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Abstract

Respiratory distress syndrome (RDS) is one of the most serious neonatal conditions, fre-
quently leading to respiratory failure and death in low-resource settings. Early detection is
therefore critical, particularly where access to advanced diagnostic tools is limited. Recent
advances in machine learning have enabled non-invasive neonatal cry diagnostic systems
(NCDSs) for early screening. To the best of our knowledge, this is the first cry-based
RDS detection study to include both preterm and full-term infants in a subject-balanced
design, using 76 neonates (38 RDS, 38 healthy; 19 per subgroup) and 8534 expiratory cry
segments (4267 per class). Cry waveforms were converted to mono, high-pass-filtered,
and segmented to isolate expiratory units. Mel-Frequency Cepstral Coefficients (MFCCs)
and Filterbank (FBANK) features were extracted and transformed into fixed-dimensional
embeddings using a lightweight X-vector model with mean-SDor attention-based pooling,
followed by a binary classifier. Model parameters were optimized via grid search. Per-
formance was evaluated using accuracy, precision, recall, F1-score, and ROC-AUC under
stratified 10-fold cross-validation. MFCC + mean-SD achieved 93.59 £ 0.48% accuracy,
while MFCC + attention reached 93.53 + 0.52% accuracy with slightly higher precision,
reducing false RDS alarms and improving clinical reliability. To enhance interpretability,
Integrated Gradients were applied to MFCC and FBANK features to reveal the spectral
regions contributing most to the decision. Overall, the proposed NCDS reliably distin-
guishes RDS from healthy cries and generalizes across neonatal subgroups despite the
greater variability in preterm vocalizations.

Keywords: NCDS; RDS; full-term and preterm newborns; filterbank features; MFCCs;
feature embedding; customized X-vector

1. Introduction

In 2023, the global under-five mortality rate stood at 37 per 1000 live births, with
neonatal mortality (within the first 28 days) contributing 17 per 1000—equating to ap-
proximately 2.3 million deaths annually, or 6300 per day [1,2]. These figures, reaffirmed
by the World Health Organization in mid-2024, highlight the persistent challenge of
neonatal survival, particularly in low-resource settings [3]. A global scoping review by
Tochie et al. [4] identified RDS as the leading cause of neonatal respiratory failure, with
reported hospital-based mortality ranging from 0.2% to 57.3% in under-resourced regions
such as Ethiopia. Supporting this, a retrospective study of Ethiopian public hospitals
(2019-2021) reported a 37.4% mortality rate among neonates with RDS, corresponding to
59.9 deaths per 1000 neonatal-days [5].
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Since the 1960s, the analysis of newborn cries for diagnostic purposes has advanced
significantly. Pioneering work by Wasz-Hockert et al. in Scandinavia used spectrographic
analysis to distinguish typical cries from those associated with conditions such as Down’s
syndrome [6], laying the groundwork for neonatal cry analysis. Modern NCDSs have
evolved from basic acoustic assessments to data-driven models that extract clinically
relevant biomarkers from cry signals. They offer a non-invasive, accessible means of early
warning to aid clinical screening and intervention, particularly in low-resource settings.

This study aims to develop a practical and reliable NCDS for early detection of RDS.
We utilize a private cry dataset balanced across RDS and healthy cases, including both
preterm and full-term infants to improve generalizability. Table 1 details the characteristics
of the selected CASs (Cry Audio Signals) for the current study. Pre-emphasis filtering and
manual segmentation are applied to isolate diagnostically relevant expiratory cry segments.
FBANKSs and MFCCs are extracted as low-level features and input to a lightweight X-
vector model, which encodes variable-length cries into fixed-dimensional embeddings via
statistical or attention-based pooling. A classifier then maps these embeddings to RDS or
healthy labels by capturing underlying acoustic patterns.

The remainder of this paper is organized as follows: Section 2 reviews related work
to establish the theoretical and empirical context. Section 3 details the materials and
methods, including the data pipeline, feature extraction, embedding and classification
strategies, customized X-vector training, Interpretability Methods, hyperparameter tuning,
and evaluation protocol. Section 4 presents results and analysis, highlighting the perfor-
mance of MFCC and FBANK features with statistical and attention-based pooling. Finally,
Section 5 discusses the findings and concludes this paper.

2. Literature Review

Machine learning (ML) models have shown strong potential in infant cry classification,
with reported accuracies exceeding 80%—a significant improvement over the average
human performance of 34% [7]. This gap highlights the ability of computational models to
detect subtle, clinically relevant acoustic patterns often imperceptible to human listeners,
reinforcing their value as non-invasive tools for automated health screening. The field of
cry analysis has advanced substantially, as evidenced by a systematic review of 126 studies
conducted over a 24-year period [8]. Early efforts relied on statistical models and manually
defined decision rules using limited acoustic features. More recently, the field has shifted
toward data-driven methods, with ML, deep learning (DL), and hybrid architectures form-
ing the core of modern systems. This transition reflects both technological advances and
growing recognition of infant cries as valuable biomarkers for neonatal health. Ji et al. [9]
illustrate the application of these methods across tasks such as cry reason classification, cry
detection, and pathological cry identification. Among these, identifying pathological cries
remains the most challenging due to significant acoustic variability and limited clinical data.
Data scarcity—driven by ethical concerns, the vulnerability of neonates, and difficulties
in obtaining parental consent—continues to hinder scalability and clinical adoption of
cry-based diagnostic tools.

Although research in automatic infant cry analysis is growing, few studies have
specifically focused on classifying RDS. Our group has explored this challenge using various
feature representations, classification models, and population cohorts. The first study [10]
framed the task as binary classification. It employed MFCCs, tilt, and rhythm features to
capture both short-term spectral cues and long-term dynamics, achieving 73.8% accuracy
using a linear Support Vector Machine (SVM) on expiratory segments. Subsequent works
extended the task to three-class classification, typically distinguishing healthy, RDS, and
sepsis cries. The third study [11] employed a fusion-based approach using spectrograms of
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expiratory (EXP) cries as input to a CNN pretrained on ImageNet for deep feature extraction.
The resulting embeddings were combined with prosodic and spectral features—HR and
GFCCs— used to train various classifiers, including Random Forest (RF), SVM, and Deep
Neural Networks (DNNSs); the DNN achieved the highest accuracy of 97.5%. The fourth
study [12] used the dataset from [11] to classify healthy, RDS, and sepsis cries by converting
expiratory (EXP) segments into spectrogram images. A Vision Transformer (ViT) was
applied to capture the most informative spectral regions via self-attention, achieving 98.69%
accuracy. The fifth study [13] also used image-based audio inputs—GFCCs, spectrograms,
and mel-spectrograms—as input to a Vision Transformer (ViT), with GFCCs yielding the
highest accuracy (96.33%). To improve interpretability, the authors applied explainable
Al techniques, including Layer-wise Relevance Propagation (LRP), LIME, and attention
visualization. In the final study [14], self-supervised models—wav2vec, WavLM, and
HuBERT—were fine-tuned on a balanced EXP dataset to extract features directly from
raw cry signals, and then a single fully connected layer was used for classification, with
wav2vec achieving the highest accuracy (89.76%) and annealing learning rate schedules
outperforming linear ones. The study emphasizes the benefits of raw audio input in
streamlining the processing pipeline and advancing NCDSs. Although all studies from
the group used the same private database and focused solely on full-term newborns,
they differed in cry sample counts and segment durations. Studies 1-5 maintained class-
balanced samples but showed uneven infant distribution across classes, raising concerns
about subject-level bias. In contrast, ref. [14] utilized a larger dataset with equal infant
representation across RDS, healthy, and sepsis classes, improving the robustness and
generalizability of the results.

MFCCs remain a cornerstone feature in NCDSs, consistently used as direct inputs or
within pre-processing pipelines for deep learning models. Their enduring use—despite
growing model complexity—reflects their effectiveness in capturing key spectral and per-
ceptual properties of infant cries [8,9], supporting their integration across both traditional
and end-to-end architectures. In contrast, Filterbank energies (FBANKS) retain spectral
detail by omitting the cepstral transformation, yet remain underutilized in NCDSs. Their
raw spectral fidelity makes them well-suited for deep learning models that learn hier-
archical representations. FBANK features have shown strong performance in related
domains—speech recognition [15], respiratory sound classification [16], and environmental
audio analysis [17]—thereby underscoring their untapped potential for infant cry analy-
sis and warranting further investigation. MFCCs have been widely used to distinguish
healthy from unhealty infant cries. In [18], MFCCs were combined with auditory-inspired
amplitude modulation (AAM) features and classified using an SVM on expiratory seg-
ments. Similarly, ref. [19] extracted MFCCs and GFCCs, enhanced them via Canonical
Correlation Discriminant Features (CCDFs), and used an LSTM network for classification.
Complementary to these studies, ref. [20] compared MFCCs with Constant Q Cepstral Coef-
ficients (CQCCs), Linear Frequency Cepstral Coefficients (LFCCs), and Short-Time Fourier
Transform (STFT)-based features on the Baby Chillanto dataset, reporting superior per-
formance with CQCCs using Gaussian Mixture Model (GMM) classifiers. In [21], MFCCs
were extracted from the iCOPE dataset along with additional spectral and spectrogram-
based descriptors (e.g., Local Binary Patterns (LBPs), Local Phase Quantization (LPQ), and
Rotation-Invariant LBP (RLBP)). Classification was improved using SVMs and feature fu-
sion techniques. Similarly, ref. [22] used GMM-UBM models trained on static and dynamic
MEFCCs from both expiratory and inspiratory segments to distinguish pathological from
healthy cries.

In [23], the classification of healthy versus septic newborns was explored. MFCCs were
extracted alongside prosodic features—intensity, rhythm, and tilt—from both expiratory
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and inspiratory segments. Each feature set was evaluated individually and in combination
using various classifiers and majority voting. For expiratory cries, the highest F-score
was achieved by an SVM trained on the full feature set, while for inspiratory segments,
tilt features combined with a quadratic discriminant classifier performed best. Several
studies have addressed the classification of asphyxiated versus healthy newborn cries
using acoustic and prosodic features. In [24], MFCCs were extracted from cry recordings
and fed into a CNN for binary classification. Similarly, ref. [25] used a combination of
acoustic features—MFCCs, chromograms, spectral contrast, and tonnetz—to train deep
learning models. CNNs performed best with MFCCs alone, while DNNs achieved higher
accuracy using the full feature set. In [26], Weighted Prosodic Features—including pitch,
energy, intensity, FO, and formants—were used to train a DNN for classifying cries as
healthy or asphyxiated. The study also proposed a hybrid approach, combining MFCCs
and prosodic features into a joint matrix fed into a second DNN, further improving
classification performance.

In [27], infant cries were analyzed to distinguish healthy infants from those with
Autism Spectrum Disorder (ASD). Four acoustic feature types—MFCCs, LPCCs, wavelet
coefficients, and DWT-MFCCs—were used to train SVM and CNN classifiers. DWT-MFCCs
yielded the highest accuracy and noise robustness with SVM, while MFCCs performed
best with CNNs. The findings suggest that MFCCs are well-suited for deep learning, while
wavelet-based features enhance robustness for real-world ASD cry detection. In [28], the
authors classified healthy versus Hypoxic-Ischemic Encephalopathy (HIE) cries using
a privately curated dataset with manually segmented recordings to exclude inhalations
and reduce noise. A range of spectral and cepstral features—including MFCCs, dynamic
MFCCs, Gammatone Cepstral Coefficients, Spectral Centroid, entropy, and Flux—were ex-
tracted, followed by sequential feature selection. Classification was performed using a deep
model with a BILSTM layer, a fully connected layer, and a softmax output, demonstrating
the feasibility of audio-based HIE detection. Multi-class cry classification has also been
explored to differentiate among multiple pathologies. In [29], 16-dimensional MFCCs were
extracted from 50 ms frames of a self-recorded dataset, reduced using PCA, and classified
with an Adaptive Neuro-Fuzzy Inference System (ANFIS), which modeled fuzzy rules to
distinguish deafness, asphyxia, and normal conditions. Similarly, ref. [30] proposed a more
elaborate pipeline using the Baby Chillanto and Malaysian infant cry datasets. Each sample
was represented by 568 features, including 496 wavelet packet transform-based entropy
measures (e.g., Tsallis, Renyi, Shannon, permutation, fuzzy, approximate, and sample
entropy), 56 LPCCs, and 16 MFCCs. Dimensionality was reduced using the Improved
Binary Dragonfly Optimization (IBDFO) algorithm, selecting the top 204 features to train
an Extreme Learning Machine (ELM) kernel classifier.

The X-vector architecture, introduced by Snyder et al. [31], was originally designed
for speaker recognition, transforming variable-length audio into fixed-dimensional embed-
dings using Time-Delay Neural Network (TDNN) layers followed by statistical pooling. Its
ability to capture both local and global acoustic patterns makes it adaptable to a wide range
of speech and audio classification tasks. It has been successfully applied in multi-speaker
recognition [32], spoken language identification [33], and robust speaker verification in
noisy environments [34]. Its utility further extends to low-resource speech recognition [35],
acoustic scene classification [36], and blind audio source separation guided by speaker
identity [37]. Although not yet utilized in newborn cry analysis, the X-vector framework
is well-suited for NCDSs due to its ability to produce compact, discriminative embed-
dings—particularly when optimized for lightweight deployment on small-scale clinical
datasets, as demonstrated in this study.
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Despite increasing interest in NCDSs, research specifically targeting RDS detection
from infant cries remains limited. Within our group, one study addressed binary classifi-
cation of RDS versus healthy infants [10], while others explored three-class classification
involving RDS, sepsis, and healthy conditions [11-14]. However, all of these studies focused
solely on full-term newborns, leaving the more vulnerable preterm population underrepre-
sented. Moreover, most relied on datasets with imbalanced infant distribution across classes.
Although [14] adopted a balanced design, it was also limited to full-term infants. These
limitations—lack of subject-level balance and exclusion of preterm neonates—substantially
constrain the generalizability and clinical applicability of existing cry-based diagnostic
models. Moreover, unifying classification for preterm and full-term infants adds com-
plexity due to marked developmental differences in vocal characteristics during the first
two months of life. Preterm cries typically exhibit higher and more unstable fundamental
frequencies, flatter melodic contours, shorter and more irregular cry bursts, and reduced
loudness and harmonic structure compared to those of full-term infants [38]. These acoustic
differences arise from physiological immaturities, including underdeveloped lungs, thinner
vocal folds, and incomplete neuromuscular coordination [39]. Consequently, preterm cries
are inherently noisier and less structured, posing challenges for developing classifiers that
generalize across neonatal subgroups.

To address prior limitations, this study is the first to incorporate cry recordings from
both preterm and full-term infants across RDS and healthy cases. A balanced cohort
was formed by selecting 19 newborns of both sexes for each of the four clinical groups:
RDS/preterm, RDS/full-term, healthy/preterm, and healthy/full-term. All recordings
were collected with informed parental consent and in compliance with ethical guidelines.
This subject-balanced, demographically diverse dataset forms the basis of a novel cry-based
classification framework for neonatal healthcare. This study makes two key contributions
to cry-based disease detection. First, it presents the first subject-balanced classification
system for distinguishing RDS and healthy cries across both preterm and full-term infants,
addressing the critical gap left by prior studies that excluded preterm populations. Second,
it introduces an efficient and scalable diagnostic framework using low-dimensional cepstral
and spectral features—MFCCs and FBANKs—combined with a customized lightweight
X-vector architecture. Variable-length acoustic inputs are transformed into discriminative
fixed-length embeddings that capture key vocal characteristics across developmental stages.
The model is trained via an optimized pipeline that accounts for acoustic variability in
pitch, rhythm, and harmonic structure, enabling robust classification and demonstrating
strong potential for non-invasive, clinically viable RDS screening.

3. Materials and Methods

The methodology begins with raw cry waveforms, which undergo stereo-to-mono
conversion, high-pass FIR filtering, and manual segmentation to isolate expiratory seg-
ments. From these, low-level acoustic features—either FBANKs or MFCCs—are extracted.
A customized lightweight X-vector model then transforms the variable-length features into
fixed-dimensional embeddings. These are passed to a classifier to predict the infant’s con-
dition as either healthy or affected by RDS. Figure 1 provides an overview of the complete
pipeline, from raw input to final prediction.
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3.1. Data Pipeline

This section describes the collection of newborn cry audio signals (CASs), outlines the
dataset characteristics, details the pre-processing procedures, and presents the participant
information used in the experiments.

3.1.1. Data Characteristics

This study utilized the private cry audio dataset described in [14], collected in col-
laboration with Al-Raee and Al-Sahel hospitals (Lebanon) and Sainte-Justine Hospital
(Montreal, QC, Canada). Ethical approval was obtained, and informed consent was se-
cured from guardians prior to data collection. CASs were recorded in natural clinical
environments—including maternity wards and NICUs—at a sampling rate of 44.1 kHz and
16-bit resolution, with microphones positioned 10-30 cm from the newborn’s mouth. To
preserve ecological validity, ambient sounds such as staff conversations, alarms, and other
infants’ cries were intentionally retained.

Health conditions were determined through postnatal screening, and each cry was
labeled as healthy or pathological based on medical records. The dataset comprises CASs
from 769 newborns, representing 96 distinct pathologies, with some infants contributing
multiple recordings (up to 5), each lasting 1-4 min (mean: 90 s). Infant ages ranged from 1
to 208 days. Cries were elicited by common stimuli, including hunger, discomfort, diaper
changes, blood tests, bathing, and delivery. Recorded metadata includes cry trigger, gesta-
tional age, birth weight, Apgar score, gender, hospital, pathology type, age at recording,
and prematurity status (full-term or preterm). The dataset reflects broad demographic
diversity across races, ethnicities, and genders, including half-Caucasian and half-Haitian,
African, Arabic, Caucasian, Latino, Native Hawaiian, and Québécois backgrounds. This
diversity is relevant, as prenatal exposure to prosodic features during the third trimester
may influence CAS production [40].

Although the dataset remains the same as in our previous study [14], the present work
targets distinct clinical categories within the data, offering a new perspective on model
performance across specific conditions.

3.1.2. Data Implementation

CASs were classified into two groups—RDS and healthy—based on two criteria. First,
only infants younger than 54 days were included, as cry frequency remains stable and
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voluntary control is not yet developed at this age [41,42]. Second, both full-term and
preterm newborns were considered. After applying these criteria, the dataset comprised
782 recordings from 303 healthy full-term newborns, 94 from 36 healthy preterm newborns,
102 from 35 full-term newborns with RDS, and 43 from 19 preterm newborns with RDS. To
ensure balanced representation, 19 newborns of both genders were selected from each of
the four groups. Recordings from healthy full-term and preterm infants were merged into
a single "healthy’ category, and those from RDS cases into an '/RDS’ category.

The pre-processing procedure in this study followed the approach detailed in [14] and
consisted of three primary stages: conversion of stereo-channel recordings to mono via
averaging; pre-emphasis filtering using a first-order high-pass FIR filter defined by

P(z) =1-097z71, 1)

which introduces a zero near z = 1 to compensate for the spectral tilt introduced by the
glottal source; and segmentation. Each CAS typically contains multiple expiratory and
inspiratory phases, along with behavioral and background sounds. Using WaveSurfer,
these segments were manually labeled and extracted. This study specifically focused on
expiratory segments (EXPs) due to their higher informational value, treating each EXP
as an independent cry sample for subsequent processing and analysis. Table 1 summa-
rizes the selected CASs, participant details, number of EXP segments, and the range of
segment durations.

Table 1. Dataset summary and participant information.

Label RDS Healthy

No. of Newborns 38 38

No. of CASs 93 98

No. of EXPs 4317 4267
Sampling Frequency 44.1 kHz 441 kHz
Duration Range (seconds) [0.040-5.495] [0.040-6.184]
Total Duration (seconds) 3350.0150 3332.2570

To ensure balanced representation, the RDS group (4317 EXP samples) was randomly
downsampled to 4267 samples, matching the number of available samples in the healthy
group. Given the dataset’s limited size and variable signal durations, stratified k-fold
cross-validation was adopted to provide a more robust and reliable evaluation [43]. By
preserving class proportions within each fold and allowing all samples to contribute to
both training and validation, this approach mitigates the risk of overfitting, performance
bias, and variability in model behavior.

3.2. Feature Extraction

Feature extraction transforms raw audio into compact representations to address
the challenges of high-dimensional data. For example, CASs sampled at 44.1 kHz yield
44,100 samples per second, leading to significant computational complexity. Although
DNNs can learn hierarchical representations, direct waveform processing is resource-
intensive and prone to issues such as vanishing or exploding gradients. Using signal-
derived low-dimensional features reduces complexity, stabilizes training, and supports
robust representation learning. In this study, we employed two feature types: spectral
domain (FBANKS) and cepstral domain (MFCCs).
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Raw waveform of the baby cry signal

3.2.1. Filterbank Features (FBANKS)

Spectral features such as filterbank energies (FBANKSs) capture the distribution of
signal energy across frequency bands over time. To extract FBANKS, the raw waveform
is converted to the time—-frequency domain (Figure 2). The signal is segmented into short
frames, windowed, and transformed via FFT to obtain the power spectrum. A mel-scale
filterbank is then applied, summing the energy within each filter, and the logarithm of
these values yields the final FBANK features, following standard procedures in the HTK
Book [44]. The mel scale, central to FBANKS, stems from psychophysical studies of pitch
perception, approximating how humans perceive frequency differences. The scale maps
real frequency values (Hz) to a perceptual scale: it is approximately linear below 1 kHz and
logarithmic at higher frequencies. The mel scale is mathematically defined as follows:

Mel(f) = 2595 x log;, <1 + 76(0>, ()

where f is the frequency in Hertz (Hz), Mel(f) is the perceived pitch in Mel units, log,,
denotes the logarithm to base 10, and 2595 and 700 are empirically determined constants
based on psychoacoustic experiments.

Time Domain Spectral (Time-Frequency) Domain Cepstral Domain
Mel-Frequency
Cepstral
o | 5:
(I Coefficients
M (MFCCs)

Filterbank features
Figure 2. Extraction of FBANKSs and MFCCs from raw baby cry signals, illustrating transitions

(FBANKS)

through time, spectral, and cepstral domains.

3.2.2. Mel-Frequency Cepstral Coefficients (MFCCs)

Following the extraction of FBANK features, MFCCs, introduced by Davis and Mermel-
stein [45], are obtained by applying the Discrete Cosine Transform (DCT) to the logarithm of
the mel-scale filter bank outputs, as shown in Figure 2. The DCT reduces redundancy and
removes correlation among the FBANK coefficients, transforming the energy distribution
into a compact set of features that summarize the spectral shape. Cepstral features such as
MFCCs capture the overall shape of the spectral envelope rather than individual frequency
components, modeling how the spectral energy varies over time.

Since both FBANKs and MFCCs are extracted from audio signals of variable length, the
resulting features are represented as two-dimensional matrices, where one axis corresponds
to time frames and the other to the number of feature coefficients—FBANK energies or
MEFCCs, respectively. All feature extraction parameters, including those determining the
number of time frames (e.g., window size, frame overlap, and signal duration), were
optimized through the procedure described in Section 3.6. Moreover, to improve training
stability and reduce variability, global mean-variance normalization (MVN) was applied to
the MFCC and FBANK features before feeding them into the X-vector model. Common in
both classical and modern systems [31,44], this process standardizes each feature dimension
over the training set:

x.
Xid = —— (3)
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where x; ; is the value at frame i, dimension d and y, 7, are the global mean and standard
deviation, respectively.

3.3. Feature Embedding and Classification

Following the extraction of low-level acoustic features (MFCCs and FBANKS), a
higher-level representation is required to capture temporal and discriminative patterns in
CASs. To this end, we adopt and adapt the X-vector architecture [31] for NCDS, targeting
the classification of healthy versus RDS cries. The following sections review the original
X-vector framework and its temporal modeling core, the TDNN [46], together with our
customized implementation, forming the basis of the proposed system.

The X-vector model extracts low-dimensional, fixed-length embeddings from variable-
length speech signals. Originally developed for speaker recognition, it has proven robust to
noise, channel mismatch, and speaking style variation. Its architecture consists of stacked
TDNN layers, a statistical pooling layer, fully connected layers, and a backend classifier.
TDNNSs process sliding windows of input frames to generate intermediate embeddings.
Through varying kernel sizes and dilation factors, they expand the temporal receptive
field, enabling the capture of both short- and long-range dependencies such as phonemes,
syllables, or pathological cry patterns. Unlike feedforward networks that process frames
independently, TDNNSs integrate context from past and future frames, making them effec-
tive for modeling temporal dependencies in sequential audio. In modern frameworks, they
are implemented as one-dimensional convolutions along the time axis, whose hierarchi-
cal structure yields increasingly abstract temporal representations. This makes TDNNs
a foundational component of many audio classification systems, including the X-vector
framework used in this study. In the X-vector architecture, the final TDNN output is passed
to a statistical pooling layer that computes the mean and standard deviation of each feature
dimension, converting variable-length inputs into fixed-length representations. Positioned
between temporal encoding and the fully connected layers, this pooling bridges frame-level
processing with sequence-level classification. The pooled vector then passes through two
fully connected layers, with the first (typically 512 neurons) providing the X-vector em-
bedding before the final classification stage. X-vectors encapsulate class-relevant temporal
patterns. In training, the second fully connected layer (<1500 neurons) is followed by a
softmax for supervised classification with cross-entropy loss; these layers are optimized
jointly with the network but discarded at inference. After extraction, a probabilistic linear
discriminant analysis (PLDA) backend is trained separately to score embeddings by simi-
larity. In the original implementation, training uses MFCCs with data augmentation (noise,
reverberation, and channel distortion) to enhance generalization.

In this study, we employ a lightweight X-vector variant to encode variable-length
neonatal cry signals into fixed-length embeddings. Although the original model—developed
for large-scale speaker recognition—performs well, its high parameter count and rigid
design limit applicability to small, domain-specific datasets. To overcome this, we im-
plement a streamlined version that preserves the core elements of temporal modeling
with TDNN layers, pooling, and dense embedding projection. Unlike the fixed original
design, our architecture allows key design parameters—including the number of TDNN
blocks, embedding dimensionality, pooling strategy, and dilation settings—to be optimized
through a dedicated hyperparameter search. We also replace the PLDA backend with a
single fully connected layer and sigmoid activation, providing an efficient classifier tailored
to the constraints of NCDSs. As part of this flexible architecture, we investigate the effect of
temporal summarization by implementing and comparing two pooling strategies: conven-
tional statistics pooling and a customized attention-based pooling. The former aggregates
frame-level embeddings using the global mean and standard deviation, treating all frames
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equally. In contrast, the attention-based pooling mechanism assigns learnable weights to
individual frames, allowing the model to emphasize informative temporal regions. In-
spired by attention mechanisms initially introduced for sequence modeling tasks [47] and
later adapted for speaker embedding in speech processing [48], we incorporate a learnable
projection layer to compute frame-level importance scores. To enhance representational
diversity, we evaluate single- and multi-head attention, treating the number of heads as a
tunable hyperparameter. Sequence-length masking is applied to suppress padded frames,
ensuring robust aggregation across variable-length inputs.

3.4. Training of the Customized X-Vector

Each cry signal is transformed into a two-dimensional feature matrix via MFCC or
FBANK extraction with fixed frame size and hop length. The resulting matrix has variable
length, where rows correspond to time frames and columns to cepstral or spectral features.
For a batch of cry segments with different durations, this yields matrices {Xl}l]i 1 Where
X; € RTi*F T; is the number of frames in the i-th segment, and F the feature dimension.
This representation preserves the sequential structure of the acoustic signal, enabling the
model to exploit both temporal and spectral information. To reduce variability and improve
convergence, features are globally normalized using the mean and variance computed over
the training set.

The normalized matrices are then processed by a stack of TDNN blocks, which apply
one-dimensional convolutions along the time axis. By employing different kernel sizes
and dilation rates, the TDNN layers progressively expand the temporal receptive field,
allowing the model to capture both short- and long-range dependencies. The final TDNN
output retains the temporal dimension and is subsequently passed to a pooling layer for
sequence summarization.

(1) Statistics pooling. Given hidden sequences H; € RT*F' from the TDNN for utter-
ance i, we obtain a fixed-length representation by concatenating the per-feature mean and
standard deviation across time:

Z = [u(H,), o(H;)] € R?F, (4)

Here, u(H;) and ¢(H;) are computed along the temporal axis, T/ is the number of
frames after the TDNN, F’ is the number of TDNN channels, and | -, - | denotes concatena-
tion along the feature dimension.

(2) Attention-based pooling. To assign data-driven weights to frames—allowing the
model to emphasize acoustically informative regions rather than treating all frames
equally—we apply multi-head self-attention (MHA) to the TDNN representations. For
each head, query, key, and value projections are

Q=HW,, K=HWg, V=HWy, (5)

and scaled dot-product attention with key-padding mask M is

A = softmax QK! +M Z = AV (6)
Vg ' '

Outputs from all heads are concatenated and projected:

MHA (H) = Concat(Zy,...,Z;) Wo, (7)



Information 2025, 16, 1008

11 of 25

We then aggregate over time to obtain a fixed-length, context-weighted embedding:

!
1 i
2™ = 5 ) MHA(H,)[t], (8a)
i t=1
T!
'omi MHA(H;) [t
zﬁ“ha = Litt l'tT{ (Hy)lf] (masked mean over valid frames), (8b)
2,51:1 mj

Here, H € RT*F" are hidden states (optionally projected to dimension F”);
Wo, Wk, Wy € RF"*d are learned projections; dj is the head dimension; A € RT'*T'
contains attention weights; Z € RT" %4k are per-head outputs; i is the number of heads;
Wo € R *E" s the output projection; MHA (H)[f] € RF" is the t-th attended frame; and
m;; € {0,1} masks padded frames for utterance i.

We train the TDNN-pooling encoder and linear classifier jointly end-to-end from
random initialization using a single optimizer. Adam is employed with a linear learning-
rate schedule that decays from the initial to the final rate across epochs. The classifier
outputs a single logit, which is passed through a sigmoid and binarized at 0.5 for reporting.
Training is guided by the binary cross-entropy (BCE) loss:

1
LBcE = N

1

™=z

yilog(#:) + (1 - yi) log(1 — )], ©)

Il
A

where y; € {0,1} is the ground-truth label, §; € [0, 1] the predicted probability, and N the
number of samples. To reduce overfitting, we apply optimizer-based weight decay (L2),
which penalizes large parameters and improves generalization (PyTorch 2.9 [49]). Model
performance is evaluated with stratified 10-fold cross-validation, preserving class balance
and maximizing data usage for unbiased estimates.

3.5. Interpretability Methods
3.5.1. Integrated Gradients (IGs) for MFCC and FBANK

We explain model decisions with Integrated Gradients (IGs), which attribute a scalar
output f(x) to the inputs by integrating the gradient along the path from a baseline x( to
the input x [50]. For element x; ; (time frame ¢, feature k), IG is defined as

Lof(xo +a(x —xp)) P

1Gu4(x) = (v~ o)
ek (%) = (Xt — Xok) 0 OXt

&, (10)

and satisfies the completeness property

T K
; lect,k(x) = f(x) = f(x0), (11)

k=

Here x € RT*K is a feature matrix (T frames, K dimensions), x( is the zero base-
line (corresponding to the global mean after MVN), f(x) is the scalar score explained
(e.g., class-1 probability), and « € [0,1] parameterizes the path. Both MFCC and FBANK
use global MVN, so xp = 0 represents the transition from average to observed features.

To obtain a duration-invariant profile, we aggregate attributions across time:

T
IG](feat) = 2 IGk(x), k=1,...,K (12)
t=1
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We report signed, per-utterance normalized values (4 = evidence toward RDS,
— = toward healthy); normalization aids comparability but does not preserve completeness.

For variable-length utterances, IG is computed on scaled inputs with frame masking
to ensure pooling layers (mean, mean—std, and attention) ignore padded frames. Under
10-fold cross-validation, we select the best checkpoint per fold, compute per-utterance
IG vectors on validation data, average within each fold, and then report the across-fold
mean £ SD.

3.5.2. Attention Weight Visualization

We assess temporal attention through two visualizations: (i) head-wise heatmaps.of
the attention matrix (rows = query time, columns = key time), revealing local versus long-
range dependencies, and (ii) a per-frame saliency curve that collapses the matrix to one
score per frame. Given per-head weights A(") ¢ RT*T and a validity mask m € {0, 137
(1 = valid, 0 = padded), we compute a masked average over queries and heads:

H YT mlg) ALY
Zl Zq 11’71[ ]+‘€

yielding 5 € RT as a compact importance profile aligned with time. We plot 5 as a line
(optionally overlaid on the spectrogram) and suppress padded frames using m. These
visualizations indicate which frames are most frequently reused as contextual keys; they
support interpretability but do not imply causality.

3.6. Hyperparameter Optimization and System Configuration

To adapt the X-vector architecture to the NCDS, optimization was carried out at both
the signal and model levels. The original X-vector—though highly effective in large-scale
speaker recognition—has a high parameter count and a rigid configuration unsuited to
our small datasets. In its standard design, temporal modeling is performed by a fixed
stack of five TDNN layers; in contrast, our streamlined variant extends this stage to seven
layers with reduced channel widths and adjusted kernel and dilation settings. We adopt
this streamlined 7-layer TDNN as a lightweight adaptation of the X-vector for our small
dataset, prioritizing training stability and regularization on short, variable-length cry
segments. Table A1 concisely juxtaposes the canonical X-vector with our two lightweight
variants and highlights the optimized configurations that achieved the best results. To
ensure robust performance, we conducted a constrained grid search with stratified cross-
validation across three categories of parameters: feature extraction, training configuration,
and model architecture.

Rationale for tested ranges. We combined standard speech settings with small pi-
lot runs and kept the grid compact to limit overfitting and computation. Window-hop
(10-25ms/3-10ms) and FFT (1024-4096) are canonical short-time choices; mel/MFCC
(30-80 mel; 13-26 MFCC) bracket common vs. higher-resolution settings; and deltas
and mel filter shape were toggled to test value on short EXP segments. Learning rate
(2.5-5 x 1074, fine steps) and epochs (10-14) were centered on stable Adam regimes ob-
served in pilots; we capped epochs to curb overfitting as performance plateaued beyond
~14. Batch size (16-128) was chosen considering dataset size and GPU memory constraints
while maintaining BatchNorm stability; 64 provided the best and most stable validation
metrics. Activations and pooling (mean + SD vs. attention; 1-8 heads) are widely used
configurations to probe robustness on variable-length inputs.
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3.7. Experimental Setup and Evaluation Metrics

For this NCDS, we evaluated model performance using standard confusion matrix-
based metrics: accuracy, precision, recall (sensitivity), and F1-score. These metrics quantify
overall correctness, the model’s ability to identify positive cases, and the trade-off between
false positives and false negatives. Additionally, we employed the Receiver Operating
Characteristic (ROC) curve and the Area Under the Curve (AUC) to evaluate classifier
performance independently of the decision threshold [51,52]. To enhance interpretability,
we applied Integrated Gradients for attribution analysis over MFCC and FBANK features.
This technique is widely adopted in neural network explainability and is particularly
suitable for healthcare-related time-series tasks [53], offering insight into which features
contributed most to the classification decision. All experiments were conducted on the
Narval high-performance computing server, hosted by the Digital Research Alliance of
Canada at Ecole de Technologie Supérieure [54]. Experiments were executed on this cluster
using a single NVIDIA A100 GPU (40 GB VRAM) per run, with a memory allocation of
-mem-per-gpu=10G. The TorchAudio [55] and Librosa [56] libraries were used for audio
pre-processing, and model training was performed using SpeechBrain [57,58], built on the
PyTorch framework [49].

4. Results and Analysis

This section presents the performance of the modified X-vector architecture in classify-
ing RDS versus healthy cases. Experiments were conducted with two acoustic feature sets
(MFCC and FBANK) and two pooling strategies: mean-standard deviation pooling and the
attention-based pooling introduced earlier. To support these experiments, a limited grid
search was applied to the lightweight X-vector with both feature sets and pooling strategies
to identify optimal hyperparameters across three categories: feature extraction, training
configuration, and model architecture. For both feature sets, ROC curves and AUC were
computed from aggregated predictions across all 10 folds, while total confusion matrices
were obtained by aggregating the predicted and true labels across folds, providing overall
classification performance on the full dataset.

4.1. MEFCC Results with Mean + SD and Attention Pooling

As shown in Table 2, both pooling strategies converged on the same window-hop
configuration, FFT size, and number of mel filters; however, attention pooling favored
a higher number of MFCC coefficients and was paired with GELU activations, whereas
mean-SD pooling performed best with LeakyReLU.

Results in Table 3 show that both pooling strategies achieved comparable performance.
The mean-SD pooling model slightly outperformed attention pooling in terms of accuracy
(93.59 + 0.48% vs. 93.53 + 0.52%), Fl-score (93.61 + 0.50% vs. 93.51 + 0.52%), and AUC
(0.9795 vs. 0.9791). In contrast, attention pooling yielded higher precision (93.87 + 0.72%),
while mean-SD pooling offered better recall (93.98 + 1.19%). These trade-offs are reflected
in the ROC curves (Figure 3) and confusion matrices (Figure 4). As shown, the mean + SD
pooling model yields fewer false negatives (257 vs. 292), which is important when missed
RDS cases are costly. Conversely, the attention pooling model yields fewer false positives
(260 vs. 290), indicating higher specificity and fewer unnecessary alarms.
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Table 2. Hyperparameters and optimal values for MFCC experiments under mean + SD and atten-

tion pooling. Tested ranges follow standard speech practice and small pilot runs; see Section 3.6

for rationale.

Hyperparameter Tested Values Optimal (Mean + SD) Optimal (Attention)
Feature Extraction Parameters
Window, hop length (ms) [(10, 3), (15, 5), (20, 6), (25, 10)] (20, 6) (20, 6)
FFT size [1024, 2048, 4096] 2048 2048
Number of mel filters [30, 40, 64, 80] 80 80
Number of MFCC coefficients [13, 20, 26] 20 26
Deltas [True, False] False False
Filter shape [triangular, gaussian] triangular triangular
Training Configuration

. [25x 1074,5 x 1074] 4 4
Learning rate (step: 0.5 x 10-5) 45 %10 45 %10
Number of epochs [10,12, 14] 14 14
Batch size [16, 32, 64, 128] 64 64
Weight decay [1x1072,1x107%1x1073] 1075 10~3
Model Architecture

. . [GELU, SiLU (Swish), ReLU,

Activation function LeakyReLU] LeakyReLU GELU
Type of pooling [Mean + SD, Attention] Mean+SD Attention
Number of attention heads [1,2,4,38] - 4

Table 3. Classification performance across 10-fold cross-validation for modified X-vector models

using MFCCs.
Model Accuracy Precision Recall F1 Score AUC
X-vector MFCC + Mean + SD 93.59 + 0.48% 93.27 + 0.74% 93.98 £ 1.19% 93.61 + 0.50% 0.9795
X-vector MFCC + Attention 93.53 £ 0.52% 93.87 £ 0.72% 93.16 £ 0.72% 93.51 £ 0.52% 0.9791

(a) MFCC Attention Pooling

Note: Performance metrics are reported as mean + standard deviation across 10 folds of cross-validation.

Receiver Operating Characteristic

(b) MFCC Mean + SD Pooling

Receiver Operating Characteristic
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Figure 3. ROC curves of the X-vector with MFCC features: (a) attention pooling and (b) mean + SD

pooling, with AUC values for healthy vs. RDS classification.
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(a) MFCC Attention Pooling 4000 (b) MFCC Mean + SD Pooling 4000
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Figure 4. Confusion matrices of the X-vector with MFCC features: (a) attention pooling and
(b) mean + SD pooling, showing classifications of healthy vs. RDS.

4.2. FBANK Results with Mean + SD and Attention Pooling

Table 4 demonstrates that while both pooling strategies converged on similar win-
dow-hop and FFT settings, their optimal feature and activation choices differed: mean-SD
pooling favored fewer mel filters and LeakyReLU, whereas attention pooling favored more
mel filters and GELU.

Table 4. Hyperparameters and optimal values for FBANK experiments under mean + SD and
attention pooling. Tested ranges follow standard speech practice and small pilot runs; see Section 3.6
for rationale.

Hyperparameter Tested Values Optimal (Mean + SD) Optimal (Attention)
Feature Extraction Parameters

Window, hop length (ms) [(10, 3), (15, 5), (20, 6), (25, 10)] (20, 6) (20, 6)
FFT size [1024, 2048, 4096] 2048 2048
Number of mel filters [30, 40, 64, 80] 64 80
Deltas [True, False] False False
Filter shape [triangular, Gaussian] triangular triangular
Training Configuration

Learning rate [2.5x 1074, 5 x 1074] (step: 0.5 x 107°) 5x 1074 45x1074
Number of epochs [10, 12, 14] 12 14
Batch size [16, 32, 64, 128] 64 64
Weight decay [1x10751x107%1x1073] 1075 1075
Model Architecture

Activation function [GELU, SiLU (Swish), ReLU, LeakyReLU] LeakyReLU GELU
Type of pooling [Mean + SD, Attention] Mean + SD Attention
Number of attention heads [1,2,4,38] - 4

As shown in Table 5, both FBANK-based models achieved similar performance, with
mean accuracies of 93.22 + 0.71% for mean-SD pooling and 93.09 + 0.84% for attention
pooling. The ROC curves in Figure 5 illustrate their comparable discriminative ability,
while the confusion matrices in Figure 6 highlight minor differences in error distribu-
tion. Attention pooling produced slightly more false negatives (269 vs. 264), whereas
mean-SD pooling achieved marginally higher precision and Fl-score, consistent with its
lower false-positive count (315 vs. 321). Both configurations reached similar AUC values
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(0.9780 vs. 0.9774), indicating that pooling mainly affects the FP/FN balance rather than
overall ranking. Given that RDS (class 1) is the clinically relevant positive class, mean-SD

pooling is marginally more favorable due to its lower false-negative rate.

Table 5. Classification performance across 10-fold cross-validation for modified X-vector models

using FBANKS.
Model Accuracy Precision Recall F1 Score AUC
X-vector FBANK + Mean + SD  93.22 + 0.71% 92.74 + 1.48% 93.81 + 1.31% 93.26 + 0.68% 0.9780
X-vector FBANK + Attention 93.09 + 0.84% 92.57 +1.03% 93.70 + 0.93% 93.13 + 0.83% 0.9774

1.0

0.8

True Positive Rate

0.2

0.0 1

Actual

Note: Performance metrics are reported as mean + standard deviation across 10 folds of cross-validation.

(a) FBANK Attention Pooling

Receiver Operating Characteristic
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0.4 4

= ROC curve (AUC = 0.9774)
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(b) FBANK Mean + SD Pooling
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Figure 5. ROC curves of the X-vector with FBANK features: (a) attention pooling and (b) mean + SD
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Figure 6. Confusion matrices of the X-vector with FBANK features: (a) attention pooling and
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(b) mean + SD pooling, showing classifications of healthy vs. RDS.
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1G on MFCC input (perfeature), fold 0

4.3. Interpretability

We interpret decisions with IG, attributing the class-1 (RDS) score to MVN-normalized
MFCC/FBANK inputs using a zero baseline (MVN mean); per-frame attributions [T x D]
are summed over time to yield a per-feature profile [D]. Under 10-fold cross-validation,
we compute one IG vector per fold and report mean £ SD across folds (signed: + = RDS,
— = healthy). The IG visualizations in Figures 7 and 8 are taken from the best-performing
validation fold (lowest error) of the MFCC with mean + SD pooling configuration—the
top MFCC setting in our search (Table 2). In Figure 7, each panel corresponds to the
first sample of its fold (illustrative, not a fold average): c2—c4 are often positive (RDS-
leaning); c5-c6 negative/near zero (Healthy-leaning); c7-c9 mixed with small effects;
c10—c13 consistently negative—especially c12—c13—favoring healthy; c14 variable; c15-c16
positive (RDS-supporting); c17 mixed/slightly negative; and ¢18-c19 commonly positive
(RDS-leaning). The consensus in Figure 8 confirms these tendencies (RDS: c2—c4, c15—16,
and c18—c19; healthy: c10—c13, especially c12—c13); error bars indicate stability (smaller
around c12—c13) versus variability (larger at some low /high indices).

16 on MFCC input (perfeature), fold 1 1G on MFCC input (perfeature), fold 2. 1G on MFCC input (perfeature), fold 3 1G on MFCC input {perfeature), fold 4
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Figure 7. Per-fold MFCC IG (20 MFCCs, folds 0-9; statistics pooling). One validation utterance per
panel. Bars are signed and per-utterance normalized (+ = RDS, — = healthy); On average, c2—c4
and c15—c19 are RDS-leaning, whereas c10—13 (esp. c12—c13) favor healthy; error bars indicate
between-fold variability.
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Figure 8. Consensus MFCC IG across 10 folds (statistics pooling). Values are signed and per-utterance
normalized (+ = RDS, — = healthy). On average, c2—c4 and c¢15-c19 are RDS-leaning, while ¢10-c13
(esp. c12—13) favor healthy; error bars show between-fold variability.



Information 2025, 16, 1008

18 of 25

1G on FBANK input (per-feature), fold 0

The IG visualizations in Figures 9 and 10 are taken from the best-performing validation
fold (lowest error) of the FBANK mean + SD pooling configuration—the top FINANK setting
in our search (Table 4). In Figure 9 (per-fold first-sample snapshots), FBANK attributions
(signed IG; + for RDS, — for healthy) are weak/mixed in the lowest filters (~0-10), mostly
small or slightly negative in the lower-mid range (~10-25), and heterogeneous in the
mid band (~25-35). A clear structure emerges in the upper-mid region (~35-52) with
alternating bands—positive spikes around (~36—46) and near ~50 (RDS, +) interleaved
with nearby negative troughs (healthy, —)—while the highest filters (~52-63) often show
the largest magnitudes (final bins frequently +, adjacent bins sometimes —). The fold-level
summary in Figure 10 (mean =+ SD across folds) aligns with these patterns: generally small
means with notable variability, a weak negative bias in the mid band (~30-45), and modest
positives around (~36—46) and toward the highest bins (~60-63). Overall, discriminative
evidence concentrates in the upper-mid to high mel range, whereas lower bands contribute
more weakly.

1G on FBANK input (per-feature), fold 1 1G on FBANK input (per-feature), fold 2 1G on FBANK input (per-feature), fold 3 G on FBANK input (per-feature], fold 4
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Figure 9. Per-fold FBANK IG (80 mel bands; folds 0-9; statistics pooling). One validation utterance
per panel; bars are signed and per-utterance normalized (+ = RDS, — = healthy).
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Figure 10. Consensus FBANK IG across 10 folds (statistics pooling). Values are signed and per-
utterance normalized (4 = RDS, — = healthy). Overall, discriminative evidence concentrates in the
upper-mid to high mel range, whereas lower bands contribute more weakly.
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Figure 11 shows the first three validation utterances at epoch 13 for our lightweight
X-vector with MFCC inputs and a four-head attention pooling layer, taken from the best-
performing validation fold (lowest error) of the MFCC with attention pooling configura-
tion—the top MFCC setting in our search (Table 2). The horizontal axis is the post-TDNN
time index (T” =60 frames for this batch), and the vertical axis is the softmax-normalized
attention weight € [0, 1]. Each colored curve corresponds to one row A, (the distribution
over key frames for query g). The distributions are distinctly non-uniform, concentrating
mass on sparse segments rather than spreading it evenly across MFCC frames—evidence
of selective focus on brief informative events. Although pooling uses i = 4 heads, the
plot displays head-averaged weights (PyTorch default), so head count does not alter the
horizontal axis length; per-head views highlight different frame subsets emphasized by
different heads.

Attention Weights - Sample 0, Epoch 13

0.25
0.20 4
'Es 0.15 A
2 0.10
0.05
0.00
0 10 20 B 40 50 60
Time Frame
Attention Weights - Sample 1, Epoch 13
0.25
0.20 4
_'E 0.15
2 0.10
0.05 4
0.00
Time Frame
Attention Weights - Sample 2, Epoch 13
0.25
0.20 4
£ o015
2 0.10
0.05 4
0.00

Time Frame

Figure 11. Head-averaged attention weights for three validation utterances at epoch 13 from an
MEFCC X-vector with 4-head attention pooling. Each color represents a distinct attention weight
applied within the attention pooling layer.

4.4. Comparison with Previous Studies

We situate our results alongside prior newborn cry works that include RDS within
broader tasks (e.g., sepsis/RDS/healthy) [11-14] and our earlier binary RDS vs. healthy
study on a smaller, full-term-only cohort [10]. Table 6 lists population, size, newborn
counts, duration filters, features, and accuracy. Although all studies draw samples from
the same underlying database, they use different proportions and subsets and follow
different experimental methodologies; therefore, results are not head to head. Ref. [10]
reflects contextual prior work (SVM on concatenated MFCC+Tilt+Rhythm). Our proposed
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method extends that line to a private preterm+full-term cohort with a consistent pipeline,
achieving >93% accuracy.

Table 6. Intra-group comparison of key settings and outcomes across newborn cry studies involving
RDS. External/prior rows come from differing subsets, so figures are contextual rather than head to
head. Row [10] is our earlier full-term-only SVM baseline.

Samples Per Newborns Per Minimum

Study Population Class Class Duration Filter Input Features Overall Accuracy
MECGs, tilt, and
_ * g 4 %
[10] Full-term 955 Unknown Not reported thythm 73.8%
Spectrograms
processed by an
[11] Full-term 1132 Unknown * Not reported ImageNet- 97.00%
pretrained CNN,
HR, and GFCC
[12] Full-term 1300 Unknown * <200 ms excluded Spectrogram 98.71%
GFCCs,
[13] Full-term 2000 Unknown * Not reported spectrograms, 96.33%
and mel-
spectrograms
[14] Full-term 2799 17 <40 ms excluded Raw waveform 89.76%
Full-term and - MFCCs or o
Proposed Method Preterm 4267 38 No restriction FBANKs 93.59%

*Class counts are balanced by samples, but newborns per class are unequal or unreported. The present study
extends row [10] with an X-vector (mean + SD) pipeline and achieves >93% accuracy.

5. Discussion

This study investigated the automatic classification of newborn cries to distinguish
between RDS and healthy infants, spanning both preterm and full-term populations. Unlike
prior work limited to full-term cohorts, this is the first study to include both subgroups
with equal numbers of newborns per class, ensuring balanced representation and reducing
bias. Following pre-processing (channel averaging, pre-emphasis filtering, and manual
segmentation), expiratory cry segments (EXPs) were extracted as the most diagnostic
units, and stratified 10-fold cross-validation was employed to ensure robust and unbiased
evaluation. To adapt the X-vector framework to the NCDS, we performed a systematic
grid search, training the network under different parameter configurations across three
domains—feature extraction, training settings, and model architecture—to identify the
values yielding the best overall performance. Based on these optimized parameters, a
streamlined lightweight X-vector was trained on two acoustic feature sets (MFCCs and
FBANKSs) with two pooling strategies (mean-SD and attention), and performance was
assessed using accuracy, precision, recall, F1-score, and AUC, complemented by confusion
matrices and ROC analysis.

Using MFCC features, both pooling strategies deliver strong, near-identical per-
formance (accuracy ~ 93.5%, AUC ~ 0.98). Mean+SD is slightly higher in accuracy
(93.59 £ 0.48%), recall (93.98 £ 1.19%), F1 (93.61 £ 0.50%), and AUC (0.9795), whereas
attention attains higher precision (93.87 &= 0.72% vs. 93.27 & 0.74%). Consistent with the
confusion matrices in Figure 4 and ROC curves, mean + SD yields fewer false negatives
(257 vs. 292), prioritizing sensitivity to RDS, while attention yields fewer false positives
(260 vs. 290), indicating higher specificity.

Using FBANK features, both pooling strategies perform similarly (accuracy ~ 93.1-93.2%,
AUC =~ 098). Mean+SD shows small, consistent gains across metrics—accuracy
(93.22 £ 0.71%), precision (92.74 + 1.48%), recall (93.81 £ 1.31%), F1 (93.26 + 0.68%),
and AUC (0.9780)—relative to attention (93.09 £ 0.84%, 92.57 + 1.03%, 93.70 £ 0.93%,
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93.13 & 0.83%, 0.9774). Consistent with the confusion matrices in Figure 6, mean + SD
yields fewer false negatives (264 vs. 269) and false positives (315 vs. 321), while ROC curves
in Figure 5 confirm near-identical ranking performance. Overall, pooling chiefly shifts the
FP/EN balance rather than discrimination; given RDS as the positive class, mean + SD is
marginally preferable due to its lower miss rate.

Across features, MFCCs outperform FBANKs (best MFCC: 93.59% accuracy,
AUC = 0.9795; best FBANK: 93.22% accuracy, AUC = 0.9780), indicating the diagnos-
tic value of cepstral representations for RDS. For pooling, effects are small but consistent:
with MFCCs, mean + SD is slightly higher in accuracy, recall, F1, and AUC and yields
fewer missed RDS cases (false negatives: 257 vs. 292 for attention), whereas attention
offers higher precision and fewer false alarms (false positives: 260 vs. 290). With FBANKSs,
mean + SD shows small gains across metrics and produces both fewer false negatives
(264 vs. 269) and fewer false positives (315 vs. 321) than attention. An ablation on depth
showed that increasing the TDNN from five to seven layers (with narrower channels and
staged dilations) produced small but consistent gains in accuracy and AUC under the same
10-fold protocol; therefore, we use the seven-layer lightweight design throughout. From
a computational standpoint, the MFCC attention model has 641.2 k trainable parameters
versus 441.6 k for MFCC mean + SD (Table Al), i.e., about 45% fewer parameters for mean +
SD with slightly better overall discrimination. In practice, if minimizing missed RDS cases
is the priority, MFCC with mean + SD is preferable; if reducing false alarms is more im-
portant, MFCC with attention may be chosen, acknowledging the higher parameter count.
Previous cry-based studies achieved high accuracies (up to 98.7%) but were restricted
to full-term infants and often relied on imbalanced or underspecified datasets [10-13].
In contrast, our dataset is larger, demographically diverse, and subject-balanced across
preterm and full-term infants, directly addressing the limitations of earlier work. The
inclusion of preterm cries, which are acoustically less stable—featuring higher pitch vari-
ability, flatter contours, and shorter, noisier bursts—introduces additional classification
challenges. Despite this, our framework achieved 93.6% accuracy, reflecting a more realistic
and generalizable scenario than prior full-term-only studies. Furthermore, unlike earlier
approaches, our method employs a lightweight, optimized X-vector with attention pooling
and integrates interpretability via attention maps and Integrated Gradients, advancing
both efficiency and clinical trust.

While the proposed framework demonstrates strong performance, there remains room
for further advancement. Future work should investigate advanced signal processing
features—particularly from the cepstral domain—to more effectively capture the distinct
acoustic characteristics of preterm and full-term cries. In addition, developing models
explicitly designed for variable-length inputs will be essential to ensure robust and reli-
able evaluation across diverse recording conditions. A further limitation is the reliance
on manual annotation-based segmentation, which, while ensuring accurate extraction
of expiratory segments, introduces subjectivity and limits scalability. Future research
should pursue automated segmentation to enhance reproducibility and enable broader
clinical application.

This study demonstrates the feasibility of combining cepstral features, a lightweight
optimized X-vector, and attention pooling within a balanced dataset for cry-based disease
classification. By uniting strong performance with interpretability and scalability, the frame-
work establishes a solid foundation for future work to refine feature representations and
design more sophisticated models aimed at improving diagnostic accuracy and ultimately
advancing neonatal care.
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Appendix A. Comparison of X-Vector Architectures

Given their near-identical performance (Acc.: 93.59 + 0.48 vs. 93.53 + 0.52; Table 3),
we report both lightweight-modified X-vector (MFCC, mean + SD) and (MFCC, attention).
Compared with the original X-vector, which uses five TDNN layers with fixed dilation and
statistics pooling, the lightweight designs adopt seven TDNN layers with reduced channels
and variable dilation, using either four-head self-attention pooling (attention) or statistics
pooling with a 512 — 256 projection (mean + SD). They are also dramatically smaller:
~0.642 M (attention) and 0.442 M (mean + SD) parameters versus ~8.7 M for the origi-
nal—about 14-20x fewer (Table A1).

Table Al. Comparison between the original X-vector architecture and the lightweight-modified
versions used in this study.

Component

Lightweight-Modified X-Vector Lightweight-Modified X-Vector

Original X-Vector [31]

(MFCC, Attention) (MFCC, Mean + SD)

Input Features MFCCs (typically 23-30 dims) MFCC MFCC
Input Channels ~30 26 MFCCs 20 MFCCs
TDNN Channels [512, 512, 512, 512, 1500] [64, 64, 128, 128, 128, 256, 256] [64, 64,128, 128, 128, 256, 256]
TDNN Kernel Sizes [5,5,7,9,1] [5,3,3,3,3,1,1] [5,3,33,3,1,1]
TDNN Dilations [1,1,1,1,1] [1,1,2,2,3,1,1] [1,1,2,2,3,1,1]
Activation Function ReLU GELU LeakyReLU (a = 0.01)
Normalization BatchNorm after each TDNN and Same Same

dense block
Pooling Statistics pooling (mean and std 4-head self-attention with Statistics pooling (mean and std

Embedding Dimension
Fully Connected Layers
Backend / Classifier

Total Trainable Parameters

Inference Latency Per 1 s
Segment (A100, batch = 64)

over time)

512 (after pooling)
FC1: 512, FC2: 1500
PLDA scoring

~8.7M

masking

256 (after pooling and linear
projection)

FC1: 256, FC2: 256

Feedforward classifier + Sigmoid
output

641.2 k

~5.5ms/segment (~181 seg/s;
real-time x 180)

over time)

256 (after pooling and linear
projection)

FC1: 256, FC2: 256

Feedforward classifier
+ Softmax output

4416k

~6-7 ms/segment (estimated)
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