multi-head attention mechanism to com-
bine structure aware and context aware embeddings to improve prediction and zero shot performance
for the prediction of material properties for inorganic crystals.

In this work, we propose, Material Multi-Modal Fusion(MatMMFuse), a fusion model which uses
a multi-head attention based combination of structure aware embedding of the CGCNN [15] and text
embeddings of SciBERT [18]. Importantly, we train our model in an end-to-end framework using data
from the materials project dataset. We show that MatMMFuse performs in line with state of the art
models for four key properties- formation energy, band gap and Fermi Energy. We observe an improve-
ment of 35% and 68% respectively compared to the plain vanilla versions of the model for predicting
the formation energy per atom. Furthermore, we demonstrate the zero shot performance of the trained
model on small curated datasets of Perovskites, Chalcogenides and the joint automated repository for
various integrated simulation (Jarvis) Dataset. The primary contributions of this paper are:

e Introduction of a multi-head cross attention based fusion approach for accurate material property
prediction.

o Efficiently using multimodal data to combine structure aware and context aware information to com-
bine local and global information.

o Improved zero shot performance for specialized materials like Perovskites and Chalcogenides.

2. Proposed model architecture

The following section describes the architecture of our multimodal framework. Given a dataset of inor-
ganic crystals denoted by D = [(S, T),P| where S, T and P denote the structure information in CIF
format, the text description and the material property respectively. Further, in the current setup, the

text descriptions T are generated from the structure information S using the RoboCrystallographer
framework [23]. The framework mimics the text description written by a human crystallographer given
the structural information of an inorganic crystal. Robocrystallographer is explained in further detail in
the appendix C. The model trains the parameters of the graph encoder (Gy) and the BERT encoder (By)
to learn the function fy — P. The figure 1 captures the model schematic. Each section of the model is
explained below. A explanation of technical term have been provided in the appendix F.
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Figure 1. The figure provides an overview of MatMMFuse. The CGCNN model generates a structure aware embedding while the
SciBERT model generates a context aware embedding which are combined using a multi-head cross attention mechanism.

2.1. Graph encoder

For this model, the material structure from the crystallographic information file (CIF) is encoded as a
graph G(V,E) using the CGCNN model where, the atoms are the nodes V and the bonds between the
atoms are encoded as the edges E. In addition to the graph topology, the node attributes capture the
different properties of the atom such as group, position in the periodic table, electro-negativity, first ion-
ization energy, covalent radius, valence electrons, electron affinity and atomic number. For each atom i
and it is neighbor j € N/(I), the convolution updates the atom’s feature vector h; as follows:

W =n+ 3 o ( Dwd 4 bf(’)) @g(szj? w4 bg’)) (1)
JEN(i)
where, the feature vector of atom i at layer / is denoted by th'l). The concatenation of hi(l) and hi(j)

and the edge features ¢; ; is z() W(l) and W denote the learnable weight matrices. Similarly, b}l) and

b{" denote the bias terms. The element wise multiplication is represented by ® with ¢ and g denoting
the activation functions. After L graph convolution layers, the graph level representation is obtained by
global pooling where in hg denotes the graph level embedding and N denotes the number of atoms.

1 & )

— (L

ha = ZT h (2)
2.2. Text encoder

The description of the CIF files are generated using the Robocrystallography [23] framework. We lever-
age the scientific knowledge encoded in the pretrained SciBERT model [18] followed by a projection
layer. For an input sequence X = (x1,%p, - ,X,), the self attention mechanism uses the Query Matrix,
Key Matrix and Value Matrix denoted by Q,K and V respectively. These are linear projections using the
corresponding learnable weight matrices.

Attention (Q, K, V) = softmax (QKT) \% (3)
o Vi

It is important to note that BERT uses a multi-head attention mechanism.

MultiHead (Q, K, V) = Concat (head,, ..., head;) Wo (4)

A fully connected feed forward network is used with a ReLU activation function and W;, Wand by, b,
learnable weight matrices and biases respectively with the final output obtained by stacking different
transformer layers.

FEN (x) = RelLU (XWl + bl) W2 + bz (5)
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The model has 12 transformer layers for encoding with 768 hidden dimensions and 12 attention heads.
The architecture has been inherited from the pretrained SciBERT model which follows the BERT base
configuration. The model has been pre-trained on a 1.14 million papers from Semantic scholar resulting
in a total of 3.17 billion tokens.

2.3. Multi-head cross attention fusion

The model uses a multi-head cross attention based framework for combining the embeddings gen-
erated by the LLM model (h;) and the structure aware embedding generated by the GNN ((h;,). The
entire framework is trained in a supervised end-to-end manner. This is a key advantage of the proposed
approach because this enables the model to focus on the important sections from the structure aware
embedding and the text based embedding. MatMMFuse applies the multi-head attention mechanism in
two stages. First, as self-attention within SciBERT, and second, as cross-attention during the fusion pro-
cess. Self-attention (in SciBERT) forms Q, K, and V from the same sequence, whereas our fusion applies
cross-attention with text as queries and structure embeddings as keys/values. The attention mechanism is
further explained in the appendix D.

Q= tht7 K= th57 V= W,h, (6)
. QK"

attentiong.ores = W (7)

attention,ighis = softmax (attentiongcores) (8)

combined = attentiony.ighs - V- 9)

The combined embedding is passed through a fully connected layer for the final prediction.
y = W, - combined + b, (10)
3. Model training and evaluation

We use a Nvidia RTX 4090 graphics processing unit to run our experiments. The framework is imple-
mented using the Pytorch library version [24]. We use AdamW [25] with a cosine warm-up schedule.
The implementation uses SmoothL1Loss, which behaves differently near zero compared to a pure L1
penalty. Further, AdamW decouples weight decay from the gradient update, which improves regular-
ization in large models. The AdamW optimizer and evaluation metrics have been explained in further
detail in the appendix E.

3.1. Dataset

For model training and assessment, we leverage the widely used materials project dataset [5]. We

focus on four important material properties: the formation energy per atom, the energy above the
hull, the fermi energy and the band gap. We use 95582 crystal structures with a 80%,10%,10% train,
validation and test split. For the CGCNN model, we directly use the data in CIF format. We use
RoboCrystallographer [23] to convert the CIF file to text files. These text files are the input for the
SciBert LLM model. The distribution of the target variables and text descriptions are available in the
appendix. For evaluating the zero shot performance of the model, we use the Cubic Oxide Perovskites,
Chalcogenides and the JARVIS dataset. The distribution of the target variables and text descriptions are
available in the appendix A.I.

3.2. Experimentation overview

We perform experiments in two paradigms. Firstly, in-domain wherein we use the traditional approach
to train MatMMFuse on examples from the Materials Project dataset. The model is trained in an end-to-
end supervised manner. Secondly, we use the trained model to predict the material property of mater-
ials with specialized applications without explicitly training on the respective datasets. This paradigm

is known as zero shot. This is intended to be used for specially curated small datasets for materials with
specific industrial applications. The model is trained on the materials project dataset. This trained model
is then used to predict the material properties of Perovskites and Chalcogenides dataset without seeing
any training examples. The model uses the structure-property relationships learned during training on
the large material project data to predict the properties on the test Perovskite datasets. We benchmark
the model against the unimodal graph (CGCNN) and text (SciBERT) models.

4



10P Publishing Mach. Learn.: Sci. Technol. 6 (2025) 045054 A Bhattacharya and S G Cloutier

Table 1. Benchmarking model performance. The lower the error the better the model performance. The best results are highlighted in

bold.
Mean absolute error (MAE)
Formation energy Fermi Energy above convex Band
(eVatom™1) energy (eV) hull (eV atom™!) gap (eV)
CGCNN 0.042 0.60 0.071 0.37
SciBERT 0.081 0.59 0.031 0.38
MatMMFuse 0.025 0.44 0.029 0.31
| R-Square (cod):0.98
4-pearson's r (r):0.99
L}
24 . g
8 . B
g O g
o x
-2
_4 4
-4 -2 0 2 4 0 2 4 6 8
Actual Actual
(a) Formation Energy(E¥) (b) Band Gap(By)

Figure 2. The scatter plot presents the actual versus predicted values for (a) formation energy per atom, (b) band gap. The model
tends to incorrectly predict the values for band gap when the values are close to zero.

4. Results and discussions

4.1. In-Domain

The table 1 demonstrates the performance of MatMMFuse for the prediction of four important material
properties—formation energy per atom (Ef), Fermi energy (E;) and the band gap (Bg).We report the
MAE (average absolute error) and R? (coefficient of determination) to study the model performance. We
observe an improvement of 40% compared to the CGCNN model and 68% compared to the SciBERT
model for the formation energy per atom. However, for the energy above hull, MatMMFuse performs
marginally better than SciBERT with a 6.7% improvement and a 58.5% improvement over the CGCNN
model. The total Fermi energy also shows a similar pattern with a 26% improvement over the vanilla
versions of both the models. ML models have struggled with predictions of the band gap for crystals

[26] for which the proposed model has an improvement of around 16% compared to the other models.
We present the training and validation error curves for different training regimes in the appendix B.5 We
hypothesize that the improvement across all the properties is occurring due to the ability of MatMMFuse
to selectively combine both local structural information and global information such as space group and
symmetry using the attention mechanism.

To further investigate the results, the figure 2 compares the scatter plots of the actual versus predicted
values for the formation energy per atom and the band gap for the test dataset. A detailed explanation
of the statistical terms has been provided in the appendix F. For formation energy, we observe that the
predictions are aligned with the actual values with a R? of 0.97 while, for Band Gap we can clearly see
that the model predicts a higher value when the actual value is close to zero.

To take a closer look at the incorrect predictions for band gap, we mapped the predicted values to
the physical properties of the crystal. As shown in figure 3(a), MatMMFuse tends to mispredict the band
gap for crystals which have both a low average atomic radius and high actual band gap. Although crys-
tals with smaller average ionic radii generally have stronger orbital overlap and therefore smaller band
gaps, this trend does not hold universally, which leads to mispredictions in certain cases. The map-
ping with other crystal properties have been presented in the appendix B.3. The plot 3(b) shows that
although the model occasionally underestimates or overestimates the values in the test data as indicated
by the orange outlier points. However, at a broader level, the model demonstrates strong generalization

5
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Parity Plot: Band Gap Prediction
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Figure 3. The parity plots study the the actual versus predicted values from different perspectives (a) property mapping to average
atomic radius. (b) Training, validation and test data splits.

Formation Energy (eV/atom)

Formation Energy {(eV/atom)
Formation Energy (eV/atom)

I
i
!

(a) (b) (c)

Figure 4. The t-SNE plot of the embedding from the embedding for the test dataset from materials project, with each point rep-
resenting an individual crystal. Colors for each point are associated with their formation energies. (a) CGCNN embedding, (b)
SciBERT embedding , (c) MatMMFuse embedding.

to unseen data. The colored parity plots for different test, validation and train dat splits for Formation
energy per atom and Energy above convex hull are presented in the appendix B.2

The t-distributed stochastic neighbor method (t-SNE) [27] allows us to understand the decision
boundaries and segregation of data points in the high dimensional embedding using 2D plots. The
figure 4 depicts a combined structure-composition latent space for the trained materials, in which points
within a grouping are anticipated to have similarities in both their atomic structures and elemental com-
positions. We see comparable clustering in the latent space. In the t-SNE plot of MatMMFuse we observe
that the dark and light colored ones are segregated in different clusters with lobe-structured decision
boundaries which shows that the learned embedding is able to discern between crystals with high form-
ation energies and ones with low formation energy. We observe decision boundaries in the embedding
generated by the SciBERT model as well but the points are not clustered. The embedding generated by
the graph encoder does not have clear clustering or decision boundaries. A similar pattern is observed
for prediction of band gap. The t-SNE plots for band gap are included in the appendix B.4.

4.2. Zero shot performance

A key challenge in material science is the lack of large datasets for specialized applications. Most mater-
ials with specialized applications such as photovoltaic cells and battery, do not have large datasets with
DFT calculated material properties to enable training of data hungry deep learning models. In this
section, we demonstrate that the trained MatMMFuse model can be used for predicting the material
properties for small curated datasets in a zero shot manner. The proposed attention-based method for
combining embeddings leads to an improvement in the zero shot performance of the model. Attention
allows the model to dynamically weight and combine embeddings based on the relevance to task
enabling the model to focus on the most informative features from each embedding. In the table 2, we

6
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Table 2. Zero shot performance for predicting the energy. The lower the error the better the model performance.

Mean absolute error (MAE)(eV)

CGCNN SciBERT Proposed
Perovskites(ABO3) 1.42 2.84 1.28
Chalcogenides(ABS3) 1.33 1.44 1.05
R-Square (cod):0.95 . .
9 | Pearson's r (r):0.97 .
U L] L]
g 0 '
o
(7]
1= .
o
-2
-4
-4 -2 0 2 4
Actual

Figure 5. The scatter plot presents a comparison between the actual and the predicted values of formation energy per atom for
the JARVIS dataset.

compare the zero shot performance of MatMMFuse for predicting the material property of Perovskites,
Chalcogenides and the Jarvis dataset with the vanilla unimodal CGCNN and SciBERT models.

4.2.1. Cubic oxide perovskites

ABOs; perovskites are viewed as promising resistive-type gas sensors [28]. The target variable is the
formation energy per formula unit. It is important to remember that there are 2704 observations in
the dataset which is insufficient for training large GNN or LLM models. MatMMFuse achieves a MAE
of 1.28 eV on the test dataset which is 10% lower than the CGCNN model and 55% lower than the
SciBERT model.

4.2.2. Chalcogenide perovskites

For photovoltaic applications researchers have proposed Chalcogenide perovskites of the form AB(S, Se)s
because of their stability, non-toxicity, and lead-free composition [29]. To test our model, we repeated
the same experiment for a dataset for AB(S, Se)s; perovskites. We have used the relative energy as the tar-
get variable. This indicates the stability of a crystal by comparing with the lowest energy polymorph of
the same chemical composition. The dataset has 1621 observations. Nonetheless, MatMMFuse achieves

a low MAE of 1.05 eV, lower by 21% and 27% as compared to the CGCNN and SciBERT models
respectively.

4.2.3. JARVIS

The JARVIS dataset [30] is a high-throughput materials database developed by the National Institute
of Standards and Technology. The dataset encompasses a wide array of materials properties, computed
using DFT simulations. MatMMFuse achieves a MAE of 0.078 eV/atom which is 48% lower than the
CGCNN and the 59% lower than the SciBERT model. The actual versus predicted curve in figure 5
shows that the predicted and actual values are aligned with a R* of 0.94. However, there are a number
of data points around —0.9 eV atom ™! which have a much lower prediction.

7
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Figure 6. The plot compares the performance of different BERT models for encoding the text representation. MatSciBERT has the
best performance and ALBERT has the worst performance.

Table 3. Zero shot performance of the MatSciBERT model for predicting the Energy. The lower the error the better the model
performance.

MAE (eV atom™!)

MATSciBERT SciBERT
Perovskites (ABO3) 2.26 1.28
Chalcogenides (ABS3) 1.33 0.98

4.3. Ablation studies

This section presents the ablation studies performed by changing, adding or removing the key parts or
inputs of the model architecture. Additional ablation studies have been provided in the appendix B.
They include the study of the training epochs and change in learning rate on the model performance.

4.3.1. Encoded domain knowledge
To prove our hypothesis that MatMMFuse is able to leverage the encoded knowledge in the BERT
model, we have run experiments by using variations of the BERT model as the text encoder for predict-
ing the formation energy per atom. The alternate models used are ALBERT [31], RoBERT [32], DeBERT
[33] and DistillBERT [34]. Due to the knowledge of material science encoded in the MatSciBERT model,
we observe that it outperforms all models closely followed by SciBERT model. It is important to note
that ALBERT shows a sharp deterioration in model performance. We posit that this might be due to
two reasons. Firstly, ALBERT shares parameters across all transformer layers, reducing model size but
limiting the model’s capacity to learn distinct representations at different levels of abstraction. Secondly,
it uses token order prediction as compared to next token prediction used in other BERT Models. The
figure 6 presents a comparison of model performance for different BERT models.

Further to this, we also observe a similar improvement in the zero shot performance of the model on
the specialized cubic oxide Perovskite, Chalcogenides and the JARVIS dataset which is shown in table 3.

We decided to use SciBERT model because it has more interdisciplinary knowledge which leads to a
broader scientific context. Especially, for applications in biomedicine and energy. ABO; perovskites are
used for solar cells and therefore SciBERT outperforms MatsciBERT in such specialized applications.

4.3.2. Encoded lattice structure

The encoding of the crystal lattice structure using different graph encoding models results in different
ways of capturing the complex relationships within crystal structures. We used SchNet [35], MEGNet
[14], CGCNN and graph convolution networks (GCN) for the analysis. Vanilla GCN architectures are
not designed to incorporate periodic boundary conditions. On the other hand, SChANET and CGCNN

8
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Figure 7. The plot compares the performance of different GNN models for encoding the lattice structure. CGCNN gives the
optimum tradeoff between performance and efficiency.

explicitly incorporate crystal periodicity. CGCNN uses discretized bins for edge features while SchNet
uses continuous radial basis functions for smooth distance representation. CGCNN includes more
extensive information about the crystal structure and is computationally more efficient compared to
SchNET which uses continuous-filter convolutions with filter-generating networks that create custom-
ized filters for each atomic interaction based on distance. Unlike other models, MEGNet uses global state
variables such as unit cell parameters which makes it more expressive but also more computationally
expensive. We found that CGCNN gives the optimum tradeoff between performance and efficiency. The
figure 7 presents a comparison of model performance for different GNN based encoder models.

4.3.3. Multi-head attention module

A comprehensive ablation study was performed on the different sub-modules of the attention based
fusion mechanism for allowing the model to focus on the specific parts of the structure aware and con-
text aware embeddings. We observe that using a multi-head attention method considerably improves the
performance. Using a layer-norm to normalize the layer outputs increases the stability of the training
and helps the model converge. For small datasets, including dropout prevents overfitting and helps the
model generalize better. Interestingly, including a residual layer does not lead to a significant improve-
ment in model performance.The waterfall chart (figure 8) captures the effect of each change on the
model performance.

4.3.4. Robustness to training data size

As reported in literature, reducing the size of the training data reduces the performance of the CGCNN
model [15]. Interestingly, we observe that using an enhanced feature space which uses multiple mod-
alities improves the robustness of the model to reduction in training data. The figure 9 shows that the
model is able to converge to a low training loss.

4.3.5. K fold cross validation

We report the results for K fold validation (K = 3) of MatMMFuse for the prediction of band gap and
Formation Energy per atom. We have reported the normalized MAE (nMAE) which is calculated by
normalizing MAE by mean of the true values of the property. This enables us to compare error values
across different properties. We also show the coefficient of determination(R?). We observe as shown

in figure 10 that there is no significant change in error values with the change in the split of the data.
However, the error value is higher than the train and test errors in the single data split. We believe this
might improve with training the model for each split to higher epochs and increasing the number of
folds at a higher compute cost.
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Figure 9. The chart shows that MatMMFuse is relatively robust to reduction in training data.

4.3.6. Corruption of text input

Corruption of text input remains a limitation of BERT models [36]. Moreover, Robocrystallographer
might lead to corrupted text output if there are aberrations in the CIF file [23]. Thus, we have stud-
ied the effect of different levels of text corruption on the performance of the model for predicting the
formation energy per atom. For corrupting the text, we have deleted random characters, added random
punctuations and performed random word substitutions. The level of corruption has been controlled by
using the probability of corruption. There is a significant decrease in model performance as captured by
the plot. The figure 11 captures the degradation in model performance in training and inference with
the increase in corruption of the text input.

5. Conclusion

This paper explores a multimodal fusion model for predicting material properties. The MatMMFuse
model uses a multi-head cross attention based method for combining the embedding from GNN and

a BERT model. The CGCNN model has been selected to encode the lattice structure as a graph encod-
ing while, the SciBERT model has been used to encode the text descriptors. The SciBERT model already

10
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Figure 11. The figures 11(a) and (b) shows the effect of the corruption of the input text on the training loss and the test loss
respectively. The model performance deteriorates significantly with corruption in text.

possess domain specific scientific knowledge which is helpful for generating meaningful embeddings. The
enhanced feature space with the attention mechanism allows the model to selectively focus on key fea-
tures from the structure aware graph embedding and the context aware embedding. The graph encoder
focuses on local information while the text encoder is able to learn global information such as symmetry
and space group. The results show that the proposed model is able to outperform both the plain vanilla
versions of CGCNN and SciBERT models by 35% and 68% respectively for predicting the formation
energy per atom. We observe an improvement for the Energy above Hull and the Fermi energy as well.
Further, we observe a marginal improvement for the prediction of Band Gap which is aligned to the
state of the art. Interestingly, we demonstrate that the zero shot performance of the model is better than
the vanilla CGCNN and SciBERT models for cubic oxide perovskites, chalcogenide perovskites and the
JARVIS datasets which is an important step for specialized uses cases. Analyzes of the t-SNE plots show

11
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that our model is able to generate embeddings which have clear lobe-shaped decision boundaries and
similar material properties are clustered together. Finally, we believe the ability of LLM models to use
text based inputs for probing the underlying mechanism of the model to understand specific points of
failure provides a tool to analyze the structure property relationships in crystalline solids.

Limitations and future scope of work: the model is unable to accurately predict the band gap for

near zero values. A possible explanation might be the lack of experimental data. MatMMFuse has

been designed to work only with CIF Files and thus, performance might be improved with ground-

ing in experimental data. Importantly, quantum effects become more dominant at very small energy
gaps. Thus, a possible area of improvement would be the explicit incorporation of quantum effects.
Furthermore, we believe that additional modalities might lead to an improvement in the model perform-
ance. The cross attention operation scales quadratically with sequence length which makes it computa-
tionally expensive for long sequences. Also, it is possible for one modality to dominate the training pro-
cess leading to imbalance. Thus, it would be interesting to explore alternate approaches for a balanced
integration of modalities.
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Appendix A

A.1. Dataset description
A.1.1. Materials project
We leverage the widely used materials project dataset [5]. We focus on four important material prop-
erties: the formation energy per atom, the energy above the hull, the Fermi energy and the band gap.
The table A1 shows the distribution of the target variables. Most of the crystals are thermodynamic-
ally stable compounds, as indicated by a mean formation energy of —1.66 eV atom ! and a median
of —1.75eV atom™!. The average energy above hull is only 0.022 eV atom ™!, the maximum value of
7.497 eV atom ™! reflects the presence of highly metastable phases. The Fermi energy distribution is
centered near 3.07 eV with a substantial spread (o = 2.78 ¢V) and extreme outliers (—14.02-19.41eV),
suggesting a diverse range of electronic structures. Band gaps are heavily skewed toward metallic beha-
vior, with a median of 0.00 eV and more than half the compounds being gapless, although the range
extends to 17.891 eV, encompassing wide-gap insulators. Overall, the materials project dataset covers a
broad range of crystals.

We use Robocrystallographer [23] to convert the crystal data encoded in CIF file into text format.
The distribution of the generated text descriptions are given below in the table A2.
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Table Al. Summary statistics for target variable for materials project dataset.

Target variable statistics

Formation energy Fermi energy Energy above convex hull Band Gap (eV)
(eVatom™1) (eV) (eV/atom)
Mean —1.66 3.069 0.022 0.874
Standard deviation 1.009 2.776 0.244 1.514
Range (—11.86, 5.45) (—14.017, 19.41) (0.00, 7.497) (0.00, 17.891)
Median —-1.75 3.024 0.00 0.00

Table A2. Summary statistics for text descriptions for materials project.

Text description statistics

Average length 741.4 words
Standard deviation 1426.9 words
Range (28,49 051) words

Table A3. Summary statistics for text descriptions for cubic oxide perovskites(ABO3).

Text description statistics

Average length 136.6 words
Standard deviation 31.6 words
Range (79, 239) words

Table A4. Summary statistics for text descriptions for Chalcogenide perovskites(ABS3,ABSes).

Text description statistics

Average length 199.2 words
Standard deviation 103.2 words
Range (63, 1641) words

A.1.2. Cubic oxide perovskites

We use the cubic oxide perovskite ABO; dataset from computational material repository for evaluating
the zero shot performance of MatMMFuse. The summary statistics of the text descriptions are given in
the table A3. The average length of words is much smaller for the Perovskite and Chalcogenide data-
sets compared to the Materials project dataset with a smaller standard deviation. This indicates that
MatMMFuse does not require detailed descriptions for accurate predictions.

A.1.3. Chalcogenides
Chalcogenide perovskites have the form AB(S,Se);. We have used them for evaluating the zero shot per-
formance of MatMMFuse. The summary statistics of the text descriptions are tabulated in the table A4.

Appendix B. Analysis of results

B.1. Effect of epochs on model performance

The variation of the test loss with the number of epochs used for training the model is a good indic-
ator of overfitting and model convergence. We observe that our model converges within a few epochs
and changing the number of epochs does not affect the test performance. The figure B1 shows that the
test loss is high when the model is trained only for 2 epochs. However, as we increase the number of
epochs to 6 we observe that the model is able to generalize and achieve superior performance on the test
dataset.

B.2. Generalization

To study the ability of the model to generalize, we have explored the shift in the test predictions com-
pared to the true values for the prediction of formation energy per atom and energy above convex hull.
The data points have been colored according to the train, test and validation splits. The figure B2 shows
that MatMMFuse generalizes well to the unseen test dataset.

13



10P Publishing Mach. Learn.: Sci. Technol. 6 (2025) 045054 A Bhattacharya and S G Cloutier

0.07
0.0608
—~0.06 A
£ N
9 \
1]
S 0.05 *
) \
"u': \
< \
= 0.04 \\
b v 0.0312
[} \
F 0.03 AL 0.0263 0.025
- .
0.02
2 4 6 8
Epochs

Figure B1. The line plot shows the generalization capability of MatMMFuse when trained for a low number of epochs. We
observe that the model converges within a few epochs and generalizes well after 6 epochs.
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Figure B2. The colored parity plots for visualizing the ability of MatMMFuse to generalize to unseen Test and validation data.
The plots have been colored according to the data split. (a) Formation energy per atom, (b) energy above convex hull.

B.3. Color mapped parity plots

Unit-cell volume and mass density quantify packing; higher density (smaller volume at fixed stoi-
chiometry) generally strengthens interactions and alters phonon/electron transport coefficients. The
number of atoms per primitive cell reflects structural complexity. Larger cells add vibrational and elec-
tronic modes and scattering channels, often reducing lattice thermal conductivity and broadening prop-
erty dispersion. The number of distinct elements (chemical complexity) governs electronegativity con-
trast and bonding heterogeneity, enabling phase stabilization via configurational entropy and tuning
electronic and ionic transport. The plots show the actual versus predicted values for prediction of band
gap (figure B3) and the formation energy per atom (figure B4) for the crystals. Unfortunately, We do
not observe a clear pattern in the behavior of outliers with the physical properties.

B.4.t-SNE
The figure B5 shows the t-SNE plot for the prediction of band gap on the materials project test data.
We can observe that the supervised embedding has many cluster spread throughout the plot, the BERT

14
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Figure B3. The line plot shows the predicted and true values for the band gap. The color mapping shows different physical prop-
erties of the crystal system.

model has denser clusters while MatMMFuse has clearer lobe shaped dense clusters for materials with
lower band gap.

B.5. Grid search for learning rate

We have carried out a grid search of the learning rate using four values 1x107%, 1x107%, 1x107%
and 1x107%, Interestingly, we observe that apart from the high learning rate of 1x10~%, the model
starts with a low loss after the first epoch and quickly converges. The figure B6(a) shows that the train-
ing is more unstable for higher learning rates of 1x10~% and 1x10~%. The learning rate of 1x10~%
is too low and leads to slower convergence for some material properties like band gap. Hence, we have
selected 1x107% as the optimum learning rate. The figure B6(b) shows that model generalizes better
when we train using lower learning rates.

Further, we have also investigated the effect of freezing the transformer parameters on model overfit-
ting during model training by plotting the training and validation loss along with a rough indicator of
overfitting using the difference Validation and train loss values. For this experiment, we initially freeze
the transformer parameters and then unfreeze them after some epochs. The figure B7 shows that for the
first scenario where we unfreeze the transformer after 3 epochs and train for a total of 10 epochs. In the
second scenario, we unfreeze the transformer parameter after 5epochs and train for 25 epochs. As we
keep on increasing the epochs, the model starts overfitting. When we freeze the transformer parameters,
the slope of the training curve is steeper compared to when we unfreeze the transformer.
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Figure B4. The line plot shows the predicted and true values for the formation energy per atom. The color mapping shows differ-
ent physical properties of the crystal system.
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Figure B5. The t-SNE plot of the embedding from the embedding for the test dataset from Materials Project, with each point
representing an individual crystal. Colors for each point are associated with their formation energies. (a) CGCNN embedding,
(b) SciBERT embedding , (c) MatMMFuse embedding.
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Figure B7. The line plot B7(a) shows that the learning curve behavior when we unfreeze the parameters after 3 epochs and train
for 10 epochs while the plot B7(b) captures the model performance when we unfreeze the parameters after 5 epochs and train for
25 epochs leading to overfitting.
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Appendix C. Robocrystallographer framework

Robocrystallographer is a tool that automatically generates descriptions of crystal structures from crystal-
lographic information files (CIFs) [23]. These descriptions are designed to mimic how a human crys-
tallographer would write about a structure, using standardized natural language templates. The CIF
describing the structure of a crystal is used as input. Robocrystallographer parses the CIF to extract the
space group, lattice parameters, symmetry operations, bond lengths and coordination environments. This
information is written into descriptions using a rule based system. The text description of the crystal
structure enables a LLM model to generate context aware embeddings. The text descriptions contains
complementary information such as space group and symmetry operations which are not present in the
graph descriptions. The primary limitation is that, for complex crystal systems, Robocrystallographer
might generate text descriptions with errors and corrupted text.

Appendix D. Attention mechanism

The attention mechanism used in transformers relies on the Query (Q), Key (K) and Value (V)
matrices. The query matrix represents what we are looking for in the data. The key matrix contains
potential matches and the value matrix contains the actual data to be aggregated. First the transformer
computes the similarity scores by calculating a dot product of the query and key matrices. This is then
scaled by using the dimension of the key matrix. This is then converted into a probability distribution
by using the softmax function. Softmax A function that converts vector of raw values into probabilit-
ies. This is multiplied with the value matrix to generate the context aware embedding. There are two
types of attention mechanisms which are used with transformer architectures. The first one is self atten-
tion where the Q, K and V matrices are generated by using the projections of the same input vector into
the three Q, K and V components. The other mechanism is cross attention wherein a different input vec-
tor is projected into the Q,K and V matrices. The manuscript uses self attention in the SciBERT Models
to generate the context aware text embeddings and cross attention to dynamically fuse the graph and
text embeddings. Often used in attention mechanisms to assign weights to inputs. Cross attention fusion
allows the model to dynamically focus on different features unlike Concat wherein the embeddings from
different modalities are combined end-to-end along a dimension.

Appendix E. AdamW optimizer

AdamW is an optimizer which improves on the standard Adam optimizer by decoupling weight decay
from the gradient updates [25]. This helps prevent overfitting in large models by applying weight decay
directly to the weights. The equations for the AdamW optimizer are explained below. We have an optim-
izer with a learning rate of 7 and 3, and [, be the exponential decay rates for the moment estimates
and A be the coefficient for weight decay,

Given: 0, (parameters at time t),
& = VoL(0;) (gradient at time t)
my = 51mt71 + (1 - ﬁl)gt
vi=Bovi1 + (1 - 52)35

A m
mt:
1- 4
A Vi
Ve =
1-p4

Weight decay step: 0, <6, —n-\-0,

my
Adam update step: 6,1 =6, —n- ——.
\V4 {}t + €
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Appendix F. Statistical terms

This section describes the statistical terms used in the manuscript. Pearson correlation: This measures
the linear correlation between the actual and predicted values. The range of the values are from —1

to +1 with —1 indicating a strong inverse correlation and +1 indicating a strong positive correlation.
R? (coefficient of determination): It is a statistical metric that measures how well a regression model
explains the variability of the target variable,

SSICS
SStot

R=1-

(F1)
where SS is the residual sum of squares and SSi is the total sum of squares. An R? value of 1.0 indic-
ates that the prediction explains all variability and a value close to 0 indicates that the model explains no

variability beyond the mean.

Appendix G. Pseudocode for implementing proposed framework

MatMMFuse can be implemented using the following pseudocode.

Algorithm 1. Fusion of Graph and Text Embeddings for Material Property Prediction.

Require: CIF file C, Text Description T, Property Label y, Pretrained GNN G, Pretrained Transformer 5,
Attention Combiner A, Learning Rate 7, Cosine Warmup A

Ensure: Trained Model for Property Prediction

1: Initialize model parameters

2: Split dataset into Train (Dyyin ), Validation (D,y), and Test (Diest)

3:for each epochin 1,.. ., Ngpoas do

4:  for each batch (Ci, Ti,yi) in Dirgin do

5: Extract Graph Features:
6: Construct crystal graph G; from CIF file C;
7: Compute graph embedding: h¢ = G(G;)
8: Project embedding: he = Wehe
9: Extract Text Features:
10: Tokenize text: X7 = Tokenizer(7;)
11: Compute transformer embedding: hr = B(Xr)
12: Pool embedding: ht = Mean(hr)
13: Project embedding: I;T = Wrhr
14: Fuse Representations using Attention:
15: Compute query: Q = WQET
16: Compute key: K = Wihe
17: Compute value: V= Wvl’~lG
. : Cy— K’
18: Compute attention scores: o = softmax ( \/{;)
19: Compute attended representation: hseq = aV
20: Apply residual connection: hpeqs = LayerNorm (fpyeeq -+ h~T)
21: Predict Property:
22: Ypred = U(Wuhfused)
23: Compute Loss:
24 L= I%Z?]:l(yi *}’pred)z
25: Optimize Parameters:
26: Compute gradients: VoL
27: Update parameters: 6 <— 6 —n- A(t) - Vo L
28: end for
29:  Evaluate on D,, and adjust learning rate n
30: end for

31: Test Model: Evaluate on Djest

19



10P Publishing Mach. Learn.: Sci. Technol. 6 (2025) 045054 A Bhattacharya and S G Cloutier

References

[1] Schmidt J, Marques M R, Botti S and Marques M A 2019 npj Comput. Mater. 5 83
[2] Chen C, Zuo Y, Ye W, Li X, Deng Z and Ong S P 2020 Adv. Energy Mater. 10 1903242
[3] Saal] E, Kirklin S, Aykol M, Meredig B and Wolverton C 2013 JOM 65 1501-9
[4] Draxl C and Scheffler M 2019 J. Phys. Mater. 2 036001
[5] Jain A et al 2013 Appl. Phys. Lett.
[6] Faber F, Lindmaa A, Von Lilienfeld O A and Armiento R 2015 Int. J. Quantum Chem. 115 1094-101
[7] Behler J 2011 J. Chem. Phys. 134 074106
[8] De S, Barték A P, Csanyi G and Ceriotti M 2016 Phys. Chem. Chem. Phys. 18 13754-69
[9] Scarselli F, Gori M, Tsoi A, Hagenbuchner M and Monfardini G 2008 IEEE Trans. Neural Netw. 20 61-80
[10] Gori M, Monfardini G and Scarselli F 2005 A new model for learning in graph domains Proc. 2005 IEEE Int. Joint Conf. on Neural
Networks vol 2 (IEEE) pp 729-34
11] LiJ, Shomer H, Mao H, Zeng S, Ma Y, Shah N, Tang ] and Yin D 2024 Advances in Neural Information Processing Systems vol 36
12] Palizhati A, Zhong W, Tran K, Back S and Ulissi Z W 2019 J. Chem. Inf. Model. 59 4742-9
13] Back S, Yoon J, Tian N, Zhong W, Tran K and Ulissi Z W 2019 J. Phys. Chem. Lett. 10 4401-8
14] Chen C, Ye W, Zuo Y, Zheng C and Ong S P 2019 Chem. Mater. 31 356472
15] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
16] FungV, Zhang J, Juarez E and Sumpter B G 2021 npj Comput. Mater. 7 84
17] Jablonka K M et al 2023 Dig. Discov. 2 1233-50
18] Beltagy I, Lo K and Cohan A 2019 Scibert: a pretrained language model for scientific text Proc. 2019 Conf. on Empirical Methods in
Natural Language Processing and the 9th Int. Joint Conf. on Natural Language Processing (EMNLP-IJCNLP) pp 3615-20
19] LiY, Gupta V, Kilic M N T, Choudhary K, Wines D, Liao W k, Choudhary A and Agrawal A 2025 Dig. Discov.
20] Ock J, Montoya J H, Schweigert D, Hung L, Suram S K and Ye W 2024 CoRR 3 842-68
21] Lee J, Park C, Yang H, Lim S and Han S 2025 CoRR (arXiv:2502.06836)
22] Das K, Goyal P, Lee S C, Bhattacharjee S and Ganguly N 2023 Crysmmnet: Multimodal Representation for Crystal Property
Prediction Uncertainty in Artificial Intelligence (PMLR) pp 507—-17
[23] Ganose A M and Jain A 2019 MRS Commun. 9 874-81
[24] Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L and Lerer A 2017 Neural Information
Processing Systems
[25] Loshchilov I and Hutter F 2017 CoRR (arXiv:1711.05101)
[26] Zhuo Y, Mansouri Tehrani A and Brgoch ] 2018 J. Phys. Chem. Lett. 9 1668-73
[27] Van der Maaten L and Hinton G 2008 J. Mach. Learn. Res. 9 2579-605
[28] Ishihara T 2009 Perovskite Oxide for Solid Oxide Fuel Cells 1-16
[
[
[

29] Basera P and Bhattacharya S 2022 J. Phys. Chem. Lett. 13 6439-46

30] Choudhary K et al 2020 npj Comput. Mater. 6 173

31] Lan Z, Chen M, Goodman S, Gimpel K, Sharma P and Soricut R 2020 Albert: a lite bert for self-supervised learning of language
representations Int. Conf. on Learning Representations

[32] Masala M, Ruseti S and Dascalu M 2020 Robert—a romanian bert model Proc. 28th Int. Conf. on Computational Linguistics pp
6626-37

[33] Sergio G C and Lee M 2021 Neural Netw. 136 87-96

[34] Sanh V 2019 Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter Proc. 33rd Conf. on Neural Information
Processing Systems (NIPS2019)

[35] Schiitt K T, Sauceda H E, Kindermans P ], Tkatchenko A and Miiller K R 2018 J. Chem. Phys. 148

[36] Jin D, Jin Z, Zhou J T and Szolovits P 2020 Is bert really robust? a strong baseline for natural language attack on text classification
and entailment Proc. AAAI Conf. on Artificial Intelligence vol 34 pp 8018-25

20


https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1002/aenm.201903242
https://doi.org/10.1002/aenm.201903242
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1007/s11837-013-0755-4
https://doi.org/10.1088/2515-7639/ab13bb
https://doi.org/10.1088/2515-7639/ab13bb
https://doi.org/10.1002/qua.24917
https://doi.org/10.1002/qua.24917
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1039/C6CP00415F
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1021/acs.jcim.9b00550
https://doi.org/10.1021/acs.jcim.9b00550
https://doi.org/10.1021/acs.jpclett.9b01428
https://doi.org/10.1021/acs.jpclett.9b01428
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1021/acs.chemmater.9b01294
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1038/s41524-021-00554-0
https://doi.org/10.1038/s41524-021-00554-0
https://doi.org/10.1039/D3DD00113J
https://doi.org/10.1039/D3DD00113J
https://doi.org/10.1039/D3DD00223C
https://doi.org/10.1039/D3DD00223C
https://arxiv.org/abs/2502.06836
https://doi.org/10.1557/mrc.2019.94
https://doi.org/10.1557/mrc.2019.94
https://arxiv.org/abs/1711.05101
https://doi.org/10.1021/acs.jpclett.8b00124
https://doi.org/10.1021/acs.jpclett.8b00124
https://doi.org/10.1021/acs.jpclett.2c01337
https://doi.org/10.1021/acs.jpclett.2c01337
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1038/s41524-020-00440-1
https://doi.org/10.1016/j.neunet.2020.12.018
https://doi.org/10.1016/j.neunet.2020.12.018

	MatMMFuse: Multimodal fusion model for material property prediction
	1. Introduction
	2. Proposed model architecture
	2.1. Graph encoder
	2.2. Text encoder
	2.3. Multi-head cross attention fusion

	3. Model training and evaluation
	3.1. Dataset
	3.2. Experimentation overview

	4. Results and discussions
	4.1. In-Domain
	4.2. Zero shot performance
	4.2.1. Cubic oxide perovskites
	4.2.2. Chalcogenide perovskites
	4.2.3. JARVIS

	4.3. Ablation studies
	4.3.1. Encoded domain knowledge
	4.3.2. Encoded lattice structure
	4.3.3. Multi-head attention module
	4.3.4. Robustness to training data size
	4.3.5. K fold cross validation
	4.3.6. Corruption of text input


	5. Conclusion
	Appendix A 
	A.1. Dataset description
	A.1.1. Materials project
	A.1.2. Cubic oxide perovskites
	A.1.3. Chalcogenides


	Appendix B. Analysis of results
	B.1. Effect of epochs on model performance
	B.2. Generalization
	B.3. Color mapped parity plots
	B.4. t-SNE
	B.5. Grid search for learning rate

	Appendix C. Robocrystallographer framework
	Appendix D. Attention mechanism
	Appendix E. AdamW optimizer
	Appendix F. Statistical terms
	Appendix G. Pseudocode for implementing proposed framework
	References


