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ARTICLE INFO ABSTRACT
Dataset link: https://github.com/ETS-BodyMod In this paper, we tackle the challenge of three-dimensional estimation of expressive, animatable, and textured
eling/ImplicitParametricAvatar human avatars from a single frontal image. Leveraging a Skinned Multi-Person Linear (SMPL) parametric body

model, we adjust the model parameters to faithfully reflect the shape and pose of the individual, relying on
the mesh generated by a Pixel-aligned Implicit Function (PIFu) model. To robustly infer the SMPL parameters,
we deploy a multi-step optimization process. Initially, we recover the position of 2D joints using an existing
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SMPL-X pose estimation tool. Subsequently, we utilize the 3D PIFu mesh together with the 2D pose to estimate the 3D

Optimization position of joints. In the subsequent step, we adapt the body’s parametric model to the 3D joints through rigid

3D modeling alignment, optimizing for global translation and rotation. This step provides a robust initialization for further

Parametric model refinement of shape and pose parameters. The next step involves optimizing the pose and the first component of

?nirtnation the SMPL shape parameters while imposing constraints to enhance model robustness. We then refine the SMPL
extures

model pose and shape parameters by adding two new registration loss terms to the optimization cost function:
a point-to-surface distance and a Chamfer distance. Finally, we introduce a refinement process utilizing a
deformation vector field applied to the SMPL mesh, enabling more faithful modeling of tight to loose clothing
geometry. As most other works, we optimize based on images of people wearing shoes, resulting in artifacts in
the toes region of SMPL. We thus introduce a new shoe-like mesh topology which greatly improves the quality
of the reconstructed feet. A notable advantage of our approach is the ability to generate detailed avatars
with fewer vertices compared to previous research, enhancing computational efficiency while maintaining
high fidelity. We also demonstrate how to gain even more details, while maintaining the advantages of SMPL.
To complete our model, we design a texture extraction and completion approach. Our entirely automated
approach was evaluated against recognized benchmarks, X-Avatar and PeopleSnapshot, showcasing competitive
performance against state-of-the-art methods. This approach contributes to advancing 3D modeling techniques,
particularly in the realms of interactive applications, animation, and video games. We will make our code
and our improved SMPL mesh topology available to the community: https://github.com/ETS-BodyModeling/
ImplicitParametricAvatar.

Computer vision

1. Introduction of this task is exacerbated when modeling from a single image, a
constraint that offers a promising path towards more accessible and

Photo-realistic avatars has the potential to revolutionize fields rang- practical applications. Deep learning-based methods [3,4] for predict-
ing from XR to healthcare, and most notably the entertainment indus- ing parametric body models produce compact and animatable surfaces,
try, by greatly enhancing the user experience while interacting with but face difficulties in accurately capturing details such as clothing

virtual humans. Despite significant recent advancements, the task of
crafting realistic human avatars still presents significant challenges.
Traditional methods [1,2] rely on extensive input data such as multiple
views, video sequences or depth information, underscoring the need
for more efficient and accessible techniques. Progress in the field of 3D
human modeling, while notable, encounters major challenges, particu-
larly in faithfully reproducing the human morphology. The complexity

nuances and textures, essential aspects for creating realistic avatars.
The Pixel-aligned Implicit Function (PIFu) based methods [5-8] mark a
significant advancement and are capable of reconstructing a 3D model
with high resolution from a single image. However, these methods
encounter difficulties in generating a compact mesh that accurately
reconstructs all body parts, such as the hands and the head. Due

* This article is part of a Special issue entitled: ‘ACM MIG24’ published in Computers & Graphics.
* Corresponding author.
E-mail address: fares.mallek.1 @ens.etsmtl.ca (F. Mallek).

https://doi.org/10.1016/j.cag.2025.104478
Received 21 February 2025; Received in revised form 29 October 2025; Accepted 3 November 2025

Available online 11 November 2025
0097-8493/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nec-nd/4.0/).


https://www.elsevier.com/locate/cag
https://www.elsevier.com/locate/cag
https://orcid.org/0009-0001-1221-4431
https://orcid.org/0000-0001-9236-647X
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
https://github.com/ETS-BodyModeling/ImplicitParametricAvatar
mailto:fares.mallek.1@ens.etsmtl.ca
https://doi.org/10.1016/j.cag.2025.104478
https://doi.org/10.1016/j.cag.2025.104478
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2025.104478&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

F. Mallek et al.

to their representation by small pixel regions in the image space,
recreating these parts proves particularly complex. This difficulty is
exacerbated by the use of the marching-cubes algorithm to generate
a mesh. Furthermore, the outputs of the PIFu-based methods are not
directly animatable, their meshes are not compact, and they lack fo-
cusing in hard to represent areas (face, hands, and feet). The ICON
method [8] stands out for its use of a parametric human model. It
optimizes the parameters to adjust to the rendering of the silhouette
and normals. However, although directly animatable, this method can
remove the fine details of the mesh due to the used parametric body
mesh normals, which tend to be smooth, and lacks specific cloth-
ing details. The PHORHUM method [5], focusing on predicting the
illumination to reconstruct albedo colors, encounters limits in color
fidelity, thus diverging from realism. Moreover, PHORHUM, trained
on perspective images, does not perform well across a wide range of
camera configurations. The method of Mallek et al. [9] reconstructs an
animatable SMPL-X avatar with a good texture, but its optimization of
the feet region introduces visible and annoying artifacts. Moreover, the
geometric details of the clothing are limited by the lower resolution of
the SMPL-X mesh. In conclusion, while body shape modeling methods
exist, they might not be as effective in texture reconstruction or anima-
tion. Combining these three aspects — modeling, animation, and texture
reconstruction — from a single image remains a major challenge.

Our proposal offers a unique approach to generating a compact,
animatable, expressive, and textured 3D avatar from a single frontal
image in A-Pose, building upon the method of Mallek et al. [9]. Fig.
1 represents our 3D human body reconstruction pipeline, which relies
on the Pixel-aligned Implicit Function for high-resolution 3D Human
Digitization (PIFuHD) [7] as well as on OpenPose [10] to initialize
the shape and pose of the avatar. We extract the 3D pose based on
the 2D pose, and then fit the Skinned Multi-Person Linear eXpressive
(SMPL-X) [11] model to the target PIFUHD mesh. Compared to the
PIFuHD mesh, SMPL-X is easy to animate and has a compact mesh.
Conversely, the SMPL-X model does not allow to model the specific
shape details found in the PIFuHD mesh. To overcome this, we then
add a deformation vector field to the mesh and optimize it to model
geometric details, such as the clothing geometry. This approach allows
us to combine the detailed PIFuHD mesh with the compactness and
ease of animation provided by the SMPL-X model. We also demonstrate
how to further increase the fine details while preserving the advantages
of SMPL-X. Next, we extract the texture and complete it using color
interpolation and an image inpainting method. Our approach aims to
offer a faithful representation of a wide range of human morphologies
while facilitating the animation of the obtained avatar, thus widening
its application potential in various contexts. Our main scientific and
theoretical contributions are:

1. The introduction of a deformation vector field to model the
details from the PIFuHD mesh onto the compact and easy to
animate SMPL-X model;

2. A multi-step optimization process to adjust the SMPL-X model to
fit humans wearing tight to loose clothing;

3. The design of an easily animatable new SMPL-X mesh topology,
appropriate for images of people wearing shoes;

4. A novel approach for the generation and completion of textures
resolving silhouette and back of the head artifacts.

With these contributions, our approach ensures realistic, fast, and
stable animation of clothed avatars directly in off-the-shelf animation
software.

2. Related work

This section explores three elements of research regarding the recon-
struction of 3D human,body. We begin by exploring parametric models,
then proceed to discuss 3D reconstruction, and conclude by analyzing
texture extraction and completion methods.
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2.1. Parametric body model

Two primary strategies stand out in 3D human body modeling. The
first one is based on the kinematic skeleton, emphasizing an articulated
structure that primarily focuses on joint movement without capturing
body shape details. The skeleton model is widely utilized in 2D human
pose estimation [10,12,13]. It conceptualizes the human skeleton as a
hierarchical tree structure, incorporating articulated joints. The second
strategy utilizes parametric models [11,14,15], allowing for separate
optimization of body shape and posture. The Skinned Multi-Person
Linear (SMPL) model [15] utilizes a base shape and linear deformations
to capture a variety of human shapes and poses. Its popularity in both
industry and academia is attributed to its flexibility and its ability
to seamlessly animate the avatar in off-the-shelf animation software.
SMPL-X [11] represents a significant evolution of the SMPL model,
incorporating fully articulated hands and an expressive face, while still
providing a compact mesh.

2.2. 3D reconstruction of the human body

Significant advancements have been made in the field of avatar
creation. Some methods utilize multiple images [2,16,17], video se-
quences [18-20], or depth information [21-24]. While these methods
are interesting when having access to more sophisticated capture setup,
our research concentrates on the challenge of reconstructing avatars
from a single image. Reconstructing 3D avatars from a single image typ-
ically revolves around two distinct strategies. The first strategy relies on
the use of a parametric body model. A parametric model approximates
the shape of the human body to be reconstructed and is characterized
by a small set of parameters. These parameters define the shape and
pose of the body. The estimation of a parametric model can be achieved
through an optimization process of its parameters [1,2,9,11,25,26].
Most of the related work optimizes SMPL-X based on images of people
wearing shoes or socks. For instance, the DINAR [27] method, as well
as the PeopleSnapshot [1] and X-Avatar [28] datasets, consist of only
people wearing shoes or socks. In other papers (PIFu [6], PIFuHD [7],
ICON [8], and PHORHUM [5]) and datasets (Renderpeople [29] and
THuman [30]), the proportion of images corresponding to barefoot
people is small (less than 3%). While improving the reconstruction of
feet for barefoot images is another interesting problem, we propose
to improve the reconstruction for images of people wearing shoes and
socks. With its detailed toes, the SMPL-X model cannot properly fit a
shoe shape. Through their deformation vector, Mallek et al. [9] deform
the toes toward the shape of shoes, but given the mesh topology of the
toes, their optimization process often generates artifacts in the feet and
toes region. Alternatively, the parametric model’s parameters can be
directly regressed via a Deep Neural Network (DNN) model [3,4,31,32].
DNN-based methods have recently shown promising results in recon-
structing human meshes from a single image. These methods directly
map raw pixels to model parameters, allowing for the production of
parametric models in a feed-forward manner through neural networks.

The second strategy estimates morphology details in the form of
an implicit function representation [5-8,33]. The primary objective of
these PIFu-based methods lies in obtaining an abundance of details,
encompassing hair, and clothing. PaMIR [34] uses a DNN-based method
to generate an implicit field with features extracted from the input
image. ECON [35] generates front and back normals from the input
image, which are passed to a DNN-based method to reconstruct the
front and back meshes which are then aligned and completed. Human-
Ref. [36], SiTH [37], TeCH [38] and DiffHuman [39] generate front
and back normals from the input image, and use DNN-based methods
to generate a distance field from which a mesh is later extracted. A
significant drawback of the methods presented in this paragraph lies
in the inaccurate modeling of small geometric details such as hands
and face. These methods often produce lower-quality results in the
hands and face areas due to the limited number of pixels compared
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Fig. 1. Illustration of our single-image reconstruction approach. From left to right: Input RGB image, SMPL-X after fitting, SMPL-X+D, rendered avatar, and

avatar rendered in multiple poses.

to their complexity, resulting in inaccuracies or distortions. Another
concern with these methods is the mesh, which contains many more
triangles than a parametric body mesh. Additionally, it is difficult to
animate the mesh, and the animation often needs to resort to advanced
DNN techniques [40]. Furthermore, the distribution and shape of the
triangles provides lower quality animations compared to parametric
body meshes.

2.3. Texture extraction and completion

Recent advancements in texture extraction and completion for 3D
human body reconstruction from single images have shown promis-
ing developments. The Pose with Style method [41] leverages Dense-
Pose [42] to map the image space to the UV space of SMPL textures.
It also enables the automatic synthesis of missing texture parts. While
effective, this method struggles with preserving subject face details
and accurately reproducing hands and clothing textures. DINAR [27]
introduced a method combining neural textures with the SMPL-X body
model. DINAR achieved good quality and easily animatable avatars.
It uses a diffusion model that enables realistic reconstruction of the
texture in occluded regions, such as the back of a person from a
frontal view. However, despite the realism of people wearing tight
clothing, challenges arise from defects in the SMPL-X mesh generated
by SMPLify-X [11], essential for texture extraction. These defects,
particularly noticeable in clothing regions, stem from the limitation
of the SMPL-X model, designed solely for modeling human bodies and
not clothing. To get rid of the concerns related to the SMPL-X model,
some methods [6,34] extract a fine-detailed mesh from the input image
before generating the textures. Nevertheless, these methods produce
blurry and low quality textures. Another group of methods [33,36-39]
uses diffusion models to generate the textures, but does not use the
SMPL-X model, thus resolving some of the concerns faced by DINAR.
While the resulting textures are interesting, the avatar is hard to
animate with off-the-shelf software.

In conclusion, the SMPL-X parametric body model has several ad-
vantages (easy to optimize, compact mesh, and animatable). Methods
which reconstruct avatars with the SMPL-X body representation often
lack details such as clothing, some struggle in reconstructing proper
shoe-like feet geometry, and many of them do not reconstruct the
texture for the avatar. PIFu-based methods provide fine details, but are
hard to animate, do not provide easy to use texture maps, and struggle
to reconstruct fine details such as those found in the hands and the
face. Finally, texture extraction and completion methods often struggle
with hands and clothing. Building upon the work of Mallek et al. [9],
we propose a new approach to cope with all of the problems at once:
recreating an easily animatable avatar, from a single image of human
wearing tight or loose clothing. Our avatars benefit from fine details,
good representation of the face, hands, and feet, a compact mesh, and
textures.

3. Proposed methodology

Our methodology (See Fig. 2), designed as a multi-step pipeline,
aims for detailed, animatable 3D reconstruction of a human subject
from a single frontal image. Our pipeline begins with the extraction
of the target mesh, utilizing PIFuHD [7], coupled with the acquisition
of 2D pose estimations via OpenPose [10]. We then compute three-
dimensional joints. We optimize a global alignment of the SMPL-X
model [11], optimizing its translation and rotation parameters, and
then further refine the model’s pose and shape parameters. We intro-
duce a deformation vector adjustment to overcome SMPL-X’s clothing
modeling limitations, followed by a specialized algorithm for texture
extraction and completion based on the PIFuUHD mesh colors. Finally,
we can render the textured SMPL-X+D mesh in various poses and
camera angles.

3.1. Mesh definitions

Meshes are denoted by M, defined as a set {V, F}, where V rep-
resents the vertices and F represents the triangular faces. The SMPL-X
model takes as input a translation 7 € R3, a global rotation G € R3,
pose parameters for the body and hands 9 = {6,.,6,,} € {R?*3,R33},
shape parameters for the body # € R3%, as well as facial expression
parameters y € R!0. This mesh has a fixed topology with a constant
number of vertices and faces:

Mgy x(T.G.0. B.w) = {Vsyprx- Fsmprx ) € R"3, N™M>3, (€8]

where n; = 10475 is the number of vertices and m; = 20908 is
the number of faces. The PIFuHD mesh exhibits a variable topology,
adapting its number of vertices n, and faces m, to the level of detail
captured from the input image:

3 3
Mppuap = {Vetpunps Ferrunp ) € R, N2, (2)

3.2. Pose estimation

Utilizing OpenPose [10], we extract 2D skeletal data, represented
as blue points in Fig. 3, which correspond to joints within the image.
We project the PIFuHD mesh onto the image plane to generate the
projected mesh vertices M 1/1 = {(x,5,0) | (x,».2) € Vppuup}- The 2D
joints and projected vertices are now in the same reference frame. We
select k = 20 points from M 1’, closest to each OpenPose-detected joint J;,
employing a K-means algorithm to split the corresponding vertices from
Moprup into two distinct sets, 7; and 5;, laying respectively onto the
front and back surfaces of the 3D mesh. We then average the centroids
of these sets for each joint, thus achieving the 3D joint estimation
Jtarget(i). For facial keypoints, a similar technique is adopted, but this
time, only the center point of the front set is used to lift each keypoint to
3D. Note that this simple process is not overly sensitive to the precision
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Fig. 2. Illustration of the reconstruction and texturing of the SMPL-X+D mesh from a single image, along with rendering results in various poses and viewpoints.

foreground

Fig. 3. Orthographic projection and 3D pose estimation approach. The back
shows the My, mesh, while the foreground shows the orthographic pro-
jection, M;, of this mesh onto the XY plane. The blue points illustrate the 2D
joint estimates obtained through OpenPose. The red points correspond to these
blue points lifted to the front and back surfaces of the Mppy,yp, mesh. While
the joints for the hands are processed in the same way, they are not shown
here because the density of points was not appropriate for the visualization.

of the 2D pose estimation algorithm and allow us to obtain a robust
initialization to the 3D location of joints without requiring complex
constraints normally used in 3D lifting of 2D poses [43]. Furthermore,
our approach can take advantage of future pose detectors, as long as
they are compatible with the SMPL-X joints.

3.3. Multi-step registration approach

Our methodology emphasizes a sequential optimization for the
SMPL-X model parameters, further refined by a deformation vector
applied to the resultant Mgyp;.x mesh, aiming for convergence with
the target Mpp,p mesh. This process involves minimizing specific cost
functions at successive stages.

Our pose optimization concentrates on body 6, and hand 6, joint
parameters. The joints of the jaw and eyes in the SMPL-X model
are not adjusted due to their minimal impact on the avatar’s overall
appearance. The optimization is carried out within a differentiable
framework, relying on a cost function derived from the output mesh
Mgyiprx(T, G, 6, B, w) and the joint positions Jgypr x(7, G. 0, B, w), where
T and G represent global translation and rotation, respectively, and 6,
B, and yw denote pose, shape, and facial expression parameters.

3.3.1. Pose optimization

In the initial stage, we set the SMPL-X model parameters G, f, and
y to zero, and establish a neutral “A” pose for 6. The initial translation
T = T, is estimated from the difference in the bounding box centers
of Mpipuup and Mgyp.x- Note that PIFuHD and SMPL-X are by default
of similar sizes, corresponding to human proportions, allowing for their
alignment without the need for scaling. Subsequently, we refine subsets
of our parameters through a sequence of optimization stages, each
using specific optimization criteria. We begin by refining 7 and g,
aiming to minimize a joint discrepancy cost function:

argmin (Ejoints) s 3)
7.6

where L4, measures the squared L, norm of the difference between
the SMPL-X joints and Jiaree (i) joints extracted from Mpypyp-

Next, we address potential local minima leading to non-human
poses by introducing a soft constraint on hand, idx,, and body, idx,,
joints:

Ly = Z (max(0,a — 6;) + max(0, 6; — b)) + Z a0 11%, 4
i€idx, keidx,

where a = —0.8 rad, and b = 0.5 rad (values are not symmetric because

of the SMPL-X hand rest pose) and «, are weighting coefficients:

10 if k€ {2,5,8,9,10,11,12,13,14}
a = (5)

1 Otherwise.

The range of values for k corresponds to selected joints in the head,

shoulders, torso and feet regions. A higher weight on these prevents

the reconstructed body from incorrectly leaning forward/backward.
We now optimize for § and g, with:

argg;nin ()*jointxﬁjoints + Ascﬁsc) ’ (6)
Bo

where jgins = 2, 4c = 1, and §, corresponds to the first component

of the SMPL-X shape parameters and can be seen as mostly controlling

the scale of the body.

3.3.2. Shape optimization

Our shape optimization framework is built upon two principal cost
functions: a Chamfer loss (£ ,amfer) and a bidirectional point-to-surface
loss (Lpyg), chosen to refine the SMPL-X model’s alignment with the
PIFuHD mesh. The Chamfer loss quantifies the proximity between
SMPL-X and PIFuHD vertices. Our point-to-surface loss selects the
closest pairs of vertices between two meshes M ,, which will correspond
to Mpguup, and Mg, which will correspond to Mgyp; x in this section.
We introduce mesh M here as in Section 3.3.3 we will use the same
loss with the SMPL-X plus deformation vector mesh. The loss computes
the distance between vertex pairs projected onto the normal vector
of the vertex from mesh M. Our loss favors adjustment of the My
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vertices locally and perpendicular to the My surface, thus reducing
lateral sliding:

Lpos(My, Mp) = z dist(p, D)+

PEMp

Y dist(5.0).

vEMp

_L
[ Mal
1
| Mg|

)

where 0 = argmin,¢yy, llp - vl and j = argmin, ¢, [Ip — vll3. The
distance dist(p, v) is expressed as:

|7, - (0= p)l

dist(p,v) = A
vll2

®
where 7, denotes the normal at vertex v, obtained by the normalized
average of the normals of the faces adjacent to v.

Our optimization function at this stage fine-tunes the SMPL-X model
parameters (7, G, 6, B, y):

irgg:}nﬁin (ZchLehamfer + 4p25 Lp2s(Mprrurns Msmprx)
CO.Bw

+}“joints£joints + }“xcﬁsc) ’ (9)

with weighting coefficients Ay, = 10, Apog = 1, Ajgins = 1000, and
Ase = 1.

3.3.3. Deformation vector optimization

To address the SMPL model’s limitations in representing clothing,
we add per-vertex deformation vectors. Inspired by previous work [1,
19], but adapted to our single-image context, this method allows
for more precise clothing representation. We optimize deformation
vectors D € R™*3 to adjust to the clothing geometry on the SMPL-
X mesh, aiming to minimize the same point-to-surface loss between
the adjusted mesh and the PIFuHD target. To ensure stability and
realistic mesh deformation, we incorporate a regularization term L,
combining Laplacian smoothing, normal consistency and an L, norm
on the deformation vector:

‘Creg = AIELaplacian + Azﬁnormals + AZHD”% + }“4”Di ”2’ (10)

dxf&h

where 4, = 10 and 4, = 10. We set a different weighting on the defor-
mation vector loss D4y " for the face and hands (4, = 10*) compared
to the deformation vector loss D for the other parts of the body (1; = 1).
The hands and face are not always correctly reconstructed by PIFuHD
and it is best in these regions to favor the SMPL-X shape by penalizing
large deformation vectors. At this stage, our optimization equation is

thus formulated as:
arg;nin (Lpas(Mprryns Msmprx + D) + Lreg) » an

where the two losses are simply added together. This deformation
vector optimization greatly improves the clothing representation, cap-
turing the wrinkles and later helping with the texture extraction. Our
optimization strategy effectively integrates local adjustments within a
broader global framework through the parameterization of the SMPL-
X model. This approach ensures that any local changes, such as those
between specific points and vertices, are seamlessly incorporated into
the overall structure of the SMPL-X model. Additionally, we enhance
the fidelity of these adjustments by employing Laplacian and normal
consistency losses. These losses are crucial as they maintain the mesh
smoothness and continuity, ensuring that local optimizations do not
compromise the global integrity and realistic appearance of the model.
Thus, our method achieves a balance between refining detailed features
and preserving surface smoothness.

The high-resolution mesh of Mpp results in significant compu-
tational time and memory usage during the optimization. Our exper-
iments demonstrated that subsampling Mp,up to match the vertex
count of the Mgyp;.x mesh, significantly reduces computation time
while having a negligible impact on the resulting quality. To achieve
a reduction in the number of vertices Vpp,up, We employed a farthest
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point sampling method [44]. Note that we do not coarsen the mesh; we
only subsample the vertices as the polygons of PIFuHD are not needed
in our loss functions.

Like those in most related work, our reconstructions rely on images
of people wearing shoes or socks. The SMPL-X model, with its detailed
geometry, including individually articulated toes, is ill-designed for
optimization toward a shoe geometry. We thus introduce a modification
to the SMPL-X mesh topology in the foot region. We replaced the toe
details with a closed surface resembling shoes (Fig. 4). We manually
selected the faces corresponding to the inner sides of the toes and
removed them from both the 3D model and the UV map (Fig. 4(b)). We
then added new faces to close the 3D mesh and added corresponding
faces to the UV map (essential for texture extraction, Section 3.4). Note
that, in this process, we rely only on the original SMPL-X vertices.
Vertices which were located on the sides of the toes are now unused
(and ignored in all optimization steps). As we rely only on the original
SMPL-X vertices, we preserve the ability to use the original skinning-
based animation without any change. Only the number of faces and
vertices is slightly less. By adopting this approach, the modified model
retains the general shape of the feet while easing the optimization
process. We will release our proposed shoe-like SMPL-X mesh topology
to the community.

Even though SMPL-X can model most clothing details found in
PIFuHD, it sometimes fails to recover finer clothing wrinkles and
discontinuities. To overcome this, we create a new mesh, SMPL-X, 4,
which is a finer version of SMPL-X (1-to —4 subdivision), as seen in
Fig. 5, and adapted some aspects of our framework. First, we compute
skinning weights for the new vertices and also we subdivide the UV-
map mesh. The added vertices are considered in the optimization steps.
The point-to-surface loss function (Egs. (7) and (8)) now uses a regular
Euclidean distance between the corresponding vertices v € Mgypr.x ,
and p € Mppypp:

dist(p,v) = [lv = pll,. (12)

This change is justified by the fact that the resolution of the subdi-
vided mesh is sufficiently high, eliminating the need for projecting
vertices with respect to the normal vector. Furthermore, because of
the difference in number of vertices, the point to surface loss (Lpyg,
Eq. (7)) behaves in a slightly different way. The increased number
of vertices sometimes pulls the vertices of Mgypx, in regions of
Mppupp Showcasing a noisy surface or erroneous protrusions. To avoid
pulling the surface too far at each optimization iteration of Eq. (7), each
optimization iteration ignores mesh M, (Mp.up) vertices for which
the distance of Eq. (12) is further than 2 cm. Through the successive
optimization iterations, the surface deforms more locally and gradually.
As such, the surface is smoother. Also, the tuning of loss parameters
has been adjusted to better regulate the influence of each component
of the loss functions on the overall model training. Specifically, 4,
was adjusted to 2 to increase its regulative impact, whereas 1, was
increased to 1e5 and A4 to 1e8 (4; remained unchanged).

In our computational framework, the Adam optimizer [45] is con-
sistently utilized across all stages. We conducted a parameter sweep to
select good learning rates for each step of our approach (See Tables 5-8
of the Appendix for details). The selected learning rates are as follows:
10~3 for the rigid transformation optimization (Section 3.3.1, Eq. (3)),
10~4 for the pose optimization (Section 3.3.1, Eq. (6)), 1072 for the
shape optimization (Section 3.3.2), and 10~* for the deformation vector
optimization (Section 3.3.3).

3.4. Texture extraction and completion

Now that the geometry is adjusted, we extract the color information
for the avatar from the PIFuHD mesh. Employing a blend of interpola-
tion techniques followed by a texture inpainting technique ensures a
faithful texture representation. For each texel center in the UV map
of SMPL-X, we identify the closest triangle and convert the texel’s
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(c) New SMPL-X mesh topology

Fig. 4. Topology modification of the SMPL-X model. (a) Original SMPL-X feet mesh with corresponding UV map. (b) Mesh resulting from the toe inner side
removal. (c) New shoe-like topology.

Fig. 5. Left: Original SMPL-X mesh. Right: SMPL-X,, (1-to —4 subdivision). The bottom images zoom in on the shoulder and arm regions.

position to barycentric coordinates within this triangle of the SMPL- Colors at the silhouette of the PIFUHD mesh exhibit color leakage
X+D mesh. From the corresponding 3D position, we fetch the color from the background as can be seeing in Fig. 6. To identify these wrong
from the nearest PIFuHD mesh vertex. silhouette texel colors, we extract the colors from the original image,
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Fig. 6. Silhouette color leakage. From left to right — the input image, the PIFUHD mesh, and the resulting texture extracted from PIFuHD.

Fig. 7. From left to right: Texture extracted from PIFu-HD, texture after linear interpolation in the silhouette areas, texture following the application of the LaMa

inpainting method on the back of the head.

and from an image with a different uniform background color. This
second image is generated by detecting the background in the original
image using the Rembg tool [46] and replacing it with a uniform color.
Texels exhibiting differences in colors correspond to silhouette texels
and should be synthesized. Horizontal linear interpolation is used to fill
these silhouette texels from the left and right “valid” texel colors. Fig.
7 illustrates this process. Another challenge in the extracted texture lies
in the fact that the PIFuHD method employs a naive symmetry to assign
colors to the back of the avatar. This negatively impacts occluded parts
in the region at the back of the head. To address this issue, we employ
the LaMa image inpainting method [47]. This method requires an input
image and a mask specifying the area to be inpainted. In our case, we
manually crafted a static mask targeting the back of the head. This
mask remains unchanged and applied to all reconstructions, regardless
of variations in the input images. This approach is justified by the fact
that in the UV space of SMPL-X, the posterior region of the head is
always at the same position. The use of this method allows for a more
realistic back of the head, as illustrated in Fig. 7(c).

4. Results

In this section, we evaluate our 3D reconstruction approach using
two open-access datasets. The X-Avatar dataset [28] features 20 sub-
jects from scanned real bodies, with synthetically generated images
using PyTorch3D. It presents a good diversity across body shapes,
poses, and demographics. PeopleSnapshot [1] captures 12 subjects in
A-pose through perspective RGB video from a camera 2 m away. For
testing, we used the video’s first frame showing the subject’s frontal
view. Note that these two datasets do not overlap with PIFuHD training
dataset.

4.1. Quantitative evaluation

We benchmarked our results against those achieved by PIFu [6],
PIFuHD [7], ICON [8], PHORHUM [5] and DINAR [27]. This com-
parison is based on a set of specific metrics. Intersection over Union
(IoU) [48] measures segmentation accuracy by calculating the ratio of
overlap between the predicted and actual silhouettes, where a higher
score indicates better performance. Chamfer Distance (CD) [49] eval-
uates the similarity between two sets of vertices, with lower values
denoting closer matches. Normal Consistency (NC) [50] assesses the
agreement of surface normals between the reconstructed model and
the reference, aiming for a score close to one for an ideal match. The
Structural Similarity Index (SSIM) [51] and Peak Signal-to-Noise Ratio
(PSNR) [52] gauge image quality, considering aspects like texture,
luminance, and contrast, with higher values indicating superior image
reconstruction. Finally, the Learned Perceptual Image Patch Similarity
(LPIPS) [53] metric evaluates perceptual similarity between images,
focusing on high-level visual features significant for human perception,
where closer matches yield lower scores.

Table 1 presents comparative results based on the X-Avatar dataset.
Our approach exhibits robust and competitive performance across var-
ious metrics, affirming its efficacy for single-view 3D reconstruction.
While slightly outperformed in some cases, the differences are minor.
The slight performance decrement is partly attributed to the use of a
parametric body model, which, despite offering substantial flexibility,
may struggle to capture small body or clothing details. Our results do
not exhibit a pronounced advantage in metrics such as LPIPS, PSNR for
rendered normals, and SSIM for rendered RGB images primarily due to
the underlying structure of our model. Our reconstruction relies on a
parametric model which utilizes less than six percent of the vertices of
the PIFuHD model. This reduction in vertex density inherently limits
our model’s capacity to capture extremely fine geometric details, such
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Numerical comparisons of single-view 3D reconstructions on the X-Avatar dataset. Best results are highlighted in bold green and

second-best in amber. “Ours subdiv” corresponds to using the SMPL-X, , mesh.

Method 3D metrics Rendered normals Rendered RGB images Nbr

CD | NC 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 IoU 1 vertices |
PIFu [6] 1.16 0.808 0.835 0.142 18.54 0.832 0.144 19.90 0.971 50,000
PIFuHD [7] 0.76 0.823 0.857 0.089 21.62 0.912 0.093 21.55 0.984 170,000
PHORHUM [5] 2.48 0.75 0.782 0.216 13.96 0.76 0.192 13.67 0.890 100,000
ICON [8] 2.98 0.721 0.833 0.125 18.48 0.805 0.143 17.89 0.947 48,000
Mallek et al. [9] 0.91 0.803 0.869 0.127 20.75 0.896 0.075 23.23 0.974 10,475
Ours 0.91 0.805 0.870 0.125 20.82 0.900 0.073 23.23 0.976 10,475
Ours subdiv 0.84 0.807 0.876 0.108 20.74 0.911 0.066 23.03 0.979 41,738

Table 2

Quantitative comparison on the PeopleSnapshot dataset using rendered RGB
image metrics. Our method achieves higher fidelity and segmentation quality
than DINAR.

Method Rendered RGB images IoU
SSIM 1 LPIPS | PSNR 1 ToU 1

DINAR [27] 0.947 0.070 26.88 0.871

Ours subdiv 0.985 0.029 33.55 0.955

as hair, and to precisely converge to the complex geometries exem-
plified by PIFuHD. Note that PHORHUM, being specifically trained
on perspective data, has a weaker performance on our orthographic
projection setting. To reduce the misalignment between the source
and the reprojected images, we have applied minor translation and
scale adjustments before computing the quality metrics to allow for
a fairer comparison. ICON performs worse than PIFuHD in terms of
Chamfer distance. In the ICON paper, the experiments use difficult
poses, effectively highlighting how ICON is significantly better than
PIFuHD in that context. In contrast, our experiments were conducted
with frontal images and relatively simple poses, a setting in which
PIFuHD outperforms ICON, which explains the apparent discrepancy
in Chamfer distance between our study and that reported in the ICON
paper. Finally, we can note that our approach, with and without
subdivision, outperforms the method of Mallek et al. [9] with the only
exception of PSNR on RGB images. When considering our approach
without subdivision, the numerical differences to the method of Mallek
et al. [9] are smaller, mainly because our contribution in the foot
modeling results in relatively few pixels in the overall image. Note
that our optimization approach being non-deterministic, the optimized
avatars slightly differ every time the optimization is computed. The
results in Table 1 for our approach correspond to the median value
over 10 optimizations.

We evaluated our approach alongside DINAR on the PeopleSnapshot
dataset, and the results are shown in Table 2. This dataset consists of
real-world perspective images, which correspond to the training envi-
ronment of DINAR. Additionally, since DINAR’s rendered outputs do
not perfectly align with the input images, we further applied cropping
and scaling adjustments to ensure a fairer comparison. Despite these
conditions, our method consistently achieves higher fidelity and seg-
mentation quality, demonstrating robustness across both orthographic
and perspective-based scenarios.

4.2. Qualitative evaluation

Quantitative evaluations do not always align with human percep-
tion. Therefore, we present qualitative results of our approach along-
side the methods of PIFu, PIFuHD, ICON, and PHORHUM on synthetic
images in Figs. 8 and 9, as well as a comparison on real images in
Fig. 10. Fig. 8 focuses on comparing input images to rendered images
from identical viewpoints. Our rendered images closely mirror the
source images. Conversely, PHORHUM reveals deficiencies in color
restitution, attributed to their unreliable attempt at estimating scene

lighting for albedo color reconstruction. Alternative methods, including
ICON, PIFu, and PIFuHD, exhibit performances comparable to ours,
with the lower resolution of ICON and PIFu resulting in a slight loss
of sharpness in the rendered images. Fig. 11 illustrates a comparison of
foot reconstruction, highlighting the differences between the SMPL-X
foot topology used in the method of Mallek et al. [9] and our shoe-like
topology. Fig. 12 highlights the finer details on the clothes that are
recovered when using the proposed subdivided mesh SMPL-X, ,. While
this subdivision strategy is optional, Table 1 shows that it improves the
quantitative metric results, increasing the advantage of our proposed
approach compared to the method of Mallek et al. [9].

We then assess the performance of our approach in generating
rendered images from new perspectives with the X-Avatar (Fig. 9) and
PeopleSnapshot (Fig. 10) datasets.

Our approach excels in estimating shape, pose, and colors, out-
performing PIFu and PHORHUM. PHORHUM, in particular, exhibits
anomalies in color and pose estimation, while PIFu struggles with
color completion issues, especially near the silhouette of the body.
Furthermore, our approach benefits from the use of a parametric model,
enabling the generation of more natural and realistic face and hand
shapes.

Concluding this evaluation, it is crucial to highlight a distinctive ad-
vantage of our approach: the ability to easily animate the reconstructed
3D avatars using linear blend skinning. This feature starkly contrasts
with other methods that do not facilitate such direct animation. II-
lustrating the animation capability of the proposed approach, Fig. 13
presents three animations generated from the extensive AMASS dataset
of human motions [54] showcasing the versatility of our approach.

Animation 1 (Fig. 13(a)) features a series of dance poses. Anima-
tion 2 (Fig. 13(b)) depicts an avatar executing gymnastic poses. Anima-
tion 3 (Fig. 13(c)) demonstrates the capacity of our approach to capture
and reproduce a range of facial expressions and hand movements.

4.3. Ablation study

In this section, we present an ablation study on the multiple steps
and optimizations of our model, focusing on geometric and color recon-
struction using the X-Avatar dataset. We conduct a series of tests where
individual components are removed from our pipeline. Table 3 allows
us to isolate and understand the impact of each component on the
overall performance. The last row (Ours) shows that our full pipeline
has the best and second best values for five out of nine measures,
demonstrating that it outperforms most of the other configurations.
Rows labeled “w/o P2S” in Table 3 and the column labeled “w/o P2S”
in Fig. 14 illustrate the critical role of the point-to-surface loss in Eq. (9)
and (11), collecting the worst quantitative metric values. Rows “w/o L,
norm hand & face” and “w/o L, norm body, hand & face” in Table 3
show that the quantitative measures are better without the L, norm,
but the qualitative results are much worse as can be seen in Fig. 14
“w/o L, norm hand & face” (similar qualitative problems occur for
“w/o L, norm body, hand & face”). The removal of the L, norm for the
hand and face parts in our model increases flexibility in the deformation
process, allowing for a better coverage of these areas when projected in
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Fig. 8. Qualitative evaluation of X-Avatar samples (same as input view).

Table 3

Comparison with respect to the ablated components. Best results highlighted in g¥€@fi, second-best in amber, worst in [féd italics.

Method 3D metrics Rendered normals Rendered RGB images
CD | NC 1t SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 ToU 1

Ours w/o sc Eq. (6) 0.927 0.802 0.867 20.67 0.895 0.076 22.89 0.973
Ours w/o sc Eq. (9) 0.910 0.801 0.867 0.127 20.79 0.896 0.076 23.29 0.973
Ours w/o0 P2S Eq. (9) 0.169 0.111

Ours w/o Chamfer Eq. (9) 0.916 0.801 0.867 - 20.62 0.896 0.076 22.79 0.972
Ours w/o regularization Eq. (10) - 0.795 0.865 0.130 20.57 0.896 0.080 22.87 0.972
Ours w/o Laplacian Eq. (10) 0.920 0.801 0.866 0.126 20.65 0.895 0.076 22.82 0.973
Ours w/0 normals Eq. (10) 0.924 0.800 0.868 0.126 20.65 0.896 0.075 22.74 0.973
Ours w/o0 L, norm body Eq. (10) 0.917 0.801 0.866 0.127 20.65 0.895 0.077 22.83 0.972
Ours w/o L, norm hand & face Eq. (10) 0.903 0.801 0.869 0.126 20.88 0.900 0.075 23.61 0.975
Ours 0.910 0.803 0.869 0.127 20.75 0.896 0.075 23.23 0.974

image space. However, one can see that the reconstruction of the hands
in column “w/o L, norm hand & face” of Fig. 14 is quite degraded
compared to our full pipeline. According to Table 3, Eq. (11) performs
better in terms of Chamfer distance when ignoring the regularization
term, but again we can see that the qualitative result is worse than the
full pipeline (column “w/o regularization” in Fig. 14), with flipped and
intersecting triangles on the body and hands.

4.4. Discussion

The quantitative and qualitative evaluations confirm the ability of
our approach to deliver high-quality 3D reconstruction. It validates not
only the numerical accuracy of our approach but also its robustness and
flexibility across varied visual and functional scenarios. Our approach

is reasonably fast, requiring 2 to 4 min of computation to reconstruct
the pose, shape, and texture of the results presented in this paper. Fig.
15 presents the relative computation times of a representative example.
We can see that with the regular SMPL-X mesh, most of the time goes
toward texture extraction, while with the subdivided SMPL-X mesh,
most of the computation time goes toward computing the deformation
vectors. We used a computer with 2 cores at 2.2 GHz, 24 GB of memory
and an NVidia L4 GPU.

The conducted experiments confirmed fidelity of the resulting mesh.
Notably, the incorporation of a Laplacian regularization loss signifi-
cantly smoothed the mesh, reducing the irregularities and disconti-
nuities seen in previous methods. Table 4 highlights the distinctions
between our approach and other methods.
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Fig. 9. Qualitative evaluation of X-Avatar samples across varied perspectives, distinct from the initial view.
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Fig. 10. Qualitative evaluation of PeopleSnapshot samples.
Table 4
Comparison according to several criteria.
Method Single image input Shape variability Animation Expression Textured Compact representation
SMPLify-X v X 4 v X v
Video Avatar X v v X v v
PIFuHD v v X X X X
PHORHUM v v X X 4 X
Ours 4 v v v v v

Our approach, while using a mesh with fewer vertices compared
to PIFu, PIFuHD, ICON, and PHORHUM (~ 6% compared to PIFuHD),
achieves levels of details that are comparable to implicit function-based
methods, leading to fine-detailed avatars. Unlike the PIFu-based meth-
ods relying on deep learning models like SCANimate for animation,
our approach uses the SMPL-X model, favoring robust, widely-used

10

animation techniques like linear blend skinning. In terms of expressive-
ness, our approach, through the use of SMPL-X, allows for animations
with a wider range of facial expressions and hand movements, sur-
passing other methods limited to body postures. Our texture process
also outperforms others, providing avatars with rich and more detailed
textures.
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(a) SMPL-X foot topology

(b) Our foot topology

Fig. 11. Comparison of foot reconstruction.

(a) w/o subdiv (SMPL-X)

(b) with subdiv (SMPL-X,,)

Fig. 12. Comparison without and with mesh subdivision.

5. Conclusion

In this paper, we tackled the challenge of generating 3D human
avatars from a single image. Our approach extends the work of Mallek
et al. [9]. We are driven by the objective to make these avatars realistic,
animatable and expressive. By leveraging cutting-edge techniques such
as PIFuHD, OpenPose, and the SMPL-X model, we have succeeded in
producing 3D avatars that faithfully replicate the human morphology.
We utilized PIFuHD to generate an accurate target 3D mesh and relied
on OpenPose to estimate 2D joints that are subsequently lifted to
3D. We then fit an SMPL-X model to this target mesh by applying a

11

sequence of optimization steps. We started with a rigid registration
and then refined the shape and pose parameters. We introduced a final
refinement process by applying a deformation vector to the SMPL-X
mesh for a more faithful modeling of clothing geometry. Most often,
avatars are reconstructed from images of people wearing shoes or
socks. Thus, we modified the SMPL-X mesh topology to reflect that.
Our modification maintains the same ease of use and animation of
SMPL-X as we kept the exact same vertices and only changed the mesh
topology. Furthermore, we demonstrate how to adapt our approach to
a finer resolution SMPL-X mesh. We also showed that this subdivision
strategy improves the quantitative metrics. Finally, we incorporated
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(a) Animation 1
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(b) Animation 2

(c) Animation 3

Fig. 13. Presentation of three rendered animations featuring three subjects in diverse body poses and expressions.
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Fig. 14. Qualitative ablation.

a phase of texture extraction and completion. We showed that our
approach outperforms the related work when considering several eval-
uation criteria: reconstructs from a single image, uses a compact mesh,
models humans wearing tight to loose clothing, produces a plausible
reconstruction of hands and face, synthesizes a realistic texture, and
allows easy animation of the avatars. None of the methods we have
compared to could simultaneously achieve a good performance on all
of these criteria.
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Overall, the proposed approach represents a significant step toward
achieving realistic and animatable human avatars, laying the ground-
work for future improvements. While promising, our texture generation
requires further refinement for enhanced fidelity. Investigating the use
of diffusion-based models [33,36-39] has the potential to better capture
the back side of the avatar. While our approach is successful regarding
certain types of loose clothing, it does not yet support very loose
garments, like skirts. Investigating other methods [34,35,37-39] which
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Table 5

Parameter sweep with respect to the learning rate for the rigid optimization phase (Section 3.3.1,

highlighted in bold gFe&R and second-best in amber.
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Eq. (3)). Best results are

Learning rate 3D metrics Rendered normals Rendered RGB images
CD | NC 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 IoU 1
le-2 0.828 0.806 0.877 0.110 20.68 0.911 0.068 22.88 0.978
le-3 0850 0806 0878 0109 2076 091 0068 2297 0978
le—4 0.850 0.808 0.877 0.110 20.66 0.910 0.066 22.77 0.978
Table 6

Parameter sweep with respect to the learning rate for the pose optimization phase (Section 3.3.1,

highlighted in bold gFe€fl and second-best in amber.

Eq. (6)). Best results are

Learning rate 3D metrics Rendered normals Rendered RGB images
CD | NCt SSIM 1t LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 IoU 1
le-3 0850 0807 087 0109 2071 0911 0067 287 0978
le-4 0850 0806 088 0109 2076 0911 0068 2297 0978
le-5 0.850 0.807 0.877 0.110 20.65 0.910 0.068 22.83 0.978
Table 7

Parameter sweep with respect to the learning rate for the shape optimization phase (Section 3.3.2). Best results are highlighted

in bold [g¥€€H and second-best in amber.

Learning rate 3D metrics Rendered normals Rendered RGB images
CD | NC 1 SSIM 1t LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 IoU 1t
le-1 0.87 0.800 0.871 0.117 20.37 0.905 0.073 22.74 0.973
le-2 0.85
le-3 0.88 0.798 0.871 0.116 20.35 0.905 0.073 22.75 0.973
Table 8

Parameter sweep with respect to the learning rate for the deformation vector optimization phase (Section 3.3.3). Best results are

highlighted in bold BFe&H and second-best in amber.

Learning rate 3D metrics Rendered normals Rendered RGB images
CD | NC 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 1 ToU 1
le-3 0.83 0.794 0.856 0.143 18.42 0.897 0.092 19.23 0.966
le-4 0.85 0.911 0.068
le-5 0.85 0.805 0.876 0.111 20.66 0.90 0.069 22.90 0.977
100% successfully support loose garments could help in rethinking our use
of the SMPL-X mesh to allow for different garment topologies while
90% preserving the ability to easily animate the resulting avatar. While
0% PIFuHD works well for the global shape of the body, its reconstruction
0 of the hands is sometimes poor, and our approach suffers from that.
70% Investigating better methods for the reconstruction of hands could
provide significant improvements in that sense.
60%
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Fig. 15. Relative computation times for the various steps of our approach,
Align (Eq. (3)), Pose (Section 3.3.1), Shape (Section 3.3.2), Deformation
(Section 3.3.3), and Texture (Section 3.4), as well as for the original vs.
subdivided SMPL-X mesh.
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Appendix

Tables 5-8 showcase the parameter sweep we conducted to select
the best learning rates for the different steps of our approach.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.cag.2025.104478.

Data availability

We will make our code and our improved SMPL mesh topology
available to the community: https://github.com/ETS-BodyModeling/
ImplicitParametricAvatar.
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