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Abstract

Voice analysis and classification for biomedical diagnosis purpose is receiving a growing
attention to assist physicians in the decision-making process in clinical milieu. In this
study, we develop and test deep feedforward neural networks (DFFNN) to distinguish
between healthy and unhealthy newborns. The DFFNN are trained with acoustic fea-
tures measured from newborn cries, including auditory-inspired amplitude modulation
(AAM), Mel Frequency Cepstral Coefficients (MFCC), and prosody. The configuration of
the DFFNN is optimized by using Bayesian optimization (BO) and random search (RS)
algorithm. Under both optimization techniques, the experimental results show that the
DFFNN yielded to the highest classification rate when trained with all acoustic features.
Specifically, the DFFNN-BO and DFFNN-RS achieved 87.80% ± 0.23 and 86.12% ± 0.33
accuracy, respectively, under ten-fold cross-validation protocol. Both DFFNN-BO and
DFFNN-RS outperformed existing approaches tested on the same database.

Keywords: newborn cry; Mel-frequency cepstral coefficients; auditory-inspired amplitude
modulation; prosody; deep feedforward neural networks; Bayesian optimization; random
search optimization

1. Introduction
Voice is essential to recognize some characteristics, including gender, illness, mental

distress, and physical pain. Nowadays, the analysis of pathological voice is becoming
important in healthcare for the diagnosis of pathologies [1,2]. Indeed, computer-aided
diagnosis (CAD) systems were proposed to detect various pathologies by analysis and
classification of voice records, for instance, to detect autism [3], dysphagia [4], brain
lesion [5], COVID-19 [6,7], menarcheal status [8], dysarthria [9], laryngeal disorder [10,11],
multiple sclerosis [12], dysphonia [13], spasmodic dysphonia and recurrent laryngeal nerve
palsy [14], and Parkinson’s disease [15–18].

In this regard, voice change is also considered a clinical symptom of early detec-
tion of an unhealthy newborn, and it is easy to record by using a microphone and a
recorder. Indeed, it is a non-invasive monitoring approach for the diagnosis of newborns.
Therefore, several CADs were proposed in the literature to automatically analyze and
classify cry records to distinguish between healthy and unhealthy newborns. For example,
Rosales–Pérez et al. [19] used Mel frequency cepstral coefficients and Linear predictive
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coding for feature extraction and genetic selection of a fuzzy model for classification of
normal and pathological cry. The proposed automatic system obtained 99.42% accuracy.
Chittora et al. [20] used spectrogram-based energy features to examine ten different types
of infant cry pathologies. The support vector machine (SVM) classifier achieved 98.22%
accuracy. Sachin et al. [21] designed an automatic system to detect neonatal asphyxia
based on support vector machines trained with Mel frequency cepstrum. The proposed
model yielded 92% accuracy. Lim et al. [22] extracted energy features from the dual-tree
complex wavelet packet transform representation of the infant cry signal and employed
different methods of feature selection to identify energy features to be fed to the extreme
learning machines. They obtained 97.87% accuracy in the classification of asphyxia versus
normal, 100% accuracy in the classification of deaf versus normal, and 87.26% accuracy
in the classification of hunger versus pain. Anders et al. [23] studied the performance
of the convolution neural networks in the classification of infant vocalization sequences,
including crying, fussing, babbling, laughing, and vegetative vocalizations. The convolu-
tional neural networks yielded 72% accuracy when trained with spectrograms. Ashwini
et al. [24] proposed a system to classify neonatal cries into pain, hunger, and sleepiness.
First, the short-time Fourier transform was applied to the neonatal cry record to obtain its
spectrogram image. Second, the spectrogram is processed by a deep convolutional neural
network to extract its deep features. Finally, the support vector machine was employed for
classification. Trained with a radial basis function, the support vector machine achieved
88.89% accuracy. Ting et al. [25] investigated the use of hybrid features of MFCC, chroma-
gram, Mel-scaled spectrogram, spectral contrast, and Tonnetz and deep learning models in
classifying asphyxia cry in infant subjects. They found that convolution neural networks
performed better than deep neural networks when all were trained with MFCC features. In
addition, the deep neural network models performed better with hybrid features compared
to those with a single feature of MFCC. Furthermore, the deep neural network model with
multiple hidden layers achieved an accuracy of 100% in classifying normal and asphyxia
cry, and 99.96% for non-asphyxia and asphyxia cry when the hybrid features were used.
Abbaskhah et al. [26] trained the support vector machine, multilayer perceptron, and con-
volutional neural Network classifiers with Mel frequency cepstral coefficients and entropy
to distinguish between five classes of infant cries. Without the synthetic minority over-
sampling technique, the support vector machine, multilayer perceptron, and convolutional
neural Network classifiers, respectively, achieved 82.3%, 87.6%, and 92.1% average accuracy.
With the synthetic minority over-sampling technique, they, respectively, obtained 86.1%,
89.2%, and 91.1% average accuracy. In an interesting study, Ozseven [27] investigated
the effect of using hand-crafted features and spectral images individually and in a hybrid
in the classification of infant cries. The results show that texture analysis methods are
insufficient and that hand-crafted feature sets and spectrogram and scalogram images
provide high success. The pre-trained deep learning models ShuffleNet and ResNet-18
achieved, respectively, 97.57% and 95.17% accuracy by using scalogram features. Lahmiri
et al. [28] proposed a deep feedforward neural network (DFFNN) trained with cepstrum
analysis-based coefficients. It outperformed both the SVM and naïve Bayes when applied
to expiration and inspiration infant cry signals. Specifically, it achieved very close to perfect
accuracy and perfect accuracy when tested on expiration and inspiration sets. In addition,
Lahmiri et al. [29] trained DFFNN, long short-term memory (LSTM) neural networks,
and convolutional neural networks (CNN) with cepstrum analysis-based coefficients. All
validated on expiration and inspiration sets separately, it was found that CNN achieved
the highest accuracy, followed by DFFNN.

Recently, acoustic features including Mel frequency cepstral coefficients (MFCC),
auditory-inspired amplitude modulation (AAM) features, and a prosody feature set of tilt,
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intensity, and rhythm features were employed to train machine learning models to distin-
guish between healthy and unhealthy cries of newborns. For instance, Matikolaie et al. [30]
found that the SVM and probabilistic neural networks (PNN) achieved the best accuracy
when trained by both AAM and MFCC features. They, respectively, obtained 78.70% and
72.8% accuracy. Lahmiri et al. [31] applied the chi-square test to each set of features to
retain the ten most significant ones used as biomarkers and used the Bayesian optimization
(BO) method to optimize the hyperparameters of the support vector machine (SVM) with
radial basis function (RBF) kernel and k-nearest neighbors (kNN). They found that the SVM
trained with AAM features achieved 83.62% accuracy, and the kNN trained with MFCC,
AAM, and prosody obtained 82.88%.

The main purpose of our study is to improve the classification accuracy by using deep
feedforward neural networks (DFFNN) [32] and compare the results with those obtained
in [30,31]. Specifically, using the same database as in [30,31], we implement DFFNN and
optimize its configuration by using two different optimization algorithms, namely, the
Bayesian optimization (BO) [33,34] and random search (RS) [35,36]. Indeed, fine-tuning
parameters is a time-consuming task and is needed in machine learning since it affects
the accuracy of the models. Therefore, each DFFNN-BO and DFFNN-RS system is trained
by using separately each type of acoustic features (MFCC, AAM, and prosody) or all of
them. The DFFNN is chosen as it was found to be effective in previous works related to
the classification of newborn cry signals [28,29]. Indeed, the DFFNN trained with acoustic
features is expected to achieve higher accuracy thanks to the powerful ability of deep
learning to learn data. In addition, by training the DFFNN with different sets of acoustics,
one could determine what kind of features help obtain the highest accuracy and explain the
results. Although BO and RS are selected for hyperparameter tuning as they are effective
for global optimization of black-box functions and do not require a long processing time.
Figure 1 shows the flowchart of the proposed newborn cry signal analysis and classification.

Figure 1. Flowchart of the CAD system for newborn classification based on deep learning (for
instance, deep feedforward neural network/DFFNN) trained with acoustic features (MFCC, AAM,
and prosody). The configuration of the DFFNN is tuned by using Bayesian optimization (BO) and
random search (RS) algorithms.

The key contributions of this paper are as follows:
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(1) The DFFNN was found to be effective when trained with cepstrum-based coefficients
in previous works [28,29]. This study investigates the gaps in existing DFFNN-based
newborn cry record classification.

(2) The experiments are conducted by highlighting the importance of acoustic features
on the performance of the DFFNN and addressing the explanation of its performance.

(3) We investigate the contribution of two optimization methods (Bayesian optimization
versus random search) in improving the accuracy of DFFNN.

(4) By comparing the performance of the DFFNN-BO and DFFNN-RS systems, both
outperformed models in [30,31] on the same database, proving that they can be used
in newborn cry signal classification with an increase in explanatory power.

The content of this article is structured as follows. Section 2 introduces the methods. In
Section 3, the dataset and experiment settings are introduced, and the experimental results
are presented. Section 4 discusses the results. Finally, Section 5 concludes the paper.

2. Methods
2.1. Acoustic Features
2.1.1. Mel Frequency Cepstral Coefficients (MFCC)

The MFCC are short-term acoustic features suitable for finding the critical bandwidth
used by the human auditory system to recognize different tones based on the Mel scale,
which is given by:

M( f ) = 1125 × log
(

1 +
f

700

)
(1)

where f and M(f) denote the frequency value of the signal and its corresponding Mel value.
The MFCC are obtained following five steps [37]: (1) framing (voice signal is broken down
into overlapping frames), (2) windowing (each frame is multiplied by a Hamming window),
(3) applying Fast Fourier transform (convert the signal to the frequency domain and calcu-
late its periodogram), (4) applying Mel filter banks (compute the average of each spectral
power density contained in each filter and computes its logarithm), and (5) converting from
cepstral to temporal domain by calculating the inverse discrete Fourier transform.

2.1.2. AAM Features

The extraction of AAM features is based on five consecutive steps [38]. First, the
newborn cry signal is processed by a short-time discrete Fourier transform (STDFT). Second,
the squared magnitudes of the resulting acoustic frequency components are categorized
into 27 sub-bands for better characterization of the original cry signal. Third, a second
transform is performed across time for each of the 27 sub-band magnitude signals. Fourth,
a band-pass filter is applied to the grouped squared modulation frequencies. Finally, the
logarithm transformation is applied for compression purposes.

2.1.3. Prosody Features

The prosody set is composed of the tilt feature subset, the intensity feature subset, and
the rhythm feature subset. Tilt features are estimated based on two parameters: At and Dt,
they are defined as follows:

At =

 |Ar| −
∣∣∣A f

∣∣∣
|Ar|+

∣∣∣A f

∣∣∣
 (2)

Dt =

 |Dr| −
∣∣∣D f

∣∣∣
|Dr|+

∣∣∣D f

∣∣∣
 (3)
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where Af is the amplitude of the contours of the fundamental frequency F0 when they
are descending, and Ar is their amplitude when they are ascending. Likewise, Df is the
length of the contours of F0 when they are descending, and Dr is their length when they
are ascending. The intensity embodies the height of the audio signal. The intensity of the
audio signal is given by:

Intensity = 10 × log
(
∑N

n=1 A2(n)w(n)
)

(4)

where w and A are, respectively, the window and the amplitude. The rhythm feature subset
includes two main parameters, namely, the raw pairwise variability index (rPVI) and the
normalized one (nrPVI), which are convenient for computing the rhythm in a given audio.
They expressed as follows:

rPVI =

(
∑M−1

k=1 |dk − dk+1|
m − 1

)
(5)

nrPVI = 100 ×

∑M−1
k=1

∣∣∣2 × dk−dk+1
dk−dk+1

∣∣∣
m − 1

 (6)

Furthermore, six other features are computed: standard deviation of the expiration
signal, the standard deviation of the expiration signal divided by the mean length, number
of expirations in each cry signal, duration of expiration, range of expiration, and average of
all expirations in one signal cry signal.

2.2. Deep Feedforward Neural Networks

The feedforward neural network (FFNN) [32] is a multilayer perceptron composed of
an input layer, a hidden layer, and an output layer. The neurons of end-to-end layers are
connected by weights. The signal passes only from the input layer to the first hidden layer,
then to the output layer. The output of the network is given by:

yi = f
(
∑n

j=1 wijxij + wi0

)
(7)

where wij is the weight of the link from neuron j of the previous layer to the current
neuron i, xij is the corresponding signal, wi0 is the inherent threshold of neuron i, and f
is an activation (transfer) function. At iteration i, the weights of the network are adapted
as follows:

∆wi = −γiGi (8)

where γ is the learning rate, and G is the gradient. In the deep feedforward neural network
(DFFNN), the neurons in the first layer are connected to all the neurons in the next layer,
and the data is propagated in the entire network without feedback or a loop process. The
major difference between DFFNN and a shallow feedforward neural network (FFNN) is
the number of hidden layers used to determine the depth of the network. Specifically,
the DFFNN has more than one hidden layer, whilst the shallow FFNN has only one
hidden layer.

2.3. Optimization Techniques

In machine learning and deep learning, a set of hyperparameters used to configure the
neural networks must be set prior to training a model. Indeed, these hyperparameters affect
the training process and have a direct influence on the performance of the classification
model. In this study, we employ the Bayesian optimization (BO) [33,34] and random search
(RS) [35,36] for hyperparameter tuning of the DFFNN.
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The Bayesian optimization algorithm is an approximation algorithm effective when
the computation task is complex and the number of iterations is large. Specifically, the
BO finds the best parameters according to the conditional probability of the performance
in the training set using a surrogate, for instance, the estimate of the objective function.
Specifically, the classification error is the objective function f to minimize. In sum, the BO
algorithm essentially involves the following two major phases: (i) updating the surrogate
model in each iteration to find the best guess and measure the uncertainty of the model
and parameters, and (ii) finding the next sample point based on the acquisition function
used to guide the solution toward the global optimal.

The random search algorithm uses randomness to find the best solution in the area of
search. In this regard, randomness is based on the generation of a pseudo-random number
based on different probability distributions. The random search algorithm has global
convergence capabilities, and it is not significantly affected by the size of the search space
or the initial values of the estimates of the parameters. The algorithm used to minimize the
objective function f is described in the following steps:

(1) Select the starting point x and keep it as the current solution.
(2) Produce a random vector dx from the parameter space and calculate f (x + dx).
(3) If f (x + dx) < f (x), save the new solution as the current solution x = x + dx.
(4) Stop if the stopping criterion is achieved. Otherwise, iterate from step 2.

In this study, the learning rate, number of hidden layers, node numbers in each layer,
and the activation function are all hyperparameters evaluated by BO and RS algorithms.

3. Data and Results
We use a private dataset [30] to analyze and classify cry signals recorded from 763

healthy newborns and 320 unhealthy ones. A two-channel sound recorder is used for all
cry signals, with the sampling frequency set to 44.1 kHz, and its length varies between two
and three minutes. Figure 2 exhibits examples of healthy and unhealthy cry signals from
two different newborns. For experiments, we adopted the ten-fold cross-validation, and
we computed the average and standard deviation of the standard performance metrics,
namely accuracy (correct classification rate), sensitivity, and specificity. For each model, the
objective function to minimize is the classification error.

Although we used 30 iterations for each optimization technique, namely Bayesian opti-
mization and random search, for both BO and RS algorithms, the search space is set as follows:
the maximum number of hidden layers is three, the maximum sizes are [219, 256, 287], the
activation functions are sigmoid, relu, tanh, and the number of iterations is 30. In this work,
we set the search space relatively small to reduce search complexity and processing time.

Table 1 displays the average and standard deviation of correct classification rate (accu-
racy), sensitivity, and specificity obtained by each DFFNN under a 10-fold cross-validation
protocol and with respect to the type of acoustic features and optimization algorithm.
As shown, when Bayesian optimization is employed to tune the hyperparameters of the
DFFNN, the best accuracy (correct classification rate) is achieved when all acoustic fea-
tures are used as biomarkers (87.80% ± 0.23), followed by AAM (87.34% ± 0.52), MFCC
(78.58% ± 0.17), and prosody (71.72% ± 0.41). This considered, when random search
optimization is employed, the DFFNN obtained the highest accuracy when trained with all
acoustic features (86.12% ± 0.33), followed by AAM (85.95% ± 0.49), MFCC (80.45% ± 0.20),
and prosody (72.92% ± 0.38). Therefore, the combination of all acoustic features helps
improve the accuracy to distinguish between healthy and unhealthy newborns under both
BO and RS.
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Figure 2. Examples of cry signals are recorded from healthy and unhealthy newborns.

Table 1. Performance measures obtained by DFFNN under BO and RS following 10-fold cross-validation.

Bayesian Optimization Random Search
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

All acoustic features 87.80% ± 0.23 89.87% ± 0.51 86.35% ± 0.58 86.12% ± 0.33 89.17% ± 0.66 86.12% ± 0.43
Prosody 71.72% ± 0.41 73.58% ± 0.65 70.05% ± 0.62 72.92% ± 0.38 72.85% ± 0.59 69.55% ± 0.81
MFCC 78.58% ± 0.17 80.71% ± 0.52 76.11% ± 0.60 80.45% ± 0.20 79.60% ± 0.50 75.83% ± 0.77
AAM 87.34% ± 0.52 86.24% ± 0.66 86.24% ± 0.59 85.95% ± 0.49 89.01% ± 0.61 85.98% ± 0.90

In addition, the experimental results indicate that Bayesian optimization yields higher
accuracy compared to the random search algorithm when all acoustic features are used
for training or only AAM features. Although the random search algorithm outperforms
Bayesian optimization when trained with MFFC or Prosody acoustics. In sum, the Bayesian
algorithm yields the best results.

Finally, in terms of sensitivity and specificity performance metrics, when Bayesian
optimization is adopted to optimize the parameters, the DFFNN classifier achieves
89.17% ± 0.66 sensitivity and 86.12% ± 0.43 specificity when trained with all acous-
tics, 86.24% ± 0.66 sensitivity and 86.24% ± 0.59 specificity when trained with AAM,
80.71% ± 0.52 sensitivity and 76.11% ± 0.60 specificity when trained with MFCC, and
71.72% ± 0.41 sensitivity and 70.05% ± 0.62 specificity when trained with prosody fea-
tures. Additionally, when the RS optimization technique is adopted, the DFFNN classi-
fier achieves 89.17% ± 0.66 sensitivity and 86.12% ± 0.43 specificity under all acoustics,
89.01% ± 0.61 sensitivity and 85.98% ± 0.90 specificity under AAM, 79.60% ± 0.50 sen-
sitivity and 75.83% ± 0.77 specificity under MFCC, and 72.85% ± 0.59 sensitivity and
69.55% ± 0.81 specificity under prosody features.
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4. Discussion
Recently, infant cry signal analysis and classification has received increasing attention

where MFCC, Mel Spectrogram, and Tonnetz were used to train residual connections
and long short-term memory networks and yielded to an accuracy between 92.92% and
95.98% [39], spectrogram, Mel-scaled spectrogram, and MFCC employed to train neural
network with attention mechanism to obtain an accuracy between 87.78% and 93.83% [40],
and MFCC and energy features were adopted to train convolutional neural networks to
achieve 92.1% [26].

With respect to previous studies [30,31] on the same dataset, the DFFN optimized by
Bayesian optimization or by the random search algorithm outperforms all proposed models
in [30,31] under all acoustics and under a combination of all of them, as shown in Table 2.
For instance, by using AAM features only, the SVM achieved 75.75% accuracy in [30],
the SVM tuned by Bayesian optimization achieved 83.62% in [31], and DFFNN obtained
87.34% ± 0.52 and 85.95% ± 0.49 in this study when optimized by BO and RS. Additionally,
by using MFCC features only, the SVM achieved 76.50% accuracy in [30], the SVM tuned
by Bayesian optimization achieved 74.07% in [31], and DFFNN obtained 78.58% ± 0.17
and 80.45% ± 0.20 in the current work when optimized by BO and RS. When prosody
features are used as inputs, the SVM achieved 61.50% accuracy in [30], the SVM tuned by
Bayesian optimization achieved 70.65% in [31], and DFFNN obtained 71.72% ± 0.41 and
72.92% ± 0.38 in the current work when optimized by BO and RS. Finally, by using all
acoustics as inputs, the SVM achieved 61.50% accuracy in [30], the kNN algorithm tuned
by Bayesian optimization achieved 82.88% in [31], and in our study, the DFFNN obtained
87.80% ± 0.23 and 86.12% ± 0.33 under BO and RS.

Table 2. Comparison with previous works on the same database.

Study Features Machine Learning Accuracy

[30] AAM PNN 70.70%
[30] AAM SVM 75.75%
[31] AAM SVM + BO 83.62%
[31] AAM kNN + BO 80.07%
Current study AAM DFFNN + BO 87.34% ± 0.52
Current study AAM DFFNN + RS 85.95% ± 0.49
[30] MFCC PNN 68.90%
[30] MFCC SVM 76.50%
[31] MFCC SVM + BO 72.37%
[31] MFCC kNN + BO 74.07%
Current study MFCC DFFNN + BO 78.58% ± 0.17
Current study MFCC DFFNN + RS 80.45% ± 0.20
[30] Prosody PNN 52.10%
[30] Prosody SVM 61.50%
[31] Prosody SVM + BO 70.65%
[31] Prosody kNN + BO 70.43%
Current study Prosody DFFNN + BO 71.72% ± 0.41
Current study Prosody DFFNN + RS 72.92% ± 0.38
[30] AAM + MFCC + Prosody PNN 69.10%
[30] AAM + MFCC + Prosody SVM 77.90%
[31] AAM + MFCC + Prosody SVM + BO 81.74%
[31] AAM + MFCC + Prosody kNN + BO 82.88%
Current study AAM + MFCC + Prosody DFFNN + BO 87.80% ± 0.23
Current study AAM + MFCC + Prosody DFFNN + RS 86.12% ± 0.33

The presented deep feedforward neural networks, optimized by the BO or the RS
algorithm, show effectiveness in distinguishing between healthy and unhealthy newborns
based on the analysis and classification of their respective cries. Indeed, these optimized
deep learning systems are capable of learning highly complex relationships between the
acoustics and the class label. The hidden layers in the DFFNN can learn acoustics and detect
the most valuable ones. In summary, both DFFNN-BO and DFFNN-RS in combination
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with acoustics have demonstrated excellent performance in the classification of newborns
compared to most recent works validated on the same database [30,31]. In short, the
performance of the DFFNN-BO and DFFNN-RS, as with any machine learning system,
depends on the quality of the features, as well as the optimization methods used to configure
the systems.

As in the previous works [30,31], our experimental results show that AAM features
help improve the accuracy of the classifiers compared to MFCC and prosody features.
Therefore, the information about speaking rate, represented by AAM features at different
sub-bands, is dominant in improving the accuracy of the classifier to discriminate between
the voices of healthy and unhealthy newborns. In short, the experimental results showed
that AAM features are effective for the detection of unhealthy cries. In addition, the
vocal tract information of the cry signal captured by MFCC features is more important in
the classification of newborn cries compared to the prosody used to describe the supra-
segmental aspect of cry. Furthermore, the combination of all acoustic features helps to
further increase the accuracy of the classifiers. In other words, training the machine learning
classifiers with information about speaking rate, vocal tract, and the supra-segmental aspect
of cry may help enhance the classification rate in a substantial manner. Finally, in Table 3,
we show the processing time of the DFFNN when trained with each category of features and
under each optimization technique. As shown, the processing time under BO is significantly
below that under RS for each category of features. Therefore, BO is effective in terms of low
complexity as it provides a fast-processing time compared to the RS optimization algorithm.

Table 3. Processing time of the DFFNN under each type of features in seconds.

Features BO RS

AAM 480.9293 822.0263
MFCC 238.9178 364.2461
Prosody 107.4308 353.5441
AAM + MFCC + Prosody 244.0757 531.0088

Indeed, Bayesian optimization is used to build a probabilistic model of the objective
function based on previous evaluations to update the search directions to find the opti-
mal solution. The random search algorithm is based on random sampling of possible
hyperparameter combinations from a determined search space. Then, it evaluates each
combination independently, without examining past results. Therefore, the random search
algorithm does not guarantee to find the optimal solution and is inefficient as it is used to
waste time on unrelated areas of the search space. In sum, the Bayesian optimization is
more efficient compared to the random search algorithm, as it reduces the number of trials
needed to find optimal hyperparameters and consequently converges to better solutions
faster than random search. In other words, BO is known to be effective and fast because it
uses probabilities to direct search, and the computation of probability is straightforward.

5. Conclusions
In this study, we investigated the effectiveness of acoustic features of newborn cries

in improving the accuracy of deep feedforward neural networks to discriminate between
healthy and unhealthy subjects. In addition, we compared the performance of the DFFNN
under Bayesian optimization and the random search algorithm used for hyperparameter
tuning. The experimental results show that the combination of all acoustic features helps
achieve the highest accuracy of the DFFNN classifier. In addition, the Bayesian optimization
yields higher accuracy compared to the random search algorithm when all acoustic features
are used for training or only AAM features. In contrast, the random search algorithm



Entropy 2025, 27, 1109 10 of 11

outperforms Bayesian optimization when trained with MFFC or Prosody acoustics. In
short, the Bayesian algorithm yields the best results. Furthermore, both the proposed
DFFNN-BO and DFFNN-RS outperformed existing models that were tested on the same
database. For future work, we seek to consider other deep learning models and feature
selection for better improvement of accuracy and understanding of the results.
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