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ABSTRACT The increased demand for autonomous robots in industries such as healthcare, manufacturing,
and logistics is driven by the need to address labor shortages and enhance operational efficiency. A critical
aspect of these robots is their ability to navigate complex environments autonomously, which relies
heavily on multiple artificial intelligence models, including visual odometry. Visual odometry enables
robots to estimate their motion by analyzing visual data, making it essential for navigation and obstacle
avoidance. However, ensuring such models operate within real-time constraints is paramount for the robot’s
responsiveness, safety, and overall functionality. The complexity and depth of such a model, which utilizes
camera images and other sensor data, make it challenging to achieve real-time performance. Thus, this
paper thoroughly evaluates the performance of a deep-learning visual odometry model, with a focus on
its execution time and computational overhead. Furthermore, it proposes an optimized implementation to
meet the stringent real-time requirements for safe and efficient robot operation. The optimization is achieved
through algorithm improvement to preserve the model structure and accuracy. Multiple hardware platforms
were utilized to demonstrate the resource differences between edge, fog, and cloud deployments, thereby
validating the effect of the proposed model optimization. The resource usage is also compared to see the
impact of the modification on multiple aspects, including computation, memory, temperature, and energy.
The resulting model operationalization improves the execution time while highlighting limitations for some
hardware configurations.

INDEX TERMS Algorithm, artificial intelligence, autonomous robots, energy consumption, optimization,
parallel processing, real-time.

I. INTRODUCTION
Over the last decades, robotics has shown promising evo-
lution, and autonomous robotics solutions are increasingly
present in our lives. Many industrial fields benefit from
the use of such robots. In construction, robots are used to
install ceiling boards, as described in [1], which is a very
demanding task for humans due to the weight of the boards
and the necessity of working at heights. The industrial sector
also uses autonomous robots to transport components from
one workstation to another. Authors in [2] propose a robot
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framework that enables tasks such as 3D printing parts while
navigating to optimize production. Robots can also be used
in agriculture to identify, localize, and pick fruits as detailed
in [3]. Identifying potential diseases in the orchard and sorting
out problematic fruits is possible with artificial intelligence
(AI) [4]. Finally, healthcare is another field that has started
to leverage robotics. Authors in [5] explained the adoption
of robotics in the healthcare sector to perform various roles,
such as frontline workers, logistics, escort, manufacturing,
and surveillance.

Different AI models can be leveraged to perform such
industrial applications, but they require significant computing
power. However, running all computational tasks locally
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on the robot increases its cost manifold, primarily due to
the miniaturization of the electronic components that must
fit within the robot’s body. Moreover, the miniaturization
of electronics increases fabrication complexity and the
likelihood of thermal issues. Additionally, such computing
power is highly energy-intensive, which poses a problem
for battery-operated robots [6], [7]. To circumvent these
challenges with hosting computationally intensive tasks on
robots, the Internet of Robotic Things (IoRT) has emerged
as a potential solution. As introduced in [8], IoRT lays the
foundations for distributed robotics, enabling it to benefit
from external data sources and enhance the robotics solution.
It uses cloud computing technologies to provide distributed
computing capabilities for data from Internet of Things (IoT)
sensors. For instance, authors in [9] proposed applying this
concept to monitor the health of indoor plants by integrating
environmental sensors with robot observations.

The use of cloud resources implies a high communication
latency, as stated in [10]. Many algorithms or models require
real-time constraints to ensure the safety of autonomous
agents, which is not compatible with high-latency solutions.
Traffic sign detection [11], navigation [12], and control [13]
are examples of features that AI models solve, necessitating
fast responses. Authors in [14] compared the accuracy
of various implementations of the You Only Look Once
(YOLO) model. It can be stated that larger architectures
generally achieve higher accuracy but at the cost of longer
execution times. Deploying such a model in a real-time, time-
critical system requires carefully balancing execution time
and accuracy. Furthermore, larger models, characterized by
greater depth and a higher number of neurons per layer,
require more computational resources, resulting in increased
energy consumption.

Image processing models are good examples of such
large models. Processing camera feeds is computationally
intensive and plays a crucial role in various functionalities
of autonomous agents, including robots and vehicles. It is
used for positioning and movement control [15] or obstacle
detection [16]. For instance, the Simultaneous Localization
and Mapping (SLAM) algorithm has been used to explore
an environment to build a map that can be used for robot
navigation [17], [18]. Visual odometry is a feature used
in robotics to estimate the pose and localization of the
robot using image processing. Authors in [19] proposed a
Deep Learning (DL) approach for visual odometry through
sensor fusion of Inertial Measurement Unit (IMU) with color
camera images. Other sensors can also be used for indoor
localization, such as Ultra-Wideband (UWB) sensors [20]
or Light Detection and Ranging (LIDAR) sensors [21]. The
resulting localization is also used for robot motion through
motor control. These time-critical tasks ensure the robot
avoids obstacles or stops when they are detected. All these
robotics features utilize multiple sensors that generate a
large volume of data, presenting a challenge for real-time
processing.

Most of the algorithms mentioned above are implemented
for the Robot Operating System (ROS) middleware [22],
a widely used framework in robotics solutions. It offers a
distributed approach to performing tasks, with sensor nodes
providing telemetry data and controller nodes utilizing sensor
data to perform tasks such as motor control, localization,
navigation, and more. The proposed work utilizes ROS to
execute an AI model on sensor data input, leveraging all the
features available in the framework.

A. MOTIVATION
This paper aims to execute a resource-demanding AI model,
such as DL-based Visual Odometry, into a robotics solution
with real-time constraints without impacting the model’s
accuracy. The execution time improvement is achieved
through algorithm modification, rather than modifying the
model size, which can affect its accuracy. The goal is to
keep the model structure and parameter values of a proven
working DL model to improve execution time and meet real-
time constraints.

Knowing precisely a robot’s three-dimensional position
and orientation is the foundation of any robotics solution.
These values can be used through derivatives to obtain the
robot’s linear and angular velocities or accelerations with
the second-order derivative. The obtained results are used
for robot control and navigation. The execution rate of such
algorithms depends on multiple factors, including the robot’s
speed, responsiveness, and accuracy. The faster the rate, the
faster the robot can react and the more stable its motion will
be. When dealing with kinematic control (based on position,
velocity, and acceleration), the required execution rate is
slower than that of dynamic controllers (using wheel torque,
friction, and all dynamic aspects of the robot), as specified
in [23].

Dynamic controllers are more sensitive to variations
and need faster reactivity to ensure smooth motion. Such
controllers are more flexible but more complex to model
and implement, and require more computing power than
kinematic controllers. For kinematic control, increasing the
execution rate increases responsiveness and accuracy, but
also increases computational needs. If the robot’s speed of
operation is slow, the need for responsiveness is lower. The
rate for slow-moving robots (0.1 to 0.5 m/s) can be 10-20 Hz
[24], while it can go up to 100 Hz [25] for fast-moving
robots (higher than 1.0 m/s). Given that an autonomous
robot navigating a crowded environment cannotmove swiftly,
we consider a maximum velocity of 0.75 m/s, which justifies
a rate of 30 Hz, representing the real-time constraint for the
visual odometry model execution.

This paper leverages an existing DL model for robot
localization proposed in [26] and available on GitHub, which
serves as the baseline for this work. It uses data from the
IMU and color camera images. Since image processing is
the model’s most time-consuming component, the image
rate determines the model’s execution speed. Therefore, the
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TABLE 1. Real-time model references.

selected camera frame rate is 30 Hz, and the model is applied
to every received camera image.

B. RELATED WORK
AI processes are divided into two operations, namely
training and execution (or inference). Both operations are not
necessarily intended to be performed on the same computer
configuration, as training typically requires more memory
and computing resources to determine the best parameters for
achieving the desired accuracy using a large amount of data
from a given dataset. The resulting network parameters are
used to execute the model inference on a single set of inputs.

Table 1 presents multiple references to real-time scenarios
solved through AI models. It is essential to note that while
authors discuss real-time constraints for AI models, they
refrain from precisely quantifying the timing objectives.
It becomes difficult to assess if the resulting timings
claimed (when provided) are valid for such a real-time
scenario. The use cases necessitating real-time execution
include autonomous vehicle scenarios (such as collision
detection, traffic sign detection, intrusion detection, and
traffic monitoring), crowd-related scenarios (facial recog-
nition, human pose estimation, and crowd enumeration),
and healthcare applications (such as prostate cancer detec-
tion). The implemented models utilize well-known neural
networks, including Convolutional Neural Networks (CNN),
Multilayer Perceptrons (MLP), Recurrent Neural Networks
(RNN), such as Long Short-Term Memory (LSTM), and
transformers. The methodology for achieving the desired
execution time involves hyperparameter tuning, utilizing
sparse networks, comparing multiple model architectures to
select the optimal one, and integrating model execution into
a pipeline to process model predictions. Another approach
is to divide the full-scaled image into smaller images to
reduce the model size and increase the execution time. It is
also possible to parallelize multiple regions when multiple
GPUs are available. The timing analysis depends on the
model’s usage and the type of input. All of these works utilize
color images captured by a camera, except for the prostate
cancer detection scenario, which employs ultrasound images.
The latter advertises fast model processing, which can be
attributed to the grayscale image and the small model size.

Pruning and quantization techniques are discussed in [35].
The authors successfully optimized the SLAM model by
up to 79.8% while keeping its accuracy by retraining it
with fine-tuning techniques. Authors of [36] compared
various model optimization techniques, including pruning,
quantization, fine-tuning, and clustering, across different AI
frameworks, such as PyTorch and TensorFlow, as well as their
optimized variants. Their analysis reveals that, depending on
the framework, specific optimization techniques are more
effective than others, yet can significantly improve inference
time with minimal impact on model accuracy, and sometimes
even yield better results.

Another essential factor for successful autonomous
robotics solutions is their energy efficiency [37]. Since the
robots are battery-operated, particular care must be taken
to minimize the computing and memory requirements of
the designed algorithm. An analysis of the impact of AI on
energy consumption is detailed in [38], and the obtained
results highlight that model choice significantly impacts
energy consumption (from basic machine learning algorithms
to complex neural networks). Further, the programming
language used for implementation can also influence energy
consumption. Thus, particular attention should be devoted
to selected models that are reliable in accuracy and
energy-efficient.

Another essential factor impacting the robot’s energy
consumption is the resource type chosen for the model
execution, i.e., Graphics Processing Unit (GPU) and Central
Processing Unit (CPU). Authors in [39] compared the energy
consumption of training and inference execution on GPU and
CPU. Even if the GPU consumes significantly more energy
than the CPU, the gain in execution time makes it more
energy efficient than the CPU for a particular task. They
also highlighted that a GPU consumes significant power even
when idle. This means that when using GPU-based systems
for non-AI workloads, the energy consumed by idling GPUs
considerably impacts energy efficiency. A model partitioning
solution is proposed in [40], which distributes the model on
GPU and CPU for edge devices to optimize the balance of
energy consumption and execution time.

Different approaches are discussed in the literature to opti-
mize AI models that reduce energy consumption, including
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bagging algorithms, pipelining, and dynamic programming.
Authors in [41] presented a bagging algorithm to parallelize
computation using mini-batches, thereby improving energy
consumption while minimizing the impact on model per-
formance. Josyula et al. [42] proposed a pipeline solution
to perform point cloud segmentation to optimize run-time
execution. A downside of pipelining is the addition of
communication overhead, which affects the overall execution
time. Additionally, the segmentation results in data reduction,
which improves execution time. Li et al. [43] proposed a
dynamic programming approach to distribute processes on
both GPU and CPU on mobile devices. Their results depicted
better efficiency than using only a GPU. Along similar lines,
authors in [44] explored compiler optimization to improve
model execution time, demonstrating faster execution times
on both CPU and GPU while having a minimal impact on
model accuracy.

Unlike the optimization techniques discussed, which focus
primarily on model architecture changes or hyperparameter
tuning, this paper’s proposed approach preserves the model
structure and, instead, optimizes the execution pipeline and
deployment strategy through algorithmic optimizations.

C. CONTRIBUTIONS
Since the work relies on a real-world scenario based on visual
odometry, this paper defines the execution time limits and
proposes an optimized model to meet these constraints. The
main contributions of this paper are:

• Definition of the real-time constraint with justifications
of an autonomous robot localization module.

• Multiple phase algorithm optimization of a Visual
Odometry DL model, including the adaptation of the
model in ROS.

• Impact analysis of the various phase optimizations
on the execution time, resource usage, and energy
consumption.

• Heterogeneous hardware configuration comparison to
model the execution at different layers (edge, fog,
or cloud computing).

It is important to emphasize that the structure of the
Visual Odometry DL model was intentionally left unchanged
in this study. While some basic hyperparameter tuning
was performed to achieve reasonable accuracy, our primary
objective was to evaluate and optimize the model’s execution
pipeline for real-time performance, rather than to maximize
accuracy through extensive hyperparameter tuning. The goal
is to establish a model baseline for evaluating the impact of
our proposed work on inference execution time, aiming to
achieve a 30 Hz frame rate. Further work will be conducted in
the future to enhance the model’s accuracy and, by applying
the proposed algorithm, to meet both objectives of accuracy
and real-time processing.

D. ORGANIZATION
This paper is organized as follows. Section I-B provides
an overview of the related work. Section II introduces the

baseline visual odometry model used for this work and
explains the process used for the AI model training to obtain
the results for this paper. Section III explains the various
optimization phases applied to the model to operationalize
it and meet real-time criteria. Section IV evaluates the
performance of the optimized model and provides an analysis
of the resources used for execution, along with a discussion
of the various results. Finally, a conclusion presents potential
areas for improvement in future work.

II. VISUAL ODOMETRY MODEL
The concept of odometry uses data from various sensors to
estimate the position and orientation variation of the robot.
By itself, it does not directly provide the robot’s localization.
Still, when the original robot’s position is known, the global
position can be computed by applying the relative motion to
the previous localization.

Visual odometry provides the same relative motion but
utilizes visual data to enhance the accuracy. This data can
originate from sensors such as camera feed (color or depth
images) and LIDAR point cloud. The high-level structure of
the visual odometry model, proposed in [26] and used as the
baseline for this work, is detailed in Fig. 1. It performs sensor
data fusion using data from an IMU and an RGB Camera
to predict the robot’s relative position and orientation. This
predicted localization can feed other services, such as motor
control or navigation models.

This model is divided into multiple submodels. The first
submodel is responsible for the feature extraction using the
Flownet2S model introduced by [45]. Flownet is a DL-based
optical flow algorithm that takes two frame images of a
movement and detects the motion variation from one frame
to another. Since the visual odometry model uses the Flownet
only for feature extraction, the last dense layer from themodel
is removed. If the camera frame rate is 30 Hz, the first image
captured does not produce any output data; however, the
subsequent frames are used in pairs with the previous frame
as input to the feature extraction submodel.

The resulting data, labeled Observation, is pushed into the
next submodel, acting as an encoder. The encoder is detailed
in Fig. 2. It is designed to help reduce the data size used for
the remainingmodel through three dense layers. The resulting
data reduction is labeled Encoded Observation.

The transition submodel following the encoder is repre-
sented in Fig. 3. It is responsible for the sensor fusion using
the Encoded Observation and the data originating from the
IMU sensor. A sensor rate of 100 Hz is considered for the
model design, meaning that three IMU frames are received
between two camera frames. This data is processed using
Gated Recurrent Units (GRU) RNN [46]. The output of the
RNN is provided to a dense layer to scale the result data size
and is then concatenated with the encoded image before being
used in an LSTM [47]. The idea behind the two RNNs is to
leverage the previous data from the sequence over time. This
is performed through a closed loop, and the resulting RNN
hidden layer data is reinjected in the subsequent execution as
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FIGURE 1. Deep learning visual odometry model.

FIGURE 2. Encoder model.

a memory of the past. Two fully connected layers follow to
provide features resulting from this sensor fusion, labeledOut
Features.

Finally, a pose model, as described in Fig. 4, performs pose
prediction through a succession of dense layers. They are
divided into two distinct paths. The first path (in red) predicts
the position in two dimensions (since the robot is moving on
flat floors, the Z coordinate is considered to be zero) with a
minor influence from the angular portion on the Y coordinate.
The second path (in green) predicts the yaw (rotation around
the Z-axis) while the roll (X) and pitch (Y) are considered
zero due to the 2D motion and to reduce the complexity.
The result is the relative variation of the position/orientation
between two frames.

The obtained relative position and orientation are con-
verted into a transform matrix and used to determine the new
predicted robot’s global position. It is expected that the initial
position has to be known for this algorithm to work.

A. DEPLOYMENT
Over the past few years, the approach to deploying robotics
solutions has undergone significant evolution. Initially, the
computation was only located on the robot platform. With
the increase of AI models to execute robot operations, such
a solution has limitations regarding available resources and
energy. The concept of Cloud Robotics, as introduced in [48],
addresses resource availability but introduces significant
communication latency, rendering it ineffective for real-time
scenarios. Resources used in the cloud can be virtualized to
match computing requirements and scaled as demand grows.

Fog Robotics [49] brings the computation closer to the
user, reducing the latency and making it more accessible for

critical scenarios. The amount of resources is more limited
than the cloud, but it can include computers with high-end
resources. A compromise can be made using Edge Robotics,
which brings computing power to the edge of the robotics
solution with viable communication latency for real-time
constraints. While Edge computing holds more resources
than robots, it is limited compared with Fog capabilities.

This paper compares the various hardware configurations
representing the deployment types (Edge, Fog, and Cloud).

B. MODEL TRAINING
The project’s use case is based on indoor mobile robotics.
Accordingly, the MIT Stata Center Dataset [50] was selected
for training the model. The dataset is derived from an indoor
scenario involving a robot equipped with components similar
to those available in our lab. It also has the advantage of
providing the data in a ROS bag file representing a real-time
recording of a sequence. This sequence can be replayed in
ROS to facilitate the inference evaluation in a near-reality
environment. Specific ground-truth labeling is available for
multiple sequences, facilitating supervised training. The data
rate for the IMU is 100 Hz, and the camera feed runs at 30 Hz,
as designed in the model.

The accuracy obtained through the model’s training is
not optimal, with an accumulated error of around 20 cm in
X, 8 m in Y, and 20 degrees in theta. The primary factor
contributing to the accumulated error in Y is the orientation
error. While more extensive hyperparameter tuning could
reduce these errors, such optimization was beyond the scope
of this study, which focused on improving the execution
pipeline and, therefore, the operationalization of the model,
rather than refining the model. Another factor that can impact
the model’s accuracy is the image size. While the MIT
Stata Center dataset provides 640 × 480 images, the original
model was trained on the KITTI dataset [51] with 1382 ×

512 images, resulting in more extensive training data.
While our experiments focus on the MIT Stata Center

dataset due to its compatibility with our hardware and ROS-
based pipeline, the operationalization strategies proposed are
applicable to other datasets, such as KITTI (outdoor vehicle
scenario) and EuRoC (three-dimensional aerial vehicle),
which are used for training in the original paper. Each dataset
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FIGURE 3. Transition model.

FIGURE 4. Pose model.

presents its own particularities in terms of vehicle velocity,
indoor or outdoor environment, or two or three-dimensional
navigation. They all provide sequences with camera images
and IMU data. Since the aim of the project is indoor two-
dimensional navigation, the characteristics of the MIT Stata
Center dataset are more suitable, and no generalization is
necessary for other scenario types.

III. MODEL OPERATIONALIZATION
The model’s operationalization was performed in three
phases. This section details them and discusses their potential
impact on the model’s execution time.

A. PHASE 1: ROS CONVERSION
The code baseline, implemented in Python with the PyTorch
framework, is incompatible with ROS. The first phase
involves converting the visual odometry model to make it
compatible with the ROS framework. A ROS node can
combine the concepts of publishers sending data, subscribers
receiving data, and services performing client-server actions.
This conversion is mainly necessary to leverage the replay
capability provided by the ROS bag file. Another motivation
for this phase is that ROS is widely used in the robotics
industry. This phase involves no changes to the original model
execution, but rather the method for providing the dataset
to the model (from a regular PyTorch dataset to a ROS

FIGURE 5. Phase 1 sequence diagram.

subscriber). The ROS2 Humble distribution was used for this
work.

The resulting sequence diagram is represented in Fig. 5.
Each sensor stream (IMU and RGB Camera) is handled by a
dedicated ROS subscriber running in separate threads. Every
IMU and Camera data is stored in a queue in a loop over seven
frames (sequence_size). Mutexes are used to synchronize
access to the shared 7-frame queue, ensuring that only one
thread can modify the queue at a time. When an image
is received, the process copies the last three IMU values
and the received camera image into a sequence queue. The
whole model can be performed when the queue has seven
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sequence frames. A mutex also protects the model execution
to prevent concurrent predictions. The model is implemented
precisely as described in the base code, which computes
the prediction by looping over seven frames, performing the
Flownet, Encoder, Transition, and Pose submodels for each
sequence execution, as represented in Fig. 1.

ROS can be executed in a single-threaded ormulti-threaded
fashion. The Phase 1 optimization leverages multi-threading
to perform every message reception in a separate thread.
ROS also offers two options for thread execution, namely,
mutually exclusive and reentrant execution [52]. The concept
of mutually exclusive execution is similar to protecting the
thread with a mutex, ensuring that a thread completes its exe-
cution before starting the execution of the following thread
instance. Reentrant execution enables the parallel execution
of processes, leaving the developer responsible for ensuring
thread-safe execution. The latter option is implemented for
this optimization phase to simplify the implementation of
the subsequent improvements. This implementation is very
similar to the mutually exclusive thread execution, except that
storing camera image data can be executed simultaneously
with the model execution.

Since the model execution is protected, an overrun
(execution time over the 30 Hz framerate) has a direct impact
on the validity of the data. The synchronization between the
RGB camera and the IMU would be broken, resulting in
invalid predictions, which is considered a failure.

B. PHASE 2: PARALLELIZATION
The idea behind Phase 2 optimization is to remove the
Flownet submodel from the overall model execution, allow-
ing for parallel processing. While in the previous phase,
we introduced multithreading, its only benefit is that it
enables sensor data acquisition (since a mutex protects
the execution of the whole model). The mutex acquisition
difference between phases 1 and 2 is represented in Fig. 6.
The fact that the mutex acquisition in phase 2 is pushed after
the Flownet submodel allows it to be executed in parallel
to the remaining model execution.

Instead of waiting for the entire visual odometry model to
be completed, the Flownet submodel execution is initiated
by the ROS subscriber upon receiving an image, using the
two previously received frames. If the odometry prediction
comes before the end of the Flownet execution, the new
prediction will start. Otherwise, it will wait for the process to
be completed. The main reason this modification is possible
is that Flownet is completely decoupled from the remainder
of the model, focusing solely on camera images.

This simple modification can significantly improve execu-
tion time due to parallelization, but it is expected to consume
more resources for the same reason.

For this phase, an overrun of the Flownet execution would
break the synchronization with the IMU, meaning that the
three latest received IMU frames would not be aligned with
the pair of camera images, which would be considered a
failure.

FIGURE 6. Model execution sequence diagram.

C. PHASE 3: LOOP UNROLLING
The Phase 3 implementation continues to execute the visual
odometry model over seven sequence frames at each camera
frame reception. The loop unrolling optimization aims to
leverage the RNN concept appropriately. When the GRU or
LSTM network is executed, it provides the resulting tensor
and the values of its hidden layers, representing its internal
memory. The values of these hidden layers can be injected as
input for the subsequent execution, meaning that there is no
added value to computing the result over the entire sequence,
since only the last values are used. Sequence is essential for
RNN, mainly for the training process. The initial hidden layer
values can be randomized or set to zero, and this initialization
is considered a hyperparameter for the training process.

To improve the execution time, this loop is unrolled,
meaning the hidden layers (Fusion Hidden and IMU Hidden
in the transition model) are stored for the subsequent model
execution. The sequence diagram in Fig. 7 illustrates the
execution of the visual odometry model, including the loop
unrolling optimization. The thread synchronization mutexes
are kept based on the Phase 2 implementation to ensure
parallelization of the FlowNet submodel.

Before obtaining the first result from themodel, Flownet2S
requires two frames. Also, since the hidden frames of the
RNN are either initialized to random values or zeros, the first
predictions are not very accurate. To mitigate this problem,
a warm-up period of 7 frames is considered. Therefore,
the first localization data will be available only after the
8th frame. To emphasize the different execution philosophy
compared with Phase 2, the model execution is labeled
stepModel, meaning that the process performs one frame step
instead of the whole seven-frame execution.

The benefit of this phase is the reduction of computations
during model execution, as the sequence loop of 7 frames
is accumulated over time instead of being executed at every
camera frame reception. This reduction removes some burden
on processing units (CPU/GPU) but does not affect memory
usage.

The Flownet overrun impact on the synchronization is the
same as for Phase 2, which is considered a failure.
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FIGURE 7. Phase 3 sequence diagram.

IV. EVALUATION
To validate the model in various deployment scenarios
(edge, fog, and cloud), different hardware configurations
are used, which are detailed in Section IV-A along with
a description of the executed tests. Section IV-B discusses
the frame rate validity considered for the evaluation, while
Sections IV-C, IV-D, and IV-E advertise the phase-by-
phase results to show the improvement brought by each
implementation in terms of execution time. To further analyze
the results, resource usage is evaluated in Section IV-F,
along with power consumption and hardware temperature in
Section IV-G. Finally, Section IV-H concludes the evaluation
with a discussion of the impact of the optimization changes
on model execution.

A. METHODOLOGY
Three hardware configurations were used to compare the
performance of the model’s execution (described above) for
robot localization. These three configurations vary in terms
of resources and are used to represent different execution
scenarios in a distributed robotics solution. Typically, servers
at the fog and cloud levels utilize compute virtualization;
however, we consider the suggested hardware as a repre-
sentative configuration for such virtual machines. These are
detailed as follows:

• Jetson: A Jetson Orin AGX 32 Gb RAM running
over Jetpack 6.0 (based on Ubuntu 22.04 Desktop),
representing the robot’s computing power at the edge.

• Laptop: A laptop with an Intel Core i7-10750H, 32 Gb
of RAM, and an NVIDIA GTX 1660 Ti (6 Gb of GPU
memory) running over Ubuntu 22.04 Desktop, which is
considered as an edge node (not localized on the robot
but could be installed as a gateway on a floor) or a small
fog node.

• Desktop: A desktop computer with an Intel Core
i7-12700K, 32 Gb of RAM, and an NVIDIA RTX
3090 (24 Gb of GPU memory) running over Ubuntu
22.04 Desktop, considered a fog or cloud node.

For all configurations, the ROS package running the visual
odometry model is executed in a Docker container using
CUDA, and the sequence is also executed in a separate
Docker container on the same computer. Communication
between the two containers is done through theDocker virtual
network and is not advertised outside the computer.

The sequence used from the MIT Stata Center dataset is
2012-04-03-07-56-24, which contains 45720 camera frames
representing a run of 25 minutes and 27 seconds.

The evaluation examines the execution time for each
optimization phase and the resource usage, including CPU,
GPU, Random-AccessMemory (RAM), power consumption,
and temperature. The Basic Hardware Monitor script by [53]
was integrated into the ROS node to obtain the metrics
detailed above. To obtain GPU information on the Jetson,
some changes were required using the jetson_stats
library from [54]. The energy consumed during the sequence
was monitored using a wattmeter to capture the overall
energy consumption throughout the sequence execution. The
computer is directly connected to the wattmeter to obtain
the energy data, and the acquisition is reset manually when
the sequence is initiated. In the following box plots (Figs. 8
to 9), the red line represents the maximum execution time of
33.3 ms (a frame rate of 30 Hz).

For each optimization phase, the entire dataset sequence
was processed independently on each hardware configura-
tion. All tests were conducted under identical conditions,
with system load minimized and hardware monitoring scripts
running concurrently to ensure consistency in resource usage
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TABLE 2. Number of frames executed over the sequence by configuration
and development phase.

measurement. The random seed value used for all the runs is
similar to ensure consistency. Therefore, the model accuracy
is equivalent in all cases as depicted in Section II-B.

B. FRAME RATE
It is essential to note that failing to meet the 30 Hz threshold
results in prediction failure. The model relies on two camera
frames and three IMU frames to predict its position before
the next camera frame is captured. If a deadline is missed, two
options are available. First, the faulty frame could be ignored;
however, in that case, it would impact the model, as it expects
consistent hidden layer values over time for the RNN. The
other option is to always wait for the prediction.

Table 2 represents the number of frames executed over the
25-minute sequence based on the second approach. Under
ideal circumstances, we would expect 45,719 prediction
values (one frame is not used for prediction due to the
Flownet model). From these values, it is evident that the
second option has an impact. An accumulation of time can
be observed, indicating that services requiring localization
will also be delayed. The laptop and desktop configurations
work optimally for Phase 3, with all frames processed. Still,
for the Jetson, only 67% of the frames are executed over the
nominal sequence time. The result of this overflow makes it
impractical for real-time applications since the prediction of
the last frame would be computed approximately 12 minutes
later. The implemented improvements have a significant
impact. For the Jetson, during the nominal sequence time,
only 11.3% of the frames were processed with Phase 1,
15.5% for Phase 2, and 67.3% for Phase 3. The laptop shows
similar improvement with only 9.9% of the frames processed
for Phase 1, 22.8% for Phase 2, and a successful 100% for
Phase 3. The Desktop was already running almost fine with
99.99% of the frames processed for Phase 1, no noticeable
improvement for Phase 2, and 100% for Phase 3.

C. PHASE 1
The results in Fig. 8 illustrate the execution time of the
three configurations for the first optimization phase. This
phase is considered the baseline since the original code was
incompatible with ROS.

The box plot diagram shows that the Jetson’s average
execution time (248 ms) is better than that of the laptop
(278.1 ms). The laptop configuration exhibits greater vari-
ability, ranging from 6ms to 629ms, compared to the Jetson’s
variability, which ranges from 14 ms to 540 ms. However,
the real-time constraint of 30 Hz (or 33.3 ms per frame) is
not respected with the laptop and the Jetson. The desktop

configuration is usually within tolerances, with an average
execution time of 10.7 ms, but some outlier values are taking
longer to process (up to 117 ms).

To understand the impact of hardware configurations,
comparing their parameters is mandatory. The Jetson Orin
AGX features 1792 CUDA cores, compared to 1408 for
the laptop’s GTX 1660 Ti. Based on [55], its clock speed
(930 MHz) is less than the laptop’s (1530 MHz). The Jetson
has a floating-point processing power of 3.333 TFLOPS
compared with 5.027 TFLOPS for the computer GPU. When
comparing these specifications, the GTX 1660 Ti presents
better parameters but performs worse than the Jetson. One
possible justification is that the GTX 1660 Ti is a general-
purpose GPU, while the Jetson is explicitly designed for
AI tasks. The Jetpack operating system, while based on
Ubuntu 22.04, is customized for the particular embedded
characteristics of the Jetson. This specialization can explain
the better results. In comparison, the RTX 3090 desktop is
powered by 10,496 CUDA cores running at 1.7 GHz, which
significantly surpasses the two other configurations.

Another possible reason for the high variability in execu-
tion time is the kernel’s task scheduler. Since other processes
run on the computer, the available CPU and memory can be
affected. Moreover, the three configurations run a desktop
version of Ubuntu, so the user interface update and other
services are workloads the operating system must handle.
For the Jetson, the CPU and GPU share the same memory,
which can add complexity to the operating system’s resource
management. This is not the case for traditional Nvidia GPUs,
which have dedicated memory.

D. PHASE 2
The execution time for the second optimization phase is also
shown in Fig. 8. All configurations exhibit a better average
execution time, although the improvement is less significant
for the Jetson configuration. Effectively, the Jetson achieves
an average execution time of 225.5 ms, with peaks of up
to 422 ms, while the laptop achieves an average execution
time of 144.7 ms. The desktop has improved to 4.3 ms and
exhibits less variability. The desktop outliers are less frequent
than for Phase 1 but are still problematic (up to 262 ms).
The variation in laptop configuration is more significant, with
a maximum of 529 ms. This variation can be explained by
the accumulation of parallel processing induced by the frame
overflow that may overwhelm the system.

E. PHASE 3
The final optimization phase execution time results are shown
in Fig. 8. Again, the global performances were improved
significantly for the Jetson (78.2 ms with a peak of 547 ms)
and laptop (11.6 ms with a peak of 299 ms) configurations.
The Jetson’s average execution time is enhanced by 147.3 ms,
and for the laptop, by 133.1 ms. In both cases, the variability
is also narrowed down. Unfortunately, Jetson’s performance
is still higher than the real-time constraint tolerance, but the
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FIGURE 8. Model execution time for each configuration and phase.

TABLE 3. Submodels execution times (in ms) per configuration on
development phase 3.

laptop is now within the tolerance. However, the outliers can
be problematic over time. The desktop average execution is
slightly higher than Phase 2, with an average execution time
of 7.1ms, but with less variability and a peak valuemarginally
better at 217 ms.

To understand the distribution of execution times across
the entire visual odometry model, a breakdown of execution
times for each submodel is presented in Table 3, which
represents the execution time of each submodel for each
configuration. The Flownet and Pose submodels are the most
demanding due to the size of their neural networks. From
these results, it is evident that running Flownet on the Jetson
is not viable for meeting real-time constraints, as it exceeds
the available time alone. The laptop and desktop timings are
all below the 30 Hz (33 ms) threshold, as well as the sum
of the submodel’s execution time, which makes them viable
configurations.

Suppose it is necessary to perform at least the FlowNet
submodel due to the high latency induced by communicating
images to other layers (edge, fog, or cloud). In that case,
the model must be modified to reduce the size of the
FlowNet network. This reduction will impact the accuracy,

FIGURE 9. Phase 3 execution time for two Jetson power profiles.

necessitating some hyperparameter tuning to achieve a
comparable model accuracy.

The Jetson Orin AGX offers multiple power configurations
(15 W, 30 W, 50 W, and MAXN). These pre-settings try
to limit the hardware’s power consumption to the provided
value. Although it is not guaranteed that the limits will not be
exceeded, the average consumption is below the threshold.
The MAXN configuration enables the hardware to utilize
as much power as necessary, provided it remains within the
safety limits of the hardware. The model was executed using
two different Jetson system parameters to determine their
impact on execution time. The Fig. 9 shows the differences
in execution time for the MAXN and 15 W, which are the
extremes in terms of configuration.
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TABLE 4. Jetson power profile configuration.

TABLE 5. Resource usage of each configuration by development phase.

Power usage has a significant impact on performance.
For the MAXN configuration, the average execution time
of 78 ms exhibits smaller variability (ranging from 15 ms
to 547 ms) compared to the 15 W configuration, which
has an average execution time of 674 ms with a variation
ranging from 15 ms to 5.5 seconds. This can be explained
by the various parameter changes required to reduce power,
as detailed in Table 4, which implies a slower processing
frequency that directly impacts performance. To achieve real-
time execution time for AI models on a Jetson, a compromise
must be made regarding energy consumption.

F. RESOURCE USAGE
Another critical factor that influences the execution time is
resource availability. Table 5 shows the CPU, RAM, andGPU
usage metrics over the sequence execution. The comparison
of resource usage between configurations is not relevant
since the amount of resources varies from one to another,
as seen in Section IV-A. However, the resource usage for a
given configuration from one development phase to another
is interesting.

According to Table 5, the Jetson’s CPU usage increases
by 6.9% with the parallelization and slightly decreases by
0.9% for the loop unrolling. The laptop’s CPU usage is
stable for the first two phases and increases by 6.8% for
Phase 3. The desktop displays a regular rise in CPU usage
across the various phases. For the Jetson and the laptop,
as the number of frames processed increases, the amount of
disk access required to write the experimental data to files
increases accordingly, which can justify the high variation.
The CPU variation for the desktop configuration is almost
linear and represents a 1.7% increase, which can be attributed
to multiple factors external to the model execution. For the
laptop and the Jetson, the increase can be associated with the
rise in frames processed, which requires more processing for
data preparation and publication.

RAM usage does not significantly vary from one phase
to another. External factors could cause the variation. While
all the hardware configurations share the same amount of
memory (32 GB), the Jetson uses more memory than the
other configurations. The justification stems from the fact that
the Jetson memory is shared among the CPU and the GPU,

whereas the GPU has its own dedicated memory for laptops
and desktops.

The GPU usage on the Jetson presents a low increase of
5%. The behavior on the laptop and the desktop is entirely
different. On the laptop, Phase 1 presents GPU usage almost
17.7% higher than the other phases. Despite the absence of
parallel processing, the high GPU anomaly may be attributed
to the sequential inference, which results in prolonged GPU
engagement per frame. In contrast, later phases implement
more efficient frame handling, allowing the GPU to return
to lower usage states between computations. Additionally,
the GTX 1080 GPU of the laptop differs significantly from
the RTX 3090 and Jetson Orin AGX GPUs in terms of
architecture, available resources, and driver-level resource
management. All these factors can contribute to the observed
anomaly.

On the desktop, Phase 2 presents a 1.2% increase. The
increase can be justified by the parallelization of the Flownet
with the remaining part of the model, which adds to the
computational burden. Since only one step is performed
during Phase 3 instead of the entire seven steps of the
sequence, the GPU usage decreases from 12% to 8.9%. This
effect is not visible on the laptop or the Jetson, mainly because
of the accumulated execution delay, which puts constant
pressure on the resources compared to the laptop and desktop,
which benefit from the idle time between frames.

G. POWER AND TEMPERATURE
Since the visual odometry model is designed for a battery-
powered robot, other factors, such as temperature and energy
consumption, must also be analyzed. Table 6 presents the
GPU temperature and the average power consumed for
each configuration and development phase. The Jetson
temperature is stable at 47.3◦C from Phase 1 to Phase
2 and decreases to 45.9◦C in Phase 3. The same temperature
stability is observed from Phase 1 to Phase 2 for the laptop
at 77.5◦C with a slight variation of 0.9◦C. The temperature
rises to 83.7◦C during Phase 3. For the desktop, the Phase
1 temperature is 54.6◦C, which rises to 66.1◦C for Phase
2 and decreases to 50.9◦C for Phase 3.

Except for the laptop configuration in Phase 3 and the
desktop configuration in Phase 2, there is no significant
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TABLE 6. GPU Temperature in ◦C for each configuration and development
phase.

TABLE 7. GPU Power in Watts for each configuration and development
phase.

variation in temperature. The possible cause of the laptop’s
issue is a problem with the cooling system, as the main
difference in resource usage is between the CPU and the
GPU. For the desktop, we see a more significant usage of
the GPU, which can explain the variation. Sustained GPU
temperatures above 80◦C may trigger thermal throttling,
which reduces clock speeds and negatively impacts real-time
performance. This behavior can explain the outlier execution
time values of Phase 3 on the laptop configuration.

The GPU power usage is shown in Table 7. The Jetson
consumes an average of 16.5 W for Phase 1 and is relatively
stable at 20.9 W for Phase 2 and 20.7 W for Phase 3. The
laptop’s power usage gradually increases from 28.2 W for
Phase 1 to 38.5 W for Phase 2 and 47 W for Phase 3. The
power consumption pattern for the desktop is different, with
a power usage of 134.2 W in Phase 1, a significant increase
to 229.2 W in Phase 2, and a lower value of 126.5 W in
Phase 3.

The Jetson is optimized for low-power computation, as an
event in the MAXN power mode requires a maximum
of 21 W. The temperature and power usage of the laptop and
desktop can be correlated. A potential justification for this is
that when the GPU is heating, the power necessary for the
cooling system seems to consume a significant amount of
power to reduce the temperature.

The GPU power is not necessarily the best way to identify
the model’s real impact. Table 8 details the GPU power
consumption while adding information about the energy
consumed over the sequence execution. When considering
the energy, it is noticeable that the optimization has a negative
impact. The desktop consumes 39 Wh less with all the
optimizations, while the laptop’s consumed energy increases
by 7 Wh, and the Jetson remains at the same energy level.

The decrease in energy consumption from the desktop can
be justified by the reduction in computation due to the Phase
3 loop unrolling. The energy values are not representative of
the laptop and Jetson configurations, as noted earlier, since
the monitoring was conducted over a 25-minute sequence
execution. Unfortunately, most configurations and phases
did not execute the process over all the frames, which
increasingly impacts actual energy consumption. Effectively,

when examining the desktop configuration that executed the
model over all frames, regardless of the development phase,
we see that, contrary to expectations, the optimization has a
positive impact on energy consumption. It is worth noting that
the total power consumed by the Jetson and the laptop for
the first two phases is not representative, as it only covers a
portion of the total frame to process.

H. DISCUSSIONS
The Table 9 summarizes the impact on the model execution
time through the various optimization phases.

While the improvement is not sufficient for the Jetson, it is
evident that with an improvement of 68.47%, the changes
are still insufficient to meet the real-time constraints. Still,
it significantly improves it, so that when combined with
other model optimization methods, such as pruning and
quantization, it would be possible to meet the goal. The
95.83% improvement for the laptop makes it compatible
with the real-time constraints. While the desktop was already
running within the constraints, the 33.64% improvement
leaves more room for other processes to run on the same
computer.

Due to the size of the neural network, DL-based visual
odometry models for predicting robot localization are highly
resource-demanding. The proposed algorithm modifications
significantly improve execution time, but based on the
obtained results, real-time execution on a Jetson cannot be
achieved. While slightly increasing the energy consumption
on the desktop configuration, the main impact of the
optimization is the reduction of outliers that result in
overruns.

An interesting aspect arises from studying the energy
consumption of Jetson. Even if the resource usage increases,
the impact on power usage is negligible. This emphasizes that
the Jetson architecture is optimized for systems running on
batteries, even when running extensive AI models. We would
need to reduce the camera frame rate to run the model
effectively on this configuration, thereby providingmore time
for model execution. Lowering the robot’s speed would allow
this rate to decrease.

Compared to other optimization methods, the proposed
solution does not modify the model structure, ensuring the
same accuracy as long as the execution time meets the
real-time frame rate. Adding more optimization would poten-
tially decrease model accuracy while improving execution
time.

Since the desktop is the only configuration capable of
running all the frames, it is the best example for comparing
the impact of the optimization phases. The desktop’s average
execution time is approximately 2.9 ms longer than phase
2. However, the less frequent and shorter outliers show
improvement. It can be seen that the optimization has a low
impact except for the reduction of outliers. One justification
for this is the availability of better resources than the Jetson
and the laptop. Even at Phase 1, the average model execution
time was within the limits of real-time execution. To have
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TABLE 8. Total power for each configuration and development phase.

TABLE 9. Execution Time Improvement Across Optimization Phases.

a better impact, the optimization needs to move the model
execution closer to or even below the limit, as it frees
resources induced by heavy parallelization (more than two
frames executed at once).

Although our evaluation focuses on single-machine
deployments, network latency and communication overhead
are critical factors in distributed robotics. The network
communication latency is greatly impacted by the data size
and the data rate, as concluded in a previous work [56].
The image processing should preferably be executed on
the robot itself to reduce the size of the data exposed
to the other layers. While our approach preserves model
accuracy by avoiding structural changes, this inherently
limits the potential speed-up in inference.Model compression
techniques, such as pruning and quantization, could further
reduce execution time but may require more fine-tuning
training to maintain similar accuracy. The combination of
the proposed execution pipeline and deployment strategy
with model optimization is part of future work, along with
parallelization in a distributed manner across the edge-fog-
cloud continuum.

V. CONCLUSION
This study defined real-time execution requirements for a
deep-learning visual odometry model and proposed algo-
rithmic optimizations to meet these constraints without
altering the model structure. The evaluation across Jetson,
laptop, and desktop configurations showed that while opti-
mizations significantly reduced execution time (up to 95%
improvement on laptop configuration). Jetson hardware still
cannot achieve the 30 Hz real-time threshold, making full
on-board processing impractical for mobile robots. These
findings highlight trade-offs among performance, energy
consumption, and hardware feasibility and suggest that
distributed processing across edge, fog, and cloud layers
may be necessary. Future work will address communication
latency, connectivity resilience, and fallback strategies to
ensure robust real-time localization in autonomous robotic
systems.
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