
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Detecting application transitions and identifying application types for 
intent-based network assurance: A machine learning perspective

John Violos a,∗, Fotios Voutsas b, Christos Diou c, Aris Leivadeas a

a École de Technologie Supérieure, 1100 Notre-Dame St W, Montreal, H3C1K3, Quebec, Canada
bNetdata Inc., 548 Market St #31942, San Francisco, CA, 94104-5401, USA
cDepartment Informatics & Telematics, Harokopio University of Athens, Omirou 9, Tavros, 177 78, Greece

a r t i c l e  i n f o

Keywords:
Intent-based networks
Network assurance
Monitoring systems
Alert systems
Application transition detection
Application type identification

 a b s t r a c t

Intent-Based Networking (IBN) enables agile and policy-driven network management by translating high-level 
intents into concrete configurations and continuously validating their compliance. A critical limitation in current 
Intent-Based Network Assurance (IBNA) systems is the lack of real-time application-level awareness, particularly 
in dynamic edge environments where AI workloads frequently change. In this work, we address this limitation 
by introducing a lightweight, monitoring-driven pipeline that enables the detection of application transitions 
and identification of newly active application types on edge devices. In collaboration with Netdata engineers, we 
develop multimetric data collectors using Netdata, an open-source platform for real-time system and application 
monitoring. These collectors capture application-agnostic system metrics with minimal overhead, forming the 
foundation for real-time alerting and dynamic network adaptation. Our proposed pipeline transforms raw moni-
toring data into fixed-length vectorized multivariate time series. An undercomplete autoencoder is then used to 
detect changes in system behavior indicative of application transitions, followed by a Random Forest classifier 
that labels the newly active application based on its resource usage profile. To support reproducibility, we con-
struct and publicly release the AIMED-2025 dataset, which includes monitoring data from seven MediaPipe-based 
edge AI applications and two idle states, all executed on a Raspberry Pi. Experimental evaluation demonstrates 
that our method achieves 100% accuracy in both Application Transition Detection and Application Type Identifi-
cation using only a three-second observation window. Furthermore, the system exhibits sub-second training times 
and millisecond-scale inference latency, making it suitable for real-time deployment on resource-constrained edge 
devices. Once an application change is detected and identified, the IBNA system can automatically alert network 
administrators and trigger dynamic reconfiguration of network resources to meet the specific performance, se-
curity, and connectivity requirements of the active application. By integrating application-level awareness into 
IBNA, this work advances the state of the art in intent-driven network management and enables more adaptive, 
efficient, and reliable operation of edge AI systems.

1.  Introduction

Intent-Based Networking (IBN) is an emerging paradigm in which 
network users specify high-level goals or “intents” for the network, and 
the IBN system automatically implements these goals through under-
lying configurations [1]. Architecturally, a typical IBN framework in-
cludes stages for intent expression, translation into network policies, 
orchestration of devices, and closed-loop assurance [2]. In practice, the 
system translates abstract intents into concrete policies and pushes them 
to network devices, while a feedback loop continuously collects moni-
toring metrics to verify that the deployed network behavior matches the 
original intent [3]. This high-level abstraction and automation greatly 
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enhances agility and reliability: by eliminating most manual configura-
tion steps, IBN reduce human error and enable fast, policy-driven recon-
figuration of the network. The Intent-Based Network Assurance (IBNA) 
component performs continuous monitoring and validation of the net-
work state against the declared intents. It automatically detects devi-
ations or “intent drift”, which refer to any discrepancies between the 
intended behavior defined by the network’s high-level goals and the ac-
tual operational state observed in real time. When such deviations are 
detected, the system triggers corrective remediation to restore compli-
ance with the original intent.

Edge AI applications, executed directly on edge devices enables 
real-time inference, localized decision-making, and context-aware
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operations [4]. These applications, ranging from object detection and 
gesture recognition to audio classification and pose estimation, in-
troduce diverse and often stringent requirements on the underlying 
network infrastructure. For example, latency-sensitive tasks such as 
video-based face detection demand low end-to-end delay and consistent
bandwidth, whereas applications like audio classification may priori-
tize jitter tolerance and sustained throughput [5]. Additionally, some 
applications require dedicated CPU/GPU resources, isolation through 
traffic segmentation, or the activation of specific communication proto-
cols to ensure reliable operation. Because each application imposes dis-
tinct performance, security, and connectivity needs, the network must 
dynamically reconfigure itself whenever a new application is deployed 
[6]. This includes adjusting resource allocation, activating appropriate 
services and protocols, and ensuring that policies remain aligned with 
the real-time operational context.

In this work, we propose an IBNA-based framework to ensure the 
reliability and performance of Edge AI applications through a unified, 
monitoring-driven approach. The framework introduces an Application 
Transition Detection mechanism that continuously analyzes real-time 
monitoring metrics to identify transitions between AI applications run-
ning on edge devices. This is complemented by an Application Type 
Identification module that classifies the newly active application into 
a known category. Both mechanisms are integrated into a lightweight 
and efficient pipeline that uses monitoring data collected by multimetric 
data collectors developed in Netdata,1 a scalable open-source platform 
for real-time system and application monitoring. By transforming raw 
monitoring data into actionable insights, the system enables automated 
IBNA responses. Once an application transition is detected and the ap-
plication type is identified, the system can alert network administrators 
and trigger adaptive reconfiguration of network resources. This ensures 
that the network dynamically aligns with the specific performance and 
policy requirements of the active AI workload, highlighting the critical 
role of monitoring in delivering continuous assurance in intent-based 
networks.

To perform Application Transition Detection, we employ a novel de-
tection mechanism, which identifies previously unseen patterns in mon-
itoring data that deviate from the normal execution profile of a known 
application [7]. This is achieved using an one-class classification model 
trained solely on normal data to detect such deviations. This approach 
is well suited for identifying transitions between applications, as each 
application exhibits distinct resource utilization signatures in monitored 
system metrics. For Application Type Identification, we utilize a multi-
class classification model trained to recognize and label each applica-
tion based on its unique metric profile. To evaluate the effectiveness of 
our proposed methodology, we deployed seven edge AI applications and 
two idle states on an edge device and constructed the AI Monitoring at 
the Edge Dataset (AIMED-2025). Accordingly, the main contributions of 
this work can be summarized as follows:

• End-to-End Pipeline for IBNA: We develop and demonstrate a com-
plete pipeline that retrieves and processes raw monitoring data to de-
liver IBNA through integrated Application Transition Detection and 
Application Type Identification mechanisms.

• Novel Application Transition Detection via vectorized multi-
variate time series: We design and evaluate machine learning mod-
els for Application Transition Detection, culminating in a novelty de-
tection approach that leverages vectorized multivariate time series 
to accurately capture dynamic behavior shifts in edge application 
execution.

• Public Release of Edge Monitoring Dataset: We present and pub-
licly release AIMED-2025, a dataset capturing monitoring data from 
diverse AI applications running on edge devices, to support research 
and benchmarking in the field of network assurance.

1 https://www.netdata.cloud

The rest of the paper is organized as follows. Section 2 reviews the 
related work and background technologies on IBN and our proposed 
methodology. In Section 3, we present our overall methodology, de-
tailing the core components of our approach. Section 4 describes the 
construction of the dataset for evaluating our framework. Section 5 pro-
vides the experimental evaluation of the data collection mechanisms, 
the Application Transition Detection model, and the Application Type 
Identification model. Finally, Section 6 concludes the paper.

2.  Related work & background

IBN represent a transformative approach to network management, 
shifting from manual, device-level configuration to automated, goal-
driven operation. In an IBN, users express their desired outcomes, re-
ferred to as intents, in a high-level, human-friendly manner [8]. The 
network then autonomously interprets these intents, deploys the appro-
priate configurations, and continuously ensures compliance. Rather than 
focusing on how a network should operate technically, IBN enable op-
erators to define what the network should achieve, allowing the under-
lying system to determine the how [9]. This paradigm aims to increase 
operational efficiency, reduce human error, and enable more agile re-
sponses to changing requirements.

The two key characteristics that distinguish IBN are the automated 
implementation, which applies network configurations, expressed as in-
tents, to devices without human intervention and closed-loop feedback, 
which allows the system to detect, analyze, and correct deviations au-
tomatically [3]. An IBN architecture is typically composed of five core 
components as we can see them in the Fig. 1: (1) Intent Profiling, where 
users express their goals in natural language or simplified interfaces; (2) 
Intent Translation, which interprets these goals into low-level policies; 
(3) Intent Resolution, which detects and manages conflicting or over-
lapping intents; (4) Intent Activation, which ensures safe and person-
alized deployment of the requested services; and (5) Intent Assurance, 
which continuously validates and adapts the network to maintain align-
ment with the user’s intent over time [2]. Together, these components

Fig. 1. The IBN components including the application transition mechanism 
and application type identification mechanisms.
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enable IBN to support autonomous, intelligent, and user-centric network 
management.

To maintain alignment between the network’s actual behavior and its 
intended goals, IBNA incorporates continuous monitoring mechanisms 
that observe network devices and traffic in real time [10]. This persis-
tent verification process ensures that the deployed network state faith-
fully reflects the user’s declared intents. When discrepancies arise such 
as unauthorized configuration changes, unexpected traffic patterns, or 
shifts in application behavior the system can autonomously detect these 
deviations and either suggest remediation steps or execute corrective 
actions automatically [11]. To facilitate such responsiveness, IBN can 
leverage monitoring platforms like Netdata, which provide performance 
metrics, system health visualization, and real-time alerts [12].

The recent advancements in IBNA focus on the integration of ma-
chine learning to enhance automation and adaptability. One notable re-
search work is the use of AI-driven policies powered by Large Language 
Models, which are capable of understanding in-context requirements in 
order to assist the fulfillment and assurance of network intents [13]. In 
the context of Software-Defined Networks, a traffic prediction model has 
been proposed to proactively manage congestion by analyzing real-time 
network data and forecasting traffic patterns, enabling dynamic load 
balancing to maintain Quality of Service and intent compliance [14]. 
For data center environments, an incremental learning approach has 
been introduced to handle the evolving infrastructure by predicting key 
resource utilization metrics and allowing administrators to take timely 
corrective actions [15]. Additionally, a scalable solution using Neural 
Networks addresses the challenges posed by the growing customer base 
and big data demands, predicting bandwidth and other resource usage 
trends to support proactive network service assurance [16].

While IBNA encompasses key functions such as policy verification, 
which ensures that network configurations align with operational in-
tents [11]; continuous compliance monitoring, which automatically 
checks adherence to organizational policies and regulatory mandates 
such as service-level agreements [17]; and conflict detection, which en-
ables early identification and root cause analysis of network issues [18], 
the aspect of transition monitoring has been overlooked. Specifically, 
there is a research gap in examining how IBNA, when integrated with 
real-time monitoring tools, can be leveraged to detect application tran-
sitions. Exploring this capability is crucial not only for providing timely 
alerts to network administrators but also for enabling the system to re-
assess whether the network will continue to meet application-specific 
requirements like latency, throughput, and segmentation. Such an IBN 
would facilitate dynamic resource scheduling, activate the necessary 
ports, and employ the appropriate protocols based on the application’s 
requirements.

The task of Application Transition Detection, has not been directly 
addressed in the existing literature. While some transition detection 
techniques have been developed, they are primarily focused on different 
domains such as detecting state transitions in intrusion detection sys-
tems [19], and do not address the specific requirements of application-
level behavior monitoring. In contrast, application identification has 
been explored in areas like network security and traffic engineering, 
typically relying on features from packet header fields such as port 
numbers or through application-layer protocol decoding [20]. These 
approaches face notable limitations. Many applications use dynamic 
or non-standard ports, making header-based identification unreliable, 
and protocol decoding is often resource-intensive or infeasible in cases 
where protocols are encrypted or proprietary [21]. Furthermore, al-
though artificial neural network architectures have been proposed to 
improve accuracy [22], they generally introduce high latency and still 
fall short of perfect prediction, which poses significant challenges for 
latency-sensitive IBN systems.

The design of the Application Type Identification component is 
straightforward: given the availability of multiple distinct application 
types, we approach the problem as a multiclass classification task. The 
choice of the specific classification model is guided by experimental 

evaluation, as presented in Section 5. In contrast, developing the Ap-
plication Transition Detection mechanism involves exploring several 
methodological alternatives. Out-of-distribution detection aims to iden-
tify inputs that differ significantly from the distribution of the train-
ing data, signaling a shift in behavior or context [23]. Novelty detec-
tion focuses on uncovering previously unseen but valid inputs, assuming 
that the training data contains only examples of normal behavior [7]. 
Anomaly detection, meanwhile, seeks to detect rare or irregular patterns 
in the data [24]. Each of these approaches provides distinct capabilities 
for capturing transitions between applications in evolving network con-
ditions and will be examined in the experimental evaluation.

Different concepts of intent-life cycle management have been pro-
posed to enable autonomous and knowledge-driven network operations 
by integrating knowledge graph embeddings into the intent manage-
ment framework [25]. This study defines a closed-loop intent life cy-
cle encompassing intent expression, translation, validation, and map-
ping to their deployment. It introduces a dual closed-loop architecture 
in which the first loop manages intent representation and translation 
through knowledge graph based reasoning and inference, while the sec-
ond loop handles deployment, monitoring, and optimization to ensure 
service-level compliance. Intents are modeled as resource description 
framework triples, allowing semantic understanding and intent comple-
tion through probabilistic reasoning in Gaussian embedding space. This 
knowledge-driven approach enables automated service orchestration 
and adaptive assurance, with compliance continuously verified against 
network dynamics using Simultaneous Perturbation Stochastic Approx-
imation and Multiple Gradient Descent Algorithm.

While existing research has laid the groundwork for IBNA, it falls 
short in addressing the dynamic detection of application transitions in 
real-time environments. Our work closes this gap by introducing a uni-
fied framework that combines low-latency Application Transition De-
tection with precise Application Type Identification. Unlike prior tech-
niques that rely on static heuristics, resource-intensive deep models, or 
unreliable packet-level features, our methodology leverages vectorized 
time series resource metrics and undercomplete autoencoders to deliver 
high-accuracy detection with minimal computational overhead. By fur-
ther integrating this detection with a fast and robust multiclass classifi-
cation model, our proposed methodology enables IBN to autonomously 
adapt to changing application contexts, facilitating policy realignment, 
resource reallocation, and continuous compliance. This represents a sig-
nificant advancement in the state of the art, enabling networks to re-
spond to evolving application requirements.

3.  Proposed methodology

3.1.  Overview

The proposed methodology for IBNA is grounded in the concepts of 
continuous monitoring and closed-loop automation, which are central 
to the operation of IBN. The placement of the monitoring, Application 
Transition Detection, and Application Type Identification mechanisms 
within the interaction flow of IBN components is illustrated in Fig. 1. 
The workflow of the proposed methodology is illustrated in Fig. 2. The 
process begins with edge devices running AI applications while data 
collectors gather key performance metrics in real time (Fig. 2a). These 
metrics are made accessible via APIs, can be used to generate health 
alerts, and are stored in a time series database for further analysis. Af-
ter a fixed monitoring interval, the collected metrics, originally in the 
form of per-second feature arrays, are transformed into vectorized mul-
tivariate time series (Fig. 2b). This transformation concatenates feature 
metrics measured at sequential time steps to enable time-aware down-
stream processing. As will be discussed in the experimental evaluation, 
three one-second steps are sufficient for our analysis.

Once vectorized multivariate time series are collected over a suf-
ficient period, approximately one hour based on our experiments, 
the system trains a novelty detection model to characterize the
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Fig. 2. Pipeline overview showing metric collection, transition detection, and type identification.

behavior of each running application on the edge device (Fig. 2c). This 
model enables the system to detect whether incoming metric data cor-
responds to the same application or indicates the execution of a new 
one. Furthermore, each time a new application type runs on the sys-
tem, a multiclass classification model for Application Type Identifica-
tion is incrementally trained. This model is updated using both the 
current instance and historical data stored in the time series database
(Fig. 2d).

As new data continues to flow from the collectors, it is fed into the 
Application Transition Detection module, which determines whether an 
application switch has occurred (Fig. 2e). If a transition is detected, the 
updated Application Type Identification model is invoked to predict the 
type of the newly active application (Fig. 2f). This triggers a notification 
to the network administrator, providing information about the detected 
application transition and its predicted type. Based on this information, 
the IBN can automatically reconfigure itself to meet the specific require-
ments of the new application, thereby ensuring optimal network perfor-
mance and policy compliance (Fig. 2g). In the following subsections we 
describe the key-modules of our methodology.

In the IBN architecture, illustrated in Fig. 1, the detection of a new 
application transition and its type serves as the initiating event that 
triggers a notification within the intent life cycle, propagating from 
the IBNA module to the Intent Translation, Resolution, and Activation 
components. The Intent Translation component interprets the detected 
application’s goals and operational requirements, converting them into 
concrete low-level policies. These policies then guide the Intent Acti-
vation component, which is responsible for executing specific network 
adjustments such as slice reallocation, quality of service adaptation, 
and resource provisioning. While the present work focuses on the ac-
curate detection and classification of application transitions, the design 
and optimization of the activation and execution mechanisms (e.g. pol-
icy enforcement algorithms, reallocation heuristics) are the responsibil-

ity of the other intent components and are beyond the scope of this
study.

3.2.  Data collectors

Data collectors are core components of network monitoring solutions 
that probe edge computing devices to gather critical performance and 
application metrics. The collectors operate continuously for each mon-
itored device, application or service of interest. They are responsible 
for communicating directly with the target applications, extracting rel-
evant metrics, and formatting the data in a way that can be parsed and 
visualized by the monitoring system’s charting and alerting engine. This 
continuous stream of metrics enables IBNA models to make informed de-
cisions about reconfiguring edge networks when necessary, while also 
providing network administrators with real-time insights into the op-
erational status of the applications running on network devices. In our 
implementation, each data collector is realized as a lightweight job that 
interfaces with edge devices using standardized protocols such as SNMP, 
REST APIs, telemetry endpoints or even file reading. The collected met-
rics are then propagated to the central monitoring engine for further 
analysis and visualization.

3.2.1.  Collector configuration
The collectors can be configured to monitor ports, commands, ad-

dresses, or APIs associated with the applications they monitor. Collec-
tor configuration can be performed either through the IBN system’s 
auto-detection mechanism or by manually editing the relevant config-
uration files via the terminal or the monitoring tool’s web-based user
interface (UI). The UI simplifies the process, enabling operators to con-
figure collectors without requiring SSH access to the monitored sys-
tem. Furthermore, users can view and manage configurations across all 
nodes registered under their monitoring workspace. Upon submitting a
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configuration, the system validates its structure and dispatches it to the 
corresponding node for immediate application.

Collectors can pose three types of behaviors upon attempting to col-
lect metrics. Firstly, there are the default metrics the collector is looking 
for at Netdata startup. There is no user action needed, and metrics ap-
pear by default in the UI. The second behavior is for collectors that are 
specific to applications that expose their metrics on a port, file or some 
other source accessible from the system, without enforcing authentica-
tion. In that case, a Netdata component called “service discovery” polls 
for the existence of said applications in their known metrics outlets. If 
an instance is found, a collector job is invoked, and without the user’s 
input or configuration, metrics begin to appear in the UI [26]. The third 
behavior is for applications that require authentication to access most 
metrics, like databases. Collectors will detect that a database is running 
on the system and monitor any allowed metrics, but the user must pro-
vide the necessary credentials or permissions to monitor the entirety of 
available metrics [27]. Additionally, the platform supports bulk oper-
ations, allowing the same configuration to be applied simultaneously 
across multiple applications within the user’s workspace, streamlining 
large-scale management and ensuring consistency across environments.

3.2.2.  API with application
Our data collectors provide a unified API interface that integrates 

with a wide range of applications for collecting system and service met-
rics. The collectors are developed in different programming languages 
depending on their complexity and required functionality. Bash is typi-
cally used for low-level tasks, while Python and Go are chosen for more 
sophisticated collectors. The decision is also influenced by language sup-
port within the system. For instance, Go collectors offer full integration 
and can be configured directly through the UI.

Additional collectors, aside from the default ones, are enabled when-
ever new services are detected or configured. The user can selectively 
disable any collector that he chooses to limit the observability of the 
monitoring system. Our proposed methodology uses default metrics that 
don’t require further configuration or setup from the user. In a scenario 
where the user wants to provide his own selection of metrics to the 
model, accuracy might drop, but there is no realistic scenario where the 
user might want to limit the generic metrics we currently use [26,27].

Each collector operates through an underlying plugin that validates 
the configuration and initiates the data collection process. Once valida-
tion is complete, the collector executes a script that can interact with 
the system in several ways. It might invoke binary tools on the host ma-
chine, simulating terminal commands and parsing the output. It can also 
make HTTP requests to configurable endpoints and retrieve structured 
data in formats like JSON, XML, or CSV. In cases where services expose 
metrics through local files, the collector reads these as plain text and 
extracts the relevant values. This flexible design allows the collectors to 
support both modern and legacy environments effectively.

3.2.3.  Parsing of the response
The response of a data collector is determined by the structure of 

the API request, which typically includes the target charts, a specific 
chart metric, the defined time windows, and the sampling intervals. 
The resulting data is returned in JSON format, which is then parsed and 
converted for storage in the monitoring system’s time series database. 
In our implementation, each JSON response is aggregated in a CSV 
dataset which is then vectorized into fixed-length multivariate time se-
ries, where each column corresponds to a specific metric and timestamp. 
These vectors are subsequently used as input features to the Transition 
Detection and Application Type Identification learning pipelines.

3.2.4.  Health alerts
To provide actionable insights beyond raw metrics, the monitoring 

tool supports health alerts based on configurable thresholds. The alerts 
and their thresholds are defined based on the intents specified by the 

network user. Internally, Netdata’s alerting subsystem operates as a rule-
based evaluation engine that continuously analyzes live metric streams. 
Each alert is defined by a declarative condition written in a domain-
specific expression language capable of handling advanced logic, such 
as rate-of-change computations and rolling-window averages. Alert defi-
nitions are stored in configuration files and can be reloaded dynamically 
without restarting the monitoring agent. When evaluation thresholds are 
crossed, the system records a state transition (e.g., CLEAR →WARNING 
→CRITICAL) and enriches the resulting alert event with metadata in-
cluding the triggering metric, timestamp, and node context. These alerts 
are displayed within the monitoring UI and can be sent through various 
notification channels. Additionally, users can configure webhooks, in 
cases such as when an application transition detected, to automatically 
respond to alerts, enabling a reactive approach to handling system issues 
and failures.

3.3.  Monitored metrics & vectorized multivariate time series representation

To effectively support Application Transition Detection and Applica-
tion Type Identification, we began with a broad set of candidate metrics 
spanning system performance, hardware utilization, application behav-
ior, and network activity. This wide scope of metrics introduces the risk 
of including noisy or irrelevant features, which could negatively impact 
model performance. To address this, we collaborated with engineers 
from the Netdata team, leveraging their domain knowledge to refine 
the selection process. Their guidance helped us focus on metrics that 
are most indicative of application-level transitions and behaviors, while 
excluding those with low relevance or high variance unrelated to our 
task.

In parallel, we conducted a feature importance [28] analysis to fur-
ther reduce the dimensionality of our input space. Our objective was 
to retain only the most impactful features in order to improve model 
efficiency, reduce training and inference times, and mitigate the risk 
of overfitting. The final set of monitored metrics, as recommended by 
Netdata experts and validated through our analysis, is summarized in 
Table 1. These metrics are application-generic, capturing low-level sys-
tem behavior rather than application-specific logic, which ensures broad 
applicability across diverse edge AI workloads without requiring custom 
instrumentation. They concern Active and Running Processes on the sys-
tem as well as CPU, File Descriptor and RAM utilization.

To construct the Vectorized Multivariate Time Series Representation, 
we concatenate the consecutive multivariate observations, where each 
observation corresponds to the system’s monitored metrics captured at 
a fixed time interval, as detailed in Table 1. This approach encodes the 
temporal progression of the system’s state over the sequential intervals 
into a single fixed-length vector, allowing models to learn patterns that 
evolve over time. We adopt a one-second timestep, as it represents the 
highest temporal resolution commonly supported by popular monitor-
ing tools such as Netdata. Choosing a coarser timestep would introduce 
unnecessary delays in constructing the Vectorized Multivariate Time-
Series Representations, delays that are undesirable given the need for 
detection mechanisms to respond promptly to recent system behavior.

3.4.  Application transition detection

The Application Transition Detection module is designed to identify 
when a different application becomes active on a device, distinct from 
the one previously running, by analyzing temporal patterns in the edge 
computing network. This capability is essential for Intent-Based Net-
work Assurance, as it enables the system to detect changes in application 
context that may require re-evaluating whether current network config-
urations continue to satisfy the declared intents. The Application Tran-
sition Detection module operates on vectorized multivariate time series 
derived from edge device monitoring metrics and determines whether 
the current monitored metrics correspond to the same application ob-
served during the previous time period or indicates a transition to a new 
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Table 1 
Monitored metrics.
 Metric name  Unit  Description
 System Active Processes  Processes/s  Total number of processes currently running, sleeping, or in other states
 System Running Processes  Processes/s  Processes that are in the “runnable” state - either currently running on the CPU or waiting to run
 System CPU utilization  Percent (%)  CPU usage across all cores. This metric refers to the user space CPU time, meaning time the CPU spends executing user-level code
 System file NR  Files/s  Number of file descriptors in use
 Committed RAM memory  Kb/s  Committed Memory, is the sum of all memory which has been allocated by processes
 RAM Buffers  Kb/s  RAM used by the kernel to buffer block device operations such as writing to disk.
 Cached RAM Memory  Kb/s  RAM used to cache files, which helps with performance by avoiding disk access.
 Free RAM Memory  Kb/s  Total RAM not in use
 Used RAM Memory  Kb/s  RAM actively used by running processes and kernel (excluding buffers/cache).

one. This is formulated as a novelty detection problem, where the ob-
jective is to detect previously unseen patterns based on a model trained 
only on data from known behavior.

Novelty detection involves learning the pattern of normal system 
activity and identifying inputs that deviate significantly from these ex-
pected behavior [29]. In our approach, we collect system metrics while 
a specific application is running, as detailed in Section 3.3, and use the 
resulting vectorized multivariate time series as positive samples of nor-
mal behavior.

A machine learning model, is trained on that data to capture the ap-
plication’s typical performance signature. During inference, the model 
computes a novelty score that reflects how far the current data deviates 
from the learned distribution. If this score exceeds a predefined thresh-
old, the system flags the input as originating from a different, potentially 
new application. This threshold is selected during training by analyzing 
the distribution of novelty scores on known data and identifying a value 
that separates typical from atypical behavior.

We implement this detection mechanism using an autoencoder 
trained on vectorized multivariate time series generated from a known 
application. An autoencoder learns to encode the input data into a com-
pressed latent representation and then decode it back to reconstruct the 
original input. When the input is similar to those seen during training, 
the reconstruction error remains low. In contrast, when the input orig-
inates from a different application or reflects a significant behavioral 
change, the reconstruction error increases, signaling to a potential appli-
cation transition. For the reconstruction error, we use the Mean Squared 
Error computed across all features of the vectorized multivariate time 
series [30].

The implemented model follows an undercomplete autoencoder ar-
chitecture, in which the latent representation is deliberately constrained 
to have fewer dimensions than the input [31]. This compression en-
forces the learning of compact feature embeddings that capture only the 
most informative aspects of the monitored behavior, thereby enhancing 
sensitivity to deviations from the training distribution. The encoder is 
composed of two fully connected layers: the first reduces the dimension-
ality to 50% of the input size with a ReLU activation, while the second 
compresses further to 25%, forming the latent bottleneck. The decoder 
mirrors this configuration to reconstruct the original input. In practice, 
this compact design results in a lightweight model that can perform 
real-time inference directly on the monitoring node, minimizing com-
putational overhead while preserving high responsiveness to application 
transitions.

As it will be presented in the experimental evaluation Section 5, this 
approach effectively detects application transitions with high accuracy. 
The reconstruction error reliably increases when the system observes 
data from a new application, confirming the suitability of the under-
complete autoencoder for this task in the context of IBNA.

3.5.  Application type identification

Once an Application Transition is detected, the Application Type 
Identification module is invoked to recognize the newly initiated ap-
plication. This classification step is fundamental to enabling IBNA, as 

it allows the system to determine the nature of the active application 
and assess whether the current network configuration continues to sat-
isfy the declared intent. By identifying the application type, the IBNA 
system can dynamically align resource provisioning, monitoring poli-
cies, and assurance mechanisms with the specific requirements encoded 
in the original intent, such as latency sensitivity, bandwidth demands, 
or isolation policies. The identification task is formulated as a multi-
class, multivariate classification problem, where the output corresponds 
to one of a predefined set of known application types previously encoun-
tered in the edge environment and registered in the intent-aware config-
uration files. This bounded classification approach leverages historical 
data to improve prediction accuracy and ensures relevance to opera-
tional contexts defined by intent. The input features used for classifica-
tion are derived from the same set of application-agnostic performance 
metrics described in Section 3.3, which are continuously collected 
on edge devices to support real-time decision-making in intent-driven
networks.

To perform the classification, we employ a multiclass Random For-
est model. This ensemble learning technique constructs a collection 
of decision trees, each trained on random subsets of the vectorized 
multivariate time series and their associated application type labels. 
Each decision tree partitions the feature space by selecting optimal 
threshold values for input metrics, guided by the Gini impurity crite-
rion to maximize class separation [32]. By incorporating randomness 
both in data sampling and feature selection, the model achieves ro-
bustness to noise and reduces the risk of overfitting. During inference, 
a vectorized multivariate time series is propagated through all deci-
sion trees in the forest. Each tree issues an independent prediction, and 
the final application type is determined by a majority vote across the
ensemble.

Each output of the Random Forest provides a confidence score indi-
cating the likelihood that the running application belongs to one of the 
trained application classes. These confidence scores are derived from the 
normalized distribution of votes across all decision trees in the ensem-
ble. When the system encounters an application that has been included 
in the training dataset, the confidence of the correct class is typically 
high, reflecting consistent agreement among the trees. Conversely, when 
the observed behavior corresponds to an application not present dur-
ing training, the classifier exhibits uncertainty, and all class confidence 
scores remain low. In such cases, if the maximum confidence across all 
known classes falls below a predefined threshold, the system classifies 
the current application as unseen. This mechanism allows the Applica-
tion Type Identification module not only to recognize known application 
types but also to detect novel ones.

In our implementation, the Random Forest classifier operates as 
a downstream module that is triggered immediately after the transi-
tion detection stage. The incoming vectorized time series segment [33], 
flagged as an application transition, is fed into the pre-trained model for 
type inference. The resulting class label can be consumed by the IBNA 
control plane to update network configurations or monitoring policies in 
real time. This modular pipeline design allows both models to function 
asynchronously, ensuring low-latency classification without disrupting 
ongoing metric collection or analysis.
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3.6.  The role of the application transition detection and type identification 
in network assurance and intent lifecycle

The IBN components are described in the related work and illustrated 
in Fig. 1. The role of application classification within intent assurance, 
as well as its relationship to the intent lifecycle, is depicted in Fig. 3. 
From the perspective of this lifecycle, the monitoring component of In-
tent Assurance plays a critical role by providing continuous feedback on 
the operational status of applications, devices, and network resources. 
The monitoring data collected during this phase forms the foundation 
for the proposed Application Transition Detection and Application Type 
Identification mechanisms.

When an application transition is detected, the system determines 
whether the newly active application corresponds to one of the known 
and previously learned types. If the transition involves a known applica-
tion, the user is notified, and unless the user explicitly provides a new in-
tent opposing the transition, the system implicitly interprets acceptance 
and resumes the intent lifecycle by reconfiguring the infrastructure and 
recirculating the IBN closed-loop. In this case, the IBN system contin-
ues with the stages of intent resolution, and activation to automatically 
adapt network configurations and resources to the requirements of the 
new application.

If the transition involves an unknown application, the system notifies 
the network users, who must provide additional information regarding 
the new application’s low-level policies, intent resolution, and intent 
activation. These aspects are important for other IBN components but 
are beyond the scope of this work; interested readers are referred to [2] 
for further details. Furthermore, based on the monitoring data, new ap-
plication models are trained after one hour of data collection, enabling 
the IBN framework to detect future application transitions and identify 
their types autonomously. This allows the system to manage subsequent 
occurrences of the same application type without manual intervention.

In contrast, if a network user objects to an application change, mean-
ing the user explicitly rejects or refuses to run the new or modified ap-
plication because it was initiated without their consent or against their 
will, this objection is interpreted as a new intent to terminate the ap-
plication. This intent then follows the same resolution and activation 
processes to terminate the unauthorized or undesired application and 
restore the network to a compliant state.

By embedding the Application Transition Detection and Type Identi-
fication mechanisms into the Intent Assurance loop, the proposed frame-
work enables the IBN system to dynamically interpret user preferences 
and adapt network behavior with minimal human intervention. This in-
tegration enhances network assurance, supports continuous intent align-
ment, and ensures that the IBN system remains responsive to evolving 
application contexts at the edge.

4.  Construction of the AIMED-2025 dataset

We constructed the dataset AIMED-2025, which is publicly available 
on GitHub [34]. We deployed Netdata data collectors on a Raspberry 
Pi running various AI applications to capture the metrics described in
Section 3.3. Specifically, we monitored seven AI applications provided 
by MediaPipe [35]: Object Detection, Audio Classifier, Face Detector, 
Face Landmarker, Gesture Recognizer, Hand Landmarker, and Pose 
Landmarker, along with two idle workflows. These applications were se-
lected because they represent common computational and sensory work-
loads encountered in real-world edge AI scenarios. In this section, we 
provide a brief overview of MediaPipe, the data collection process, and 
the applications included in our study.

MediaPipe2 is an open-source framework developed by Google for 
building multimodal applied machine learning pipelines, with a strong 
focus on real-time perception tasks. Designed to run efficiently on edge 

2 https://github.com/google-ai-edge/mediapipe

Fig. 3. Role of application classification within the intent lifecycle and associ-
ated processes.

devices MediaPipe provides a suite of pre-built solutions and customiz-
able components for tasks including hand tracking, face detection, pose 
estimation, and object detection. It offers cross-platform support across 
Android, iOS, desktop, and web, enabling developers to deploy high-
performance ML models with minimal latency. MediaPipe’s modular 
architecture, built around a graph-based processing model, allows for 
efficient integration of computer vision and machine learning pipelines, 
making it well-suited for applications requiring real-time inference and 
interaction at the edge. The MediaPipe applications used in the con-
struction of the dataset are described below.

• Object detection: An object detection application is a computer vi-
sion system that identifies and locates multiple objects within an 
image or video stream, typically by drawing bounding boxes around 
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them and classifying each object. For this experiment, the camera 
was pointed at a television screen displaying a car race, and the ap-
plication was tasked with detecting cars, humans, and other objects 
appearing in the video feed.

• Audio classifier: An audio classifier application is a machine learn-
ing system that analyzes audio input to identify and categorize 
sounds or acoustic events based on their characteristics. For this 
experiment, the microphone was placed in an environment where 
people were talking, animals could be heard and a television was 
also playing. The goal was to classify given sounds on a rolling time-
frame.

• Face detector: A face detector application is a computer vision 
tool that identifies and locates human faces within images or video 
frames. For this experiment, the camera was placed in front of a 
working software engineer, where the subject was moving in and 
out of the frame, and the model was trying to identify a human face 
in the frame.

• Face landmarker: A face landmarker application detects and tracks 
key facial landmarks, such as eyes, nose, and mouth positions, to 
analyze facial geometry and expressions. For this experiment, the 
setup was the same as with the Face detector experiment, and the 
model was trying to identify and landmark face characteristics (eyes, 
nose, lips) in a live feed.

• Gesture recognizer: A gesture recognizer application interprets 
hand or body movements from visual input to identify specific ges-
tures or actions. For this experiment, the process was similar with 
the Face landmarker example, only this time the subject was a hand 
palm, where it was changing gestures while typing on the keyboard 
and handling a mouse.

• Hand landmarker: A hand landmarker application detects and 
tracks key points on the hand to analyze its position, shape, and 
movements. For this experiment, the application was trying to iden-
tify the elements of a hand, fingers and finger-joints, in a live feed.

• Pose landmarker: A pose landmarker application detects and tracks 
key points on the human body to analyze posture and movement. For 
this experiment, we used a feed from a conference video, and was 
trying to track human body elements like the torso, arms, head, hips 
and legs of a subject moving through space.

• Idle1: An idle workflow refers to a state where the device is powered 
on but not running any active applications or processing workloads. 
For this experiment, we left the system idle, and captured the time 
series metrics.

• Idle2: A second idle workflow was created similarly with the Idle1 
by leaving the system inactive and recording the time series data.

All applications were executed on the same hardware setup: a Rasp-
berry Pi paired with a generic webcam that includes a built-in micro-
phone. While some applications shared similar objectives, such as ex-
tracting landmarks or detecting objects from the video feed, others dif-
fered in modality, such as the audio classifier, which relied on audio 
input from the webcam’s microphone rather than visual data. This mix 
of overlapping and distinct application purposes was intentional, allow-
ing us to assess whether the differences in execution workflows could 
be accurately identified and classified using the methods employed in 
our experimental evaluation.

5.  Experimental evaluation

We implemented the proposed methodology, as described in Sec-
tion 3, and evaluated it using the datasets detailed in Section 4.
Section 5.1 presents the evaluation of Netdata data collectors in a large-
scale infrastructure, while Section 5.2 provides two snapshots illustrat-
ing the graphical representation of monitoring metrics during dataset 
construction. In Section 5.3, we present an experimental evaluation of 
the Application Transition Detection mechanism, comparing the perfor-
mance and efficiency of the various machine learning models it employs. 

Section 5.4 presents a similar comparative evaluation for the model used 
to identify application types. Finally, Section 5.5 summarizes the key 
findings and insights gained from the experiments.

5.1.  Evaluating collectors

Implementing the collectors as described in Section 3.2 we can mon-
itor and process millions of metrics for large infrastructures, where 
thousands of metrics are auto-discovered per node (devices, virtual ma-
chines, applications), and there are thousands of nodes. In order to 
experimentally compare the performance of collectors inside the Net-
data monitoring tool we compared them with Prometheus,3 a well-
established monitoring tool in the industry. In this comparison, we 
present the key differences in optimization and resource utilization re-
lated to collecting and handling large volumes of metrics on large sys-
tems, rather than focusing solely on the limited requirements of edge 
computing.

We tested 4.6 million metrics, on ingestion, hardware utilization, 
metric storage retention and API queries.4 On CPU and Memory, 
Prometheus required 15 cores and 383 GiB of memory to handle the 
metrics, with regular freezes of ingestion, while the collectors of Net-
data needed only 9 cores and 47 GiB. For retention, Prometheus was 
able to store 2h of data at per-second granularity. With the same disk 
requirements, our solution retained 1.25 days worth of per-second data 
and using its automatic downsampling tiers it managed to keep historic 
data almost for 3 months. The disk IO of Prometheus was on average 
147 MiB/s against Netdata’s 4.7 MiB/s. On network usage, Prometheus 
used 515Mbps, while our implementation used 448Mbps.

Furthermore, on query performance on the API, our solution was 22 
times faster than Prometheus in large queries, while also it preserved 
100% of the requested data, when Prometheus was having issues, hav-
ing data loss due to scrape loss and achieving only 93.7%. In conclusion, 
this comparison demonstrated that Netdata collectors offer significantly 
greater efficiency and scalability than the corresponding mechanisms 
of Prometheus, which is regarded as an established monitoring tool. In 
addition, Netdata collectors come with default configurations that en-
able them to capture large volumes of metrics and node relationships. In 
contrast, Prometheus requires advanced knowledge and extensive con-
figuration, along with integration of additional tools, to achieve similar 
results.

5.2.  Presenting monitoring metrics

During the construction of the AIMED-2025 dataset, we monitored 
the Raspberry Pi while it was idle and during the execution of the object 
detection application. Fig. 5 shows a snapshot of the metrics collected 
during the idle state, whereas Fig. 6 presents a snapshot of the metrics 
recorded during application execution.

The two figures consist of six Netdata charts each, containing one 
or more time series as “dimensions”. At the top of the chart, the title is 
displayed along with some useful programmatic information, including 
the chart ID, which can be used for tasks such as API requests. The six 
charts shown (from top to bottom) represent: committed RAM memory, 
system active processes, system running processes, system CPU utiliza-
tion, file descriptors, and system RAM usage. The RAM usage includes 
time series for free, used, cached RAM, and RAM buffers. The x-axis 
represents time steps, while the y-axis varies depending on the type of 
chart, with its title displayed vertically on the left side of each chart.

The timeseries are represented as colored lines, and are accompanied 
by the comprehensive Netdata UI to manipulate the view, like zooming 
in and out, highlighting areas, filtering the view from multiple sources 
to specific ones and more. Below each timeseries there is a matching col-
ored vertical bar, along with the name of the dimension, current value 

3 https://prometheus.io
4 https://www.netdata.cloud/blog/netdata-vs-prometheus-2025/
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Fig. 4. Evaluation of each transition detection model across all application datasets.

and unit. In case there are multiple timeseries, like in the “System RAM” 
chart, there is an equal number of dimensions. This is preferred when 
the units are the same, and the timeseries can be visualized in a mean-
ingful way using colors. As the charts have the same vertical scales, we 
can compare two workloads by taking two snapshots and previewing 
them side by side.

The comparison of the two figures reveals notable differences in sys-
tem behavior between the two states. The committed memory usage 
of the object detection application increased significantly compared to 
the idle state. The number of active processes rose from approximately 
2200 to 2900, while running processes experienced a pronounced spike, 
increasing from 3 to 73. Modest increases were also observed in CPU 
utilization and RAM usage, reflecting the heavier demands of the object 
detection workload.

The monitored metrics are leveraged by the Application Transition 
Detection mechanism. The novel detection model is trained using met-
rics collected during application runtime and can subsequently deter-
mine whether new incoming metrics correspond to the same applica-
tion or indicate a transition to a different one, as demonstrated in the 
following subsection.

5.3.  Testing models for application transition detection

5.3.1.  Experimental evaluation protocol & evaluation metrics
To assess the performance of the proposed Application Transition 

Detection methods, we designed an experimental protocol involving in-
dividual training and cross-application testing. Specifically, we trained 
a separate machine learning model for each of the distinct applications 
and idle states described in Section 4. This resulted in a total of nine in-
dependently trained models, one per application or idle state. In our test-
ing, each model occupied approximately 40KB of space, which means 
that even for the extreme scenario of having 100 different known ap-
plications that could run on the same system, we would need around 
4MB of space to store their corresponding autoencoders. The footprint 
of the models is very small, thus making it efficient to keep a model per 
application.

Following training, each model was evaluated using monitoring data 
corresponding to all seven application and two idle state scenarios. This 
approach produced a total of 81 (9×9) evaluations, capturing all possi-
ble combinations of training and testing application-state pairs. The full 
evaluation process is illustrated in Fig. 4. For instance, in the context 
of audio classification, a model trained exclusively on metrics from the 
audio application was tested not only on additional audio metrics but 
also on metrics from the other applications and idle states. This strategy 
enabled us to investigate the capabilities of each model trained in one 
application to detect the transition across any different application.

To evaluate performance, we used standard classification metrics: 
precision (Prec.), recall (Rec.), F1-score (F-1), and accuracy (Acc.). In 
addition, we included specificity (Spec.) to assess whether a detection 
model failed to recognize when both the training and testing data orig-
inated from the same application, a scenario that should ideally not be 
flagged as a transition. For efficiency evaluation, we measured the train-
ing time (𝑇 𝑖𝑚𝑒𝑇 𝑟𝑎𝑖𝑛) of each model, the average inference time one sam-
ple (𝑇 𝑖𝑚𝑒𝐼𝑛𝑓 ), and the average inference time of a batch of 100 samples 
(𝑇 𝑖𝑚𝑒𝐵𝐼𝑛𝑓 ).

5.3.2.  Outcomes
We conducted an experimental comparison of three distinct ap-

proaches for detecting application transitions: Out-of-distribution detec-
tion, Anomaly detection and Novelty detection. These approaches were 
selected based on our investigation of the machine learning literature, 
which revealed that they represent the main methodological categories 
applicable to identifying shifts or transitions in data behavior. For Out-
of-distribution detection [36], we evaluated the Seasonal Ratio Scor-
ing [23] using both 135-step and 10-step windows (SRS-135, SRS-10). 
For Anomaly detection[37], we tested autoencoders with 1-step (AE-
1) [24], isolated forests [38] with 1-step and 3-steps (IF-1, IF-3), long 
short-term memory [39] with one-step and 3-steps (LSTM-1, LSTM-3) 
and the autoencoder with LSTM layers [40] with 10-steps (LSTM-AE-
10). For Novelty detection we used autoencoders [41] with 3-steps (AE-
3). Model names include a digit suffix indicating the length of the look-
back window used [42]. In all experiments, each step corresponds to a
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Fig. 5. Workload: idle state.

one-second interval. The performance and efficiency results are summa-
rized in Table 2.

The experimental results show that the AE-3 following the novelty 
detection approach and LSTM-3 following the anomaly detection, de-
liver the highest performance, achieving 100% accuracy, F1-score, and 
specificity, while also maintaining low computational overhead during 
both training and inference. Both methods require approximately 3 s 
to generate the three-step vectorized multivariate time series. Further-
more, the AE-3 takes 0.032 s per single sample inference and 3.626 s for 
a batch of 100 samples, while the LSTM requires 0.034 s per sample and 
3.815 s for batch inference. These outcomes indicate that autoencoders 
are the best option, as they are the most resource-efficient among the 
highest-performing models.

Fig. 6. Workload: object detection application.

In terms of efficiency, IF-3 achieved the fastest training time at 
0.105 s, although their performance metrics were slightly lower than 
those of AE-3. ARIMA provided the quickest inference times, with 
0.001 s for a single sample and 0.152 s for a batch of 100 samples, 
but this came at the cost of significantly lower performance. Out-of-
distribution detection methods intrinsically rely on long look-back win-
dows to capture temporal dependencies, which is why we initially eval-
uated a 135-step window. This configuration yielded results with an 
F1-score of 0.957 and specificity of 0.789, indicating reasonable perfor-
mance. However, this came at the cost of poor efficiency, as training 
took 81 s and inference averaged 40 s, resulting in a total of 175 s from 
data monitoring to prediction. This is far too slow for detecting appli-
cation transitions, where near-instant response is required. To improve 
speed, we reduced the window to 10 steps, which achieved an F1-score 
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Table 2 
Evaluation outcomes of application transition detection models.
 Model  Prec.  Rec.  F-1  Acc.  Spec. 𝑇 𝑖𝑚𝑒𝑇 𝑟𝑎𝑖𝑛 𝑇 𝑖𝑚𝑒𝐼𝑛𝑓 𝑇 𝑖𝑚𝑒𝐵𝐼𝑛𝑓

 SRS-135  0.972  0.943  0.957  0.925  0.789  81.387  40.000  42.000
 SRS-10  0.888  1  0.941  0.888  0  84.227  30.000  35.000
 AE-1  0.920  0.985  0.951  0.913  0.454  6.335  0.083  8.842
 IF-1  0.920  0.985  0.951  0.913  0.454  0.109  0.040  4.164
 LSTM-1  0.909  1  0.952  0.913  0.363  7.247  0.066  7.233
 ARIMA-1  0.864  1  0.927  0.864  0  2.576  0.114  11.866
 AE-3  1  1  1  1  1  0.795  0.032  3.626
 IF-3  0.972  1  0.985  0.975  0.818  0.105  0.019  2.130
 LSTM-3  1  1  1  1  1  4.994  0.034  3.815
 ARIMA-3  0.886  1  0.939  0.888  0.181  2.846  0.001  0.152
 LSTM-AE-10  1  0.457  0.627  0.530  1  149.192  0.039  0.309

Table 3 
Evaluation outcomes of application type identification models.
 Model  Prec.  Rec.  F-1  Acc.  Spec. 𝑇 𝑖𝑚𝑒𝑇 𝑟𝑎𝑖𝑛 𝑇 𝑖𝑚𝑒𝐼𝑛𝑓 𝑇 𝑖𝑚𝑒𝐵𝐼𝑛𝑓

 RF-3  1  1  1  1  1  0656  0004  0339
 LSTM-3  0314  0429  0333  0429  0905  4632  0346  3383
 CNN-3  1  1  1  1  1  2015  0095  3329
 RF-10  1  1  1  1  1  0338  0003  0335
 LSTM-10  0314  0429  0333  0429  0905  3202  0289  3395
 CNN-10  0786  0857  0810  0857  0976  1185  0089  3466

of 0.941 but resulted in a specificity of 0, meaning the model predicted 
almost all samples as positive. These findings show that the method is 
not only too slow for real-time detection but also ineffective for accurate 
detection.

5.4.  Testing models for application type identification

5.4.1.  Experimental evaluation protocol & evaluation metrics
To assess the applicability of machine learning models for Ap-

plication Type Identification, we employed an experimental evalua-
tion protocol in which each model was trained as a multiclass clas-
sifier using 70% of the monitored metric sequences from the work-
load of the applications and the idle states of the dataset described in
Section 4. Accordingly, the application types employed for both train-
ing and testing include Object Detector, Audio Classifier, Face Detector, 
Face Landmarker, Gesture Recognizer, Hand Landmarker, Pose Land-
marker, and the two Idle States. The remaining 30% of the data was used 
for testing, where sequential segments of monitored metrics were pro-
vided as input to evaluate model performance. For classification evalu-
ation, we used the same performance and efficiency evaluation metrics 
described before.

To evaluate the performance of the proposed methodology on pre-
viously unseen applications, we conducted experiments involving two 
new workloads that were not part of the AIMED-2025 dataset. The first 
application was a lightweight Redis key-value store,5 for which we gen-
erated workload traffic using the memtier benchmark performance test-
ing tool.6 The second application was an NGINX edge proxy,7 for which 
we generated workload using the wrk HTTP benchmarking utility.8 The 
monitoring procedure remained identical to that used for the AIMED-
2025 dataset, collecting the same system and resource utilization met-
rics listed in Table 1. The data obtained from these two applications 
were excluded from model training and were used solely to assess the 
ability of the Application Type Identification model to recognize when 
the edge device is executing an application that has not been encoun-
tered before.

5 https://pimylifeup.com/redis-docker/
6 https://redis.io/docs/latest/operate/rs/clusters/optimize/

memtier-benchmark/
7 https://pimylifeup.com/docker-nginx-reverse-proxy/
8 https://github.com/wg/wrk/

5.4.2.  Outcomes
We conducted experiments using three well-established methods 

for multiclass classification: Random Forests [43] with 3-steps and 10-
steps look back window (RF-3, RF-10), Long Short-Term Memory net-
works [44] (LSTM-3, LSTM-10), and Convolutional Neural Networks 
[45] (CNN-3, CNN-10). The results of these evaluations, covering both 
classification performance and computational efficiency, are summa-
rized in Table 3.

The experimental results demonstrate that the RF-3, RF-10 and CNN-
10, achieved 100% accuracy in correctly identifying the application 
type. From an efficiency standpoint, the RF-3 outperformed the oth-
ers, achieving sub-second training time and millisecond-level inference 
time. As a result, the Random Forest model with a 3-step window offers 
the best balance between accuracy and efficiency for the Application 
Type Identification task.

The LSTM model consistently performed the worst in both predictive 
performance and computational efficiency. Furthermore, both the LSTM 
and CNN models required significantly more time for training and in-
ference, with inference times in the range of several tenths of a second. 
While the CNN-10 reached 100 percent accuracy, its longer training and 
inference times and the additional 7-s delay before producing an output 
make it less suitable for time-sensitive applications.

When executing applications that belong to one of the previously 
trained classes of the AIMED-2025 dataset, the Application Type Iden-
tification model consistently produces high confidence scores for the 
correct class, typically close to or exceeding 0.9. In contrast, when eval-
uating applications that were not included in the training set, the model 
exhibits significantly lower confidence levels across all known classes, 
with maximum scores remaining below 0.45. Table 4 presents the

Table 4 
Class confidence of application type identifica-
tion on unseen data.

 Class  Redis  NGINX
 Object detection  0,01  0,02
 Audio classifier  0,37  0,4
 Face detector  0,02  0
 Face landmarker  0,12  0,04
 Gesture recognizer  0  0
 Hand landmarker  0,32  0,43
 Pose landmarker  0,16  0,11
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confidence values obtained for the unseen Redis and NGINX applications 
using the Random Forest trained on the application classes presented in 
Section 4. By establishing a confidence threshold of 0.45 to distinguish 
between known and unseen applications, the proposed methodology 
achieves 100% accuracy in identifying whether a running application 
has been previously observed or represents a new, unseen application.

5.5.  Discussion

An important design choice in our pipeline was to perform Applica-
tion Transition Detection prior to initiating Application Type Identifi-
cation. This sequence was chosen because the multiclass classification 
model used for type identification cannot reliably detect unseen appli-
cation types. It can only classify inputs among the known categories it 
was trained on. Even when we experimented with using prediction con-
fidence scores to infer whether an input belonged to an unknown class, 
the accuracy remained significantly lower compared to the proposed 
approach. By introducing a dedicated novelty detection mechanism to 
identify transitions first, we ensured that classification is only attempted 
when a new application is likely present. This design improves reliabil-
ity while also avoiding unnecessary computations.

Given the importance of computational efficiency in IBNA systems 
operating at the edge, we deliberately avoided resource intensive deep 
learning models. The autoencoder used for transition detection is an 
undercomplete variant, chosen specifically for its simplicity and low re-
source demands. While out-of-distribution detection techniques might 
be theoretically suitable for identifying changes in application behav-
ior, we found them to be too computationally expensive for real-time 
use and therefore excluded them early in the design phase. Our goal 
was to support lightweight, low-latency operations that align with the 
limited capacity of edge devices.

Intent-Based Network mechanisms, including monitoring and or-
chestration components, should impose minimal overhead, as the pri-
mary role of the network infrastructure is to support the operation of ac-
tual applications rather than interfere with the application performance. 
To demonstrate the lightweight nature of our approach, we evaluated 
the overhead introduced by the developed Netdata collectors and mon-
itoring processes, comparing them with Prometheus, one of the most 
widely used monitoring tools. For the Application Transition Detection 
and Application Type Identification mechanisms, we measured the time 
required to train their models (𝑇 𝑖𝑚𝑒𝑇 𝑟𝑎𝑖𝑛), to make a single prediction 
in the decentralized approach (𝑇 𝑖𝑚𝑒𝐼𝑛𝑓 ), and to make one hundred pre-
dictions in the centralized approach (𝑇 𝑖𝑚𝑒𝐵𝐼𝑛𝑓 ). The response times 
presented in Tables 2 and 3 indicate the minimal execution overhead 
of these processes. All time metrics were computed directly within the 
code using Python’s time library, by capturing timestamps immediately 
before and after the corresponding events.

Regarding the scalability of the proposed methodology, it is impor-
tant to note that, regardless of the number of devices or applications 
operating in an edge environment, the inference process of the applica-
tion transition detection method can function in both decentralized and 
centralized modes. In a decentralized configuration, each edge device 
runs its own novelty detection mechanism for the application it hosts, 
meaning that the addition of new devices does not affect those already 
operating, and scalability concerns do not arise. In a centralized con-
figuration, a single edge server can execute multiple novelty detection 
mechanisms, each corresponding to a specific device-application pair. 
Our experiments indicate that the execution time for one hundred ob-
servations remains low, suggesting that a single server can efficiently 
handle a large number of models. The same rationale applies to the 
training process, which can also be performed either in a decentralized 
manner on individual devices independently or centrally on an edge 
server serving all connected devices. Although training requires more 
time, it occurs infrequently, typically only when a new application is 
introduced. In highly dynamic scenarios with a large number of applica-
tions, scalability can be further improved by deploying additional edge 

servers and distributing the models among them for training and infer-
ence, since the novelty detection models operate independently of one 
another.

Another important design parameter was the number of time steps 
used in constructing the data input. Including more time steps can pro-
vide additional historical information, which may improve the model’s 
performance. However, this decision would introduce a delay in shaping 
the input, which is undesirable in scenarios that require timely detec-
tion and adaptation. Our experiments showed that both the Application 
Transition Detection and Application Type Identification modules could 
achieve 100 percent accuracy using a three-second window. This find-
ing indicates that our models can deliver rapid and accurate responses, 
which is essential for maintaining performance in dynamic edge envi-
ronments.

In addition to inference speed, training time is also critical, espe-
cially because new applications require the system to train new models. 
Since this training must often take place at the edge, where compu-
tational resources are limited, models must be lightweight. The pro-
posed approach meets this requirement. Furthermore, the prediction 
models can be deployed locally on each individual monitored device, 
or they can operate in a centralized manner on an orchestration node 
responsible for managing predictions across the entire edge network. In 
the centralized setup, the orchestrator processes inference in batches. 
In our experiments, we measured the time required to process batches 
for 100 devices using a Raspberry Pi. These results demonstrated that 
even on limited hardware, batch inference is feasible. On a more pow-
erful orchestration machine, inference times would be significantly
reduced.

The tracking of intents is carried out in an application-agnostic man-
ner, relying on the highest degree of direct observation. Specifically, our 
methodology monitors the applications that users express through their 
intents independently of the application type and without requiring any 
intervention from the network user. This is achieved by observing the 
relevant metrics listed in Table 1, which allow the IBNA to infer the ap-
plication intent fulfillment while maintaining application-agnostic mon-
itoring.

The setup we followed ensured that the methodology can be applied 
on most standard monitoring solutions. Netdata is providing the most 
granular observability in the form of per-second metrics and is open 
source, so it was the preferred platform to capture the metrics. Our 
proposed solution can be integrated with other, except Netdata, open-
source monitoring tools provided that their pipeline is adapted to their 
respective API and metric granularity.

Furthermore, the Netdata platform incorporates AI-driven insights, 
including local anomaly scoring and cross-node correlation analysis, to 
generate precise, actionable reports. Each report delivers a clear expla-
nation of observed events, their underlying causes, and recommended 
next steps, presented in straightforward, accessible language. Building 
upon these capabilities, the Application Transition Detection and Ap-
plication Type Identification mechanisms offer additional on-demand, 
detailed insights into the behavior and characteristics of running appli-
cations.

The proposed framework is designed to interoperate with monitor-
ing frameworks beyond AI workloads by relying exclusively on generic, 
application-agnostic system metrics such as CPU utilization, RAM us-
age, and active processes which are universally available across all types 
of applications and operating systems. Since the transition detection 
and application identification models are trained on these low-level re-
source usage signatures rather than on AI-specific logic, the methodol-
ogy can be directly applied to any workload, including web services, 
databases, or IoT applications, by simply retraining the models on the 
corresponding monitoring data. Furthermore, the pipeline is adaptable 
to other monitoring tools like Prometheus by aligning with their APIs 
and metric granularity, ensuring broad compatibility and making it 
a general-purpose solution for intent-based assurance in diverse edge
environments.
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The Application Transition Detection method requires one hour of 
monitoring data to train the undercomplete autoencoder. This duration 
was determined empirically by testing various time windows to iden-
tify the minimum monitoring period that maintains model accuracy. 
In scenarios where multiple rapid application transitions occur on the 
same device, the model will detect and report the first transition, but 
subsequent transitions within the same one-hour window may not be 
captured. This limitation is not critical, as the initial alert already in-
forms the network operator, who can then investigate the cause of the 
application change. Nevertheless, extending the proposed methodology 
to handle multiple successive transitions represents a direction for future 
research, with techniques such as time series structural break detection 
offering a potential solution. Moreover, the current design assumes edge 
devices typically run a single isolated application, so another valuable 
avenue for future work is adapting the approach to environments where 
multiple applications may run in parallel, with one or more changing 
dynamically.

The proposed methodology can generalize across different types of 
edge workloads, hardware platforms, and more diverse AI applications. 
The Application Transition Detection and Application Type Identifica-
tion models are developed using an undercomplete autoencoder and 
a random forest classifier, respectively, trained on generic monitoring 
metrics produced by the edge devices executing the applications. Since 
the metrics described in Table 1 are commonly available across all 
edge platforms and workloads, the same methodology can be applied 
to other devices and application types by repeating the data collection 
and model training process. In this work, we focus on AI applications 
due to their increasing adoption and significance in edge computing and 
smart environments [46]; however, future studies could further validate 
the method’s robustness by extending it to different edge devices and 
non-AI workloads.

6.  Conclusions

We have introduced a lightweight, end-to-end framework for IBNA 
that dynamically detects application transitions on edge devices and 
accurately identifies newly active workloads. By transforming high-
frequency, multivariate Netdata metrics into fixed-length vectorized 
time series and applying an undercomplete autoencoder for low-latency 
novelty detection followed by a Random Forest classifier for multiclass 
application labeling, our pipeline achieves perfect accuracy and speci-
ficity while respecting strict edge constraints. The public release of the 
AIMED-2025 dataset, which captures seven MediaPipe edge AI applica-
tions and two idle states on a Raspberry Pi, provides a valuable resource 
for the network research community in studying and benchmarking ap-
plication behavior at the edge.
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