Computer Networks 274 (2026) 111872

Contents lists available at ScienceDirect
[Omputer
Netwarks

Computer Networks 2

journal homepage: www.elsevier.com/locate/comnet

)
Detecting application transitions and identifying application types for
intent-based network assurance: A machine learning perspective

John Violos b Christos Diou

aEcole de Technologie Supérieure, 1100 Notre-Dame St W, Montreal, H3C1K3, Quebec, Canada
b Netdata Inc., 548 Market St #31942, San Francisco, CA, 94104-5401, USA
¢ Department Informatics & Telematics, Harokopio University of Athens, Omirou 9, Tavros, 177 78, Greece

%%, Fotios Voutsas ¢, Aris Leivadeas (22

ARTICLE INFO ABSTRACT

Keywords:

Intent-based networks

Network assurance

Monitoring systems

Alert systems

Application transition detection
Application type identification

Intent-Based Networking (IBN) enables agile and policy-driven network management by translating high-level
intents into concrete configurations and continuously validating their compliance. A critical limitation in current
Intent-Based Network Assurance (IBNA) systems is the lack of real-time application-level awareness, particularly
in dynamic edge environments where Al workloads frequently change. In this work, we address this limitation
by introducing a lightweight, monitoring-driven pipeline that enables the detection of application transitions
and identification of newly active application types on edge devices. In collaboration with Netdata engineers, we
develop multimetric data collectors using Netdata, an open-source platform for real-time system and application
monitoring. These collectors capture application-agnostic system metrics with minimal overhead, forming the
foundation for real-time alerting and dynamic network adaptation. Our proposed pipeline transforms raw moni-
toring data into fixed-length vectorized multivariate time series. An undercomplete autoencoder is then used to
detect changes in system behavior indicative of application transitions, followed by a Random Forest classifier
that labels the newly active application based on its resource usage profile. To support reproducibility, we con-
struct and publicly release the AIMED-2025 dataset, which includes monitoring data from seven MediaPipe-based
edge Al applications and two idle states, all executed on a Raspberry Pi. Experimental evaluation demonstrates
that our method achieves 100 % accuracy in both Application Transition Detection and Application Type Identifi-
cation using only a three-second observation window. Furthermore, the system exhibits sub-second training times
and millisecond-scale inference latency, making it suitable for real-time deployment on resource-constrained edge
devices. Once an application change is detected and identified, the IBNA system can automatically alert network
administrators and trigger dynamic reconfiguration of network resources to meet the specific performance, se-
curity, and connectivity requirements of the active application. By integrating application-level awareness into
IBNA, this work advances the state of the art in intent-driven network management and enables more adaptive,
efficient, and reliable operation of edge Al systems.

1. Introduction enhances agility and reliability: by eliminating most manual configura-

tion steps, IBN reduce human error and enable fast, policy-driven recon-

Intent-Based Networking (IBN) is an emerging paradigm in which
network users specify high-level goals or “intents” for the network, and
the IBN system automatically implements these goals through under-
lying configurations [1]. Architecturally, a typical IBN framework in-
cludes stages for intent expression, translation into network policies,
orchestration of devices, and closed-loop assurance [2]. In practice, the
system translates abstract intents into concrete policies and pushes them
to network devices, while a feedback loop continuously collects moni-
toring metrics to verify that the deployed network behavior matches the
original intent [3]. This high-level abstraction and automation greatly

* Corresponding author.
E-mail address: ioannis.violos@etsmtl.ca (J. Violos).

https://doi.org/10.1016/j.comnet.2025.111872

figuration of the network. The Intent-Based Network Assurance (IBNA)
component performs continuous monitoring and validation of the net-
work state against the declared intents. It automatically detects devi-
ations or “intent drift”, which refer to any discrepancies between the
intended behavior defined by the network’s high-level goals and the ac-
tual operational state observed in real time. When such deviations are
detected, the system triggers corrective remediation to restore compli-
ance with the original intent.

Edge AI applications, executed directly on edge devices enables
real-time inference, localized decision-making, and context-aware

Received 7 August 2025; Received in revised form 28 October 2025; Accepted 14 November 2025

Available online 21 November 2025

1389-1286/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
https://orcid.org/0000-0003-4219-3915

$\times $

$Time_{Train}$

$Time_{Inf}$

$Time_{BInf}$

$Time_{Train}$

$Time_{Inf}$

$Time_{BInf}$

https://orcid.org/0009-0003-9398-4917
https://orcid.org/0000-0002-2461-1928
https://orcid.org/0000-0002-2996-6824
mailto:ioannis.violos@etsmtl.ca
https://doi.org/10.1016/j.comnet.2025.111872
https://doi.org/10.1016/j.comnet.2025.111872
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2025.111872&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J. Violos et al.

operations [4]. These applications, ranging from object detection and
gesture recognition to audio classification and pose estimation, in-
troduce diverse and often stringent requirements on the underlying
network infrastructure. For example, latency-sensitive tasks such as
video-based face detection demand low end-to-end delay and consistent
bandwidth, whereas applications like audio classification may priori-
tize jitter tolerance and sustained throughput [5]. Additionally, some
applications require dedicated CPU/GPU resources, isolation through
traffic segmentation, or the activation of specific communication proto-
cols to ensure reliable operation. Because each application imposes dis-
tinct performance, security, and connectivity needs, the network must
dynamically reconfigure itself whenever a new application is deployed
[6]. This includes adjusting resource allocation, activating appropriate
services and protocols, and ensuring that policies remain aligned with
the real-time operational context.

In this work, we propose an IBNA-based framework to ensure the
reliability and performance of Edge Al applications through a unified,
monitoring-driven approach. The framework introduces an Application
Transition Detection mechanism that continuously analyzes real-time
monitoring metrics to identify transitions between Al applications run-
ning on edge devices. This is complemented by an Application Type
Identification module that classifies the newly active application into
a known category. Both mechanisms are integrated into a lightweight
and efficient pipeline that uses monitoring data collected by multimetric
data collectors developed in Netdata,' a scalable open-source platform
for real-time system and application monitoring. By transforming raw
monitoring data into actionable insights, the system enables automated
IBNA responses. Once an application transition is detected and the ap-
plication type is identified, the system can alert network administrators
and trigger adaptive reconfiguration of network resources. This ensures
that the network dynamically aligns with the specific performance and
policy requirements of the active Al workload, highlighting the critical
role of monitoring in delivering continuous assurance in intent-based
networks.

To perform Application Transition Detection, we employ a novel de-
tection mechanism, which identifies previously unseen patterns in mon-
itoring data that deviate from the normal execution profile of a known
application [7]. This is achieved using an one-class classification model
trained solely on normal data to detect such deviations. This approach
is well suited for identifying transitions between applications, as each
application exhibits distinct resource utilization signatures in monitored
system metrics. For Application Type Identification, we utilize a multi-
class classification model trained to recognize and label each applica-
tion based on its unique metric profile. To evaluate the effectiveness of
our proposed methodology, we deployed seven edge Al applications and
two idle states on an edge device and constructed the Al Monitoring at
the Edge Dataset (AIMED-2025). Accordingly, the main contributions of
this work can be summarized as follows:

¢ End-to-End Pipeline for IBNA: We develop and demonstrate a com-
plete pipeline that retrieves and processes raw monitoring data to de-
liver IBNA through integrated Application Transition Detection and
Application Type Identification mechanisms.
Novel Application Transition Detection via vectorized multi-
variate time series: We design and evaluate machine learning mod-
els for Application Transition Detection, culminating in a novelty de-
tection approach that leverages vectorized multivariate time series
to accurately capture dynamic behavior shifts in edge application
execution.
¢ Public Release of Edge Monitoring Dataset: We present and pub-
licly release AIMED-2025, a dataset capturing monitoring data from
diverse Al applications running on edge devices, to support research
and benchmarking in the field of network assurance.

-

https://www.netdata.cloud

Computer Networks 274 (2026) 111872

The rest of the paper is organized as follows. Section 2 reviews the
related work and background technologies on IBN and our proposed
methodology. In Section 3, we present our overall methodology, de-
tailing the core components of our approach. Section 4 describes the
construction of the dataset for evaluating our framework. Section 5 pro-
vides the experimental evaluation of the data collection mechanisms,
the Application Transition Detection model, and the Application Type
Identification model. Finally, Section 6 concludes the paper.

2. Related work & background

IBN represent a transformative approach to network management,
shifting from manual, device-level configuration to automated, goal-
driven operation. In an IBN, users express their desired outcomes, re-
ferred to as intents, in a high-level, human-friendly manner [8]. The
network then autonomously interprets these intents, deploys the appro-
priate configurations, and continuously ensures compliance. Rather than
focusing on how a network should operate technically, IBN enable op-
erators to define what the network should achieve, allowing the under-
lying system to determine the how [9]. This paradigm aims to increase
operational efficiency, reduce human error, and enable more agile re-
sponses to changing requirements.

The two key characteristics that distinguish IBN are the automated
implementation, which applies network configurations, expressed as in-
tents, to devices without human intervention and closed-loop feedback,
which allows the system to detect, analyze, and correct deviations au-
tomatically [3]. An IBN architecture is typically composed of five core
components as we can see them in the Fig. 1: (1) Intent Profiling, where
users express their goals in natural language or simplified interfaces; (2)
Intent Translation, which interprets these goals into low-level policies;
(3) Intent Resolution, which detects and manages conflicting or over-
lapping intents; (4) Intent Activation, which ensures safe and person-
alized deployment of the requested services; and (5) Intent Assurance,
which continuously validates and adapts the network to maintain align-
ment with the user’s intent over time [2]. Together, these components

Network User:[intent Profiling

Intent Translation

Apphcatlon Map: Low Level
& Goals Policies

Intent Assurance &1, Intent Resolution <)

Application Application ;
Transition Type Conflict Policy 3
. P Detectlon Resolution
Detection A ldentification

" Intent Activation @)
[Network } [Resource
n

i [Configuration| | Provisioning

Physical & Virtual Infrastructure

E0& N

Fig. 1. The IBN components including the application transition mechanism
and application type identification mechanisms.

https://www.netdata.cloud

J. Violos et al.

enable IBN to support autonomous, intelligent, and user-centric network
management.

To maintain alignment between the network’s actual behavior and its
intended goals, IBNA incorporates continuous monitoring mechanisms
that observe network devices and traffic in real time [10]. This persis-
tent verification process ensures that the deployed network state faith-
fully reflects the user’s declared intents. When discrepancies arise such
as unauthorized configuration changes, unexpected traffic patterns, or
shifts in application behavior the system can autonomously detect these
deviations and either suggest remediation steps or execute corrective
actions automatically [11]. To facilitate such responsiveness, IBN can
leverage monitoring platforms like Netdata, which provide performance
metrics, system health visualization, and real-time alerts [12].

The recent advancements in IBNA focus on the integration of ma-
chine learning to enhance automation and adaptability. One notable re-
search work is the use of Al-driven policies powered by Large Language
Models, which are capable of understanding in-context requirements in
order to assist the fulfillment and assurance of network intents [13]. In
the context of Software-Defined Networks, a traffic prediction model has
been proposed to proactively manage congestion by analyzing real-time
network data and forecasting traffic patterns, enabling dynamic load
balancing to maintain Quality of Service and intent compliance [14].
For data center environments, an incremental learning approach has
been introduced to handle the evolving infrastructure by predicting key
resource utilization metrics and allowing administrators to take timely
corrective actions [15]. Additionally, a scalable solution using Neural
Networks addresses the challenges posed by the growing customer base
and big data demands, predicting bandwidth and other resource usage
trends to support proactive network service assurance [16].

While IBNA encompasses key functions such as policy verification,
which ensures that network configurations align with operational in-
tents [11]; continuous compliance monitoring, which automatically
checks adherence to organizational policies and regulatory mandates
such as service-level agreements [17]; and conflict detection, which en-
ables early identification and root cause analysis of network issues [18],
the aspect of transition monitoring has been overlooked. Specifically,
there is a research gap in examining how IBNA, when integrated with
real-time monitoring tools, can be leveraged to detect application tran-
sitions. Exploring this capability is crucial not only for providing timely
alerts to network administrators but also for enabling the system to re-
assess whether the network will continue to meet application-specific
requirements like latency, throughput, and segmentation. Such an IBN
would facilitate dynamic resource scheduling, activate the necessary
ports, and employ the appropriate protocols based on the application’s
requirements.

The task of Application Transition Detection, has not been directly
addressed in the existing literature. While some transition detection
techniques have been developed, they are primarily focused on different
domains such as detecting state transitions in intrusion detection sys-
tems [19], and do not address the specific requirements of application-
level behavior monitoring. In contrast, application identification has
been explored in areas like network security and traffic engineering,
typically relying on features from packet header fields such as port
numbers or through application-layer protocol decoding [20]. These
approaches face notable limitations. Many applications use dynamic
or non-standard ports, making header-based identification unreliable,
and protocol decoding is often resource-intensive or infeasible in cases
where protocols are encrypted or proprietary [21]. Furthermore, al-
though artificial neural network architectures have been proposed to
improve accuracy [22], they generally introduce high latency and still
fall short of perfect prediction, which poses significant challenges for
latency-sensitive IBN systems.

The design of the Application Type Identification component is
straightforward: given the availability of multiple distinct application
types, we approach the problem as a multiclass classification task. The
choice of the specific classification model is guided by experimental

Computer Networks 274 (2026) 111872

evaluation, as presented in Section 5. In contrast, developing the Ap-
plication Transition Detection mechanism involves exploring several
methodological alternatives. Out-of-distribution detection aims to iden-
tify inputs that differ significantly from the distribution of the train-
ing data, signaling a shift in behavior or context [23]. Novelty detec-
tion focuses on uncovering previously unseen but valid inputs, assuming
that the training data contains only examples of normal behavior [7].
Anomaly detection, meanwhile, seeks to detect rare or irregular patterns
in the data [24]. Each of these approaches provides distinct capabilities
for capturing transitions between applications in evolving network con-
ditions and will be examined in the experimental evaluation.

Different concepts of intent-life cycle management have been pro-
posed to enable autonomous and knowledge-driven network operations
by integrating knowledge graph embeddings into the intent manage-
ment framework [25]. This study defines a closed-loop intent life cy-
cle encompassing intent expression, translation, validation, and map-
ping to their deployment. It introduces a dual closed-loop architecture
in which the first loop manages intent representation and translation
through knowledge graph based reasoning and inference, while the sec-
ond loop handles deployment, monitoring, and optimization to ensure
service-level compliance. Intents are modeled as resource description
framework triples, allowing semantic understanding and intent comple-
tion through probabilistic reasoning in Gaussian embedding space. This
knowledge-driven approach enables automated service orchestration
and adaptive assurance, with compliance continuously verified against
network dynamics using Simultaneous Perturbation Stochastic Approx-
imation and Multiple Gradient Descent Algorithm.

While existing research has laid the groundwork for IBNA, it falls
short in addressing the dynamic detection of application transitions in
real-time environments. Our work closes this gap by introducing a uni-
fied framework that combines low-latency Application Transition De-
tection with precise Application Type Identification. Unlike prior tech-
niques that rely on static heuristics, resource-intensive deep models, or
unreliable packet-level features, our methodology leverages vectorized
time series resource metrics and undercomplete autoencoders to deliver
high-accuracy detection with minimal computational overhead. By fur-
ther integrating this detection with a fast and robust multiclass classifi-
cation model, our proposed methodology enables IBN to autonomously
adapt to changing application contexts, facilitating policy realignment,
resource reallocation, and continuous compliance. This represents a sig-
nificant advancement in the state of the art, enabling networks to re-
spond to evolving application requirements.

3. Proposed methodology
3.1. Overview

The proposed methodology for IBNA is grounded in the concepts of
continuous monitoring and closed-loop automation, which are central
to the operation of IBN. The placement of the monitoring, Application
Transition Detection, and Application Type Identification mechanisms
within the interaction flow of IBN components is illustrated in Fig. 1.
The workflow of the proposed methodology is illustrated in Fig. 2. The
process begins with edge devices running Al applications while data
collectors gather key performance metrics in real time (Fig. 2a). These
metrics are made accessible via APIs, can be used to generate health
alerts, and are stored in a time series database for further analysis. Af-
ter a fixed monitoring interval, the collected metrics, originally in the
form of per-second feature arrays, are transformed into vectorized mul-
tivariate time series (Fig. 2b). This transformation concatenates feature
metrics measured at sequential time steps to enable time-aware down-
stream processing. As will be discussed in the experimental evaluation,
three one-second steps are sufficient for our analysis.

Once vectorized multivariate time series are collected over a suf-
ficient period, approximately one hour based on our experiments,
the system trains a novelty detection model to characterize the

J. Violos et al.

Computer Networks 274 (2026) 111872

7 N
@ Node Training
Object detection @ Preprocessing @ Transn(;lc;n d.etf.:ctlon
~ mode trammgﬁ
| M _). Raw Metrics, 3 second sample
& E CRAM|SAP| SRP [CPU| SFNR | RAMB | CRAM | FRAM | URAM
S
S 55 |43 | 76 |32 | 05 31 45 65 43 \
Netdata Agent K 45 32 44 65 07 69 49 35 06
wii (Data collection) 27 25 23 96 85 48 57 65 02 O
‘ = Time series DB Reconstruction error
T F
1 A
t o g/ y MSE= ;>3 (X~ Xup)”
\ | | t=1 f=1
1 . - . .
Vectorized Multivariate Time-Series Representation v
Metrics, 1 hour . - - -
‘ 55 ‘ 43 ‘ 76 ‘ 32 ‘ 05 ‘ 31 ‘ 45 ‘ 65 ‘ 43 row2 row3‘ @ Application type ldzn;‘ﬁcét%on
Metrics, 3 seconds O O O O
Inference Re-train database
! O ® -
@ Preprocessing u Transition detection model
_>{ Application type ’ % Transition | Class > re-train
: : : - -
[Transition detection model] identification model 0000
A 4
v A =
o [T Application type
‘ App class infi e ﬁ Sl sl identification model
True 181D (G k) (NGNS) inference .
Intent-Based Network Reconfigure e re-train
000

Fig. 2. Pipeline overview showing metric collection, transition detection, and type identification.

behavior of each running application on the edge device (Fig. 2¢). This
model enables the system to detect whether incoming metric data cor-
responds to the same application or indicates the execution of a new
one. Furthermore, each time a new application type runs on the sys-
tem, a multiclass classification model for Application Type Identifica-
tion is incrementally trained. This model is updated using both the
current instance and historical data stored in the time series database
(Fig. 2d).

As new data continues to flow from the collectors, it is fed into the
Application Transition Detection module, which determines whether an
application switch has occurred (Fig. 2e). If a transition is detected, the
updated Application Type Identification model is invoked to predict the
type of the newly active application (Fig. 2f). This triggers a notification
to the network administrator, providing information about the detected
application transition and its predicted type. Based on this information,
the IBN can automatically reconfigure itself to meet the specific require-
ments of the new application, thereby ensuring optimal network perfor-
mance and policy compliance (Fig. 2g). In the following subsections we
describe the key-modules of our methodology.

In the IBN architecture, illustrated in Fig. 1, the detection of a new
application transition and its type serves as the initiating event that
triggers a notification within the intent life cycle, propagating from
the IBNA module to the Intent Translation, Resolution, and Activation
components. The Intent Translation component interprets the detected
application’s goals and operational requirements, converting them into
concrete low-level policies. These policies then guide the Intent Acti-
vation component, which is responsible for executing specific network
adjustments such as slice reallocation, quality of service adaptation,
and resource provisioning. While the present work focuses on the ac-
curate detection and classification of application transitions, the design
and optimization of the activation and execution mechanisms (e.g. pol-
icy enforcement algorithms, reallocation heuristics) are the responsibil-

ity of the other intent components and are beyond the scope of this
study.

3.2. Data collectors

Data collectors are core components of network monitoring solutions
that probe edge computing devices to gather critical performance and
application metrics. The collectors operate continuously for each mon-
itored device, application or service of interest. They are responsible
for communicating directly with the target applications, extracting rel-
evant metrics, and formatting the data in a way that can be parsed and
visualized by the monitoring system’s charting and alerting engine. This
continuous stream of metrics enables IBNA models to make informed de-
cisions about reconfiguring edge networks when necessary, while also
providing network administrators with real-time insights into the op-
erational status of the applications running on network devices. In our
implementation, each data collector is realized as a lightweight job that
interfaces with edge devices using standardized protocols such as SNMP,
REST APIs, telemetry endpoints or even file reading. The collected met-
rics are then propagated to the central monitoring engine for further
analysis and visualization.

3.2.1. Collector configuration

The collectors can be configured to monitor ports, commands, ad-
dresses, or APIs associated with the applications they monitor. Collec-
tor configuration can be performed either through the IBN system’s
auto-detection mechanism or by manually editing the relevant config-
uration files via the terminal or the monitoring tool’s web-based user
interface (UI). The UI simplifies the process, enabling operators to con-
figure collectors without requiring SSH access to the monitored sys-
tem. Furthermore, users can view and manage configurations across all
nodes registered under their monitoring workspace. Upon submitting a

J. Violos et al.

configuration, the system validates its structure and dispatches it to the
corresponding node for immediate application.

Collectors can pose three types of behaviors upon attempting to col-
lect metrics. Firstly, there are the default metrics the collector is looking
for at Netdata startup. There is no user action needed, and metrics ap-
pear by default in the UL The second behavior is for collectors that are
specific to applications that expose their metrics on a port, file or some
other source accessible from the system, without enforcing authentica-
tion. In that case, a Netdata component called “service discovery” polls
for the existence of said applications in their known metrics outlets. If
an instance is found, a collector job is invoked, and without the user’s
input or configuration, metrics begin to appear in the UI [26]. The third
behavior is for applications that require authentication to access most
metrics, like databases. Collectors will detect that a database is running
on the system and monitor any allowed metrics, but the user must pro-
vide the necessary credentials or permissions to monitor the entirety of
available metrics [27]. Additionally, the platform supports bulk oper-
ations, allowing the same configuration to be applied simultaneously
across multiple applications within the user’s workspace, streamlining
large-scale management and ensuring consistency across environments.

3.2.2. API with application

Our data collectors provide a unified API interface that integrates
with a wide range of applications for collecting system and service met-
rics. The collectors are developed in different programming languages
depending on their complexity and required functionality. Bash is typi-
cally used for low-level tasks, while Python and Go are chosen for more
sophisticated collectors. The decision is also influenced by language sup-
port within the system. For instance, Go collectors offer full integration
and can be configured directly through the UL

Additional collectors, aside from the default ones, are enabled when-
ever new services are detected or configured. The user can selectively
disable any collector that he chooses to limit the observability of the
monitoring system. Our proposed methodology uses default metrics that
don’t require further configuration or setup from the user. In a scenario
where the user wants to provide his own selection of metrics to the
model, accuracy might drop, but there is no realistic scenario where the
user might want to limit the generic metrics we currently use [26,27].

Each collector operates through an underlying plugin that validates
the configuration and initiates the data collection process. Once valida-
tion is complete, the collector executes a script that can interact with
the system in several ways. It might invoke binary tools on the host ma-
chine, simulating terminal commands and parsing the output. It can also
make HTTP requests to configurable endpoints and retrieve structured
data in formats like JSON, XML, or CSV. In cases where services expose
metrics through local files, the collector reads these as plain text and
extracts the relevant values. This flexible design allows the collectors to
support both modern and legacy environments effectively.

3.2.3. Parsing of the response

The response of a data collector is determined by the structure of
the API request, which typically includes the target charts, a specific
chart metric, the defined time windows, and the sampling intervals.
The resulting data is returned in JSON format, which is then parsed and
converted for storage in the monitoring system’s time series database.
In our implementation, each JSON response is aggregated in a CSV
dataset which is then vectorized into fixed-length multivariate time se-
ries, where each column corresponds to a specific metric and timestamp.
These vectors are subsequently used as input features to the Transition
Detection and Application Type Identification learning pipelines.

3.2.4. Health alerts

To provide actionable insights beyond raw metrics, the monitoring
tool supports health alerts based on configurable thresholds. The alerts
and their thresholds are defined based on the intents specified by the

Computer Networks 274 (2026) 111872

network user. Internally, Netdata’s alerting subsystem operates as a rule-
based evaluation engine that continuously analyzes live metric streams.
Each alert is defined by a declarative condition written in a domain-
specific expression language capable of handling advanced logic, such
as rate-of-change computations and rolling-window averages. Alert defi-
nitions are stored in configuration files and can be reloaded dynamically
without restarting the monitoring agent. When evaluation thresholds are
crossed, the system records a state transition (e.g., CLEAR —WARNING
—CRITICAL) and enriches the resulting alert event with metadata in-
cluding the triggering metric, timestamp, and node context. These alerts
are displayed within the monitoring UI and can be sent through various
notification channels. Additionally, users can configure webhooks, in
cases such as when an application transition detected, to automatically
respond to alerts, enabling a reactive approach to handling system issues
and failures.

3.3. Monitored metrics & vectorized multivariate time series representation

To effectively support Application Transition Detection and Applica-
tion Type Identification, we began with a broad set of candidate metrics
spanning system performance, hardware utilization, application behav-
ior, and network activity. This wide scope of metrics introduces the risk
of including noisy or irrelevant features, which could negatively impact
model performance. To address this, we collaborated with engineers
from the Netdata team, leveraging their domain knowledge to refine
the selection process. Their guidance helped us focus on metrics that
are most indicative of application-level transitions and behaviors, while
excluding those with low relevance or high variance unrelated to our
task.

In parallel, we conducted a feature importance [28] analysis to fur-
ther reduce the dimensionality of our input space. Our objective was
to retain only the most impactful features in order to improve model
efficiency, reduce training and inference times, and mitigate the risk
of overfitting. The final set of monitored metrics, as recommended by
Netdata experts and validated through our analysis, is summarized in
Table 1. These metrics are application-generic, capturing low-level sys-
tem behavior rather than application-specific logic, which ensures broad
applicability across diverse edge Al workloads without requiring custom
instrumentation. They concern Active and Running Processes on the sys-
tem as well as CPU, File Descriptor and RAM utilization.

To construct the Vectorized Multivariate Time Series Representation,
we concatenate the consecutive multivariate observations, where each
observation corresponds to the system’s monitored metrics captured at
a fixed time interval, as detailed in Table 1. This approach encodes the
temporal progression of the system’s state over the sequential intervals
into a single fixed-length vector, allowing models to learn patterns that
evolve over time. We adopt a one-second timestep, as it represents the
highest temporal resolution commonly supported by popular monitor-
ing tools such as Netdata. Choosing a coarser timestep would introduce
unnecessary delays in constructing the Vectorized Multivariate Time-
Series Representations, delays that are undesirable given the need for
detection mechanisms to respond promptly to recent system behavior.

3.4. Application transition detection

The Application Transition Detection module is designed to identify
when a different application becomes active on a device, distinct from
the one previously running, by analyzing temporal patterns in the edge
computing network. This capability is essential for Intent-Based Net-
work Assurance, as it enables the system to detect changes in application
context that may require re-evaluating whether current network config-
urations continue to satisfy the declared intents. The Application Tran-
sition Detection module operates on vectorized multivariate time series
derived from edge device monitoring metrics and determines whether
the current monitored metrics correspond to the same application ob-
served during the previous time period or indicates a transition to a new

J. Violos et al.

Computer Networks 274 (2026) 111872

Table 1
Monitored metrics.
Metric name Unit Description
System Active Processes Processes/s
System Running Processes Processes/s
System CPU utilization Percent (%)
System file NR Files/s Number of file descriptors in use

Committed RAM memory Kb/s

RAM Buffers Kb/s
Cached RAM Memory Kb/s
Free RAM Memory Kb/s Total RAM not in use
Used RAM Memory Kb/s

Total number of processes currently running, sleeping, or in other states
Processes that are in the “runnable” state - either currently running on the CPU or waiting to run
CPU usage across all cores. This metric refers to the user space CPU time, meaning time the CPU spends executing user-level code

Committed Memory, is the sum of all memory which has been allocated by processes
RAM used by the kernel to buffer block device operations such as writing to disk.

RAM used to cache files, which helps with performance by avoiding disk access.

RAM actively used by running processes and kernel (excluding buffers/cache).

one. This is formulated as a novelty detection problem, where the ob-
jective is to detect previously unseen patterns based on a model trained
only on data from known behavior.

Novelty detection involves learning the pattern of normal system
activity and identifying inputs that deviate significantly from these ex-
pected behavior [29]. In our approach, we collect system metrics while
a specific application is running, as detailed in Section 3.3, and use the
resulting vectorized multivariate time series as positive samples of nor-
mal behavior.

A machine learning model, is trained on that data to capture the ap-
plication’s typical performance signature. During inference, the model
computes a novelty score that reflects how far the current data deviates
from the learned distribution. If this score exceeds a predefined thresh-
old, the system flags the input as originating from a different, potentially
new application. This threshold is selected during training by analyzing
the distribution of novelty scores on known data and identifying a value
that separates typical from atypical behavior.

We implement this detection mechanism using an autoencoder
trained on vectorized multivariate time series generated from a known
application. An autoencoder learns to encode the input data into a com-
pressed latent representation and then decode it back to reconstruct the
original input. When the input is similar to those seen during training,
the reconstruction error remains low. In contrast, when the input orig-
inates from a different application or reflects a significant behavioral
change, the reconstruction error increases, signaling to a potential appli-
cation transition. For the reconstruction error, we use the Mean Squared
Error computed across all features of the vectorized multivariate time
series [30].

The implemented model follows an undercomplete autoencoder ar-
chitecture, in which the latent representation is deliberately constrained
to have fewer dimensions than the input [31]. This compression en-
forces the learning of compact feature embeddings that capture only the
most informative aspects of the monitored behavior, thereby enhancing
sensitivity to deviations from the training distribution. The encoder is
composed of two fully connected layers: the first reduces the dimension-
ality to 50 % of the input size with a ReLU activation, while the second
compresses further to 25 %, forming the latent bottleneck. The decoder
mirrors this configuration to reconstruct the original input. In practice,
this compact design results in a lightweight model that can perform
real-time inference directly on the monitoring node, minimizing com-
putational overhead while preserving high responsiveness to application
transitions.

As it will be presented in the experimental evaluation Section 5, this
approach effectively detects application transitions with high accuracy.
The reconstruction error reliably increases when the system observes
data from a new application, confirming the suitability of the under-
complete autoencoder for this task in the context of IBNA.

3.5. Application type identification
Once an Application Transition is detected, the Application Type

Identification module is invoked to recognize the newly initiated ap-
plication. This classification step is fundamental to enabling IBNA, as

it allows the system to determine the nature of the active application
and assess whether the current network configuration continues to sat-
isfy the declared intent. By identifying the application type, the IBNA
system can dynamically align resource provisioning, monitoring poli-
cies, and assurance mechanisms with the specific requirements encoded
in the original intent, such as latency sensitivity, bandwidth demands,
or isolation policies. The identification task is formulated as a multi-
class, multivariate classification problem, where the output corresponds
to one of a predefined set of known application types previously encoun-
tered in the edge environment and registered in the intent-aware config-
uration files. This bounded classification approach leverages historical
data to improve prediction accuracy and ensures relevance to opera-
tional contexts defined by intent. The input features used for classifica-
tion are derived from the same set of application-agnostic performance
metrics described in Section 3.3, which are continuously collected
on edge devices to support real-time decision-making in intent-driven
networks.

To perform the classification, we employ a multiclass Random For-
est model. This ensemble learning technique constructs a collection
of decision trees, each trained on random subsets of the vectorized
multivariate time series and their associated application type labels.
Each decision tree partitions the feature space by selecting optimal
threshold values for input metrics, guided by the Gini impurity crite-
rion to maximize class separation [32]. By incorporating randomness
both in data sampling and feature selection, the model achieves ro-
bustness to noise and reduces the risk of overfitting. During inference,
a vectorized multivariate time series is propagated through all deci-
sion trees in the forest. Each tree issues an independent prediction, and
the final application type is determined by a majority vote across the
ensemble.

Each output of the Random Forest provides a confidence score indi-
cating the likelihood that the running application belongs to one of the
trained application classes. These confidence scores are derived from the
normalized distribution of votes across all decision trees in the ensem-
ble. When the system encounters an application that has been included
in the training dataset, the confidence of the correct class is typically
high, reflecting consistent agreement among the trees. Conversely, when
the observed behavior corresponds to an application not present dur-
ing training, the classifier exhibits uncertainty, and all class confidence
scores remain low. In such cases, if the maximum confidence across all
known classes falls below a predefined threshold, the system classifies
the current application as unseen. This mechanism allows the Applica-
tion Type Identification module not only to recognize known application
types but also to detect novel ones.

In our implementation, the Random Forest classifier operates as
a downstream module that is triggered immediately after the transi-
tion detection stage. The incoming vectorized time series segment [33],
flagged as an application transition, is fed into the pre-trained model for
type inference. The resulting class label can be consumed by the IBNA
control plane to update network configurations or monitoring policies in
real time. This modular pipeline design allows both models to function
asynchronously, ensuring low-latency classification without disrupting
ongoing metric collection or analysis.

J. Violos et al.

3.6. The role of the application transition detection and type identification
in network assurance and intent lifecycle

The IBN components are described in the related work and illustrated
in Fig. 1. The role of application classification within intent assurance,
as well as its relationship to the intent lifecycle, is depicted in Fig. 3.
From the perspective of this lifecycle, the monitoring component of In-
tent Assurance plays a critical role by providing continuous feedback on
the operational status of applications, devices, and network resources.
The monitoring data collected during this phase forms the foundation
for the proposed Application Transition Detection and Application Type
Identification mechanisms.

When an application transition is detected, the system determines
whether the newly active application corresponds to one of the known
and previously learned types. If the transition involves a known applica-
tion, the user is notified, and unless the user explicitly provides a new in-
tent opposing the transition, the system implicitly interprets acceptance
and resumes the intent lifecycle by reconfiguring the infrastructure and
recirculating the IBN closed-loop. In this case, the IBN system contin-
ues with the stages of intent resolution, and activation to automatically
adapt network configurations and resources to the requirements of the
new application.

If the transition involves an unknown application, the system notifies
the network users, who must provide additional information regarding
the new application’s low-level policies, intent resolution, and intent
activation. These aspects are important for other IBN components but
are beyond the scope of this work; interested readers are referred to [2]
for further details. Furthermore, based on the monitoring data, new ap-
plication models are trained after one hour of data collection, enabling
the IBN framework to detect future application transitions and identify
their types autonomously. This allows the system to manage subsequent
occurrences of the same application type without manual intervention.

In contrast, if a network user objects to an application change, mean-
ing the user explicitly rejects or refuses to run the new or modified ap-
plication because it was initiated without their consent or against their
will, this objection is interpreted as a new intent to terminate the ap-
plication. This intent then follows the same resolution and activation
processes to terminate the unauthorized or undesired application and
restore the network to a compliant state.

By embedding the Application Transition Detection and Type Identi-
fication mechanisms into the Intent Assurance loop, the proposed frame-
work enables the IBN system to dynamically interpret user preferences
and adapt network behavior with minimal human intervention. This in-
tegration enhances network assurance, supports continuous intent align-
ment, and ensures that the IBN system remains responsive to evolving
application contexts at the edge.

4. Construction of the AIMED-2025 dataset

We constructed the dataset AIMED-2025, which is publicly available
on GitHub [34]. We deployed Netdata data collectors on a Raspberry
Pi running various Al applications to capture the metrics described in
Section 3.3. Specifically, we monitored seven Al applications provided
by MediaPipe [35]: Object Detection, Audio Classifier, Face Detector,
Face Landmarker, Gesture Recognizer, Hand Landmarker, and Pose
Landmarker, along with two idle workflows. These applications were se-
lected because they represent common computational and sensory work-
loads encountered in real-world edge Al scenarios. In this section, we
provide a brief overview of MediaPipe, the data collection process, and
the applications included in our study.

MediaPipe? is an open-source framework developed by Google for
building multimodal applied machine learning pipelines, with a strong
focus on real-time perception tasks. Designed to run efficiently on edge

2 https://github.com/google-ai-edge/mediapipe

Computer Networks 274 (2026) 111872

Intent Assurance

Monitoring

J

Application
Transition
Detected

]

Yes

Known
Application

Yes No

Notify User

|

Notify User

User
Objection

User
Objection

Yes
l No
Yes
Intent: Terminate o \
Application
Notify Network
No Operator
Train New

Application Models

Intent: Run the
New Application

Intent
Resolution

J

Intent
Activation

Fig. 3. Role of application classification within the intent lifecycle and associ-
ated processes.

devices MediaPipe provides a suite of pre-built solutions and customiz-
able components for tasks including hand tracking, face detection, pose
estimation, and object detection. It offers cross-platform support across
Android, i0OS, desktop, and web, enabling developers to deploy high-
performance ML models with minimal latency. MediaPipe’s modular
architecture, built around a graph-based processing model, allows for
efficient integration of computer vision and machine learning pipelines,
making it well-suited for applications requiring real-time inference and
interaction at the edge. The MediaPipe applications used in the con-
struction of the dataset are described below.

¢ Object detection: An object detection application is a computer vi-
sion system that identifies and locates multiple objects within an
image or video stream, typically by drawing bounding boxes around

https://github.com/google-ai-edge/mediapipe

J. Violos et al.

them and classifying each object. For this experiment, the camera
was pointed at a television screen displaying a car race, and the ap-
plication was tasked with detecting cars, humans, and other objects
appearing in the video feed.

e Audio classifier: An audio classifier application is a machine learn-
ing system that analyzes audio input to identify and categorize
sounds or acoustic events based on their characteristics. For this
experiment, the microphone was placed in an environment where
people were talking, animals could be heard and a television was
also playing. The goal was to classify given sounds on a rolling time-
frame.

e Face detector: A face detector application is a computer vision
tool that identifies and locates human faces within images or video
frames. For this experiment, the camera was placed in front of a
working software engineer, where the subject was moving in and
out of the frame, and the model was trying to identify a human face
in the frame.

¢ Face landmarker: A face landmarker application detects and tracks
key facial landmarks, such as eyes, nose, and mouth positions, to
analyze facial geometry and expressions. For this experiment, the
setup was the same as with the Face detector experiment, and the
model was trying to identify and landmark face characteristics (eyes,
nose, lips) in a live feed.

¢ Gesture recognizer: A gesture recognizer application interprets
hand or body movements from visual input to identify specific ges-
tures or actions. For this experiment, the process was similar with
the Face landmarker example, only this time the subject was a hand
palm, where it was changing gestures while typing on the keyboard
and handling a mouse.

e Hand landmarker: A hand landmarker application detects and
tracks key points on the hand to analyze its position, shape, and
movements. For this experiment, the application was trying to iden-
tify the elements of a hand, fingers and finger-joints, in a live feed.

e Pose landmarker: A pose landmarker application detects and tracks
key points on the human body to analyze posture and movement. For
this experiment, we used a feed from a conference video, and was
trying to track human body elements like the torso, arms, head, hips
and legs of a subject moving through space.

e Idlel: An idle workflow refers to a state where the device is powered
on but not running any active applications or processing workloads.
For this experiment, we left the system idle, and captured the time
series metrics.

o Idle2: A second idle workflow was created similarly with the Idlel
by leaving the system inactive and recording the time series data.

All applications were executed on the same hardware setup: a Rasp-
berry Pi paired with a generic webcam that includes a built-in micro-
phone. While some applications shared similar objectives, such as ex-
tracting landmarks or detecting objects from the video feed, others dif-
fered in modality, such as the audio classifier, which relied on audio
input from the webcam’s microphone rather than visual data. This mix
of overlapping and distinct application purposes was intentional, allow-
ing us to assess whether the differences in execution workflows could
be accurately identified and classified using the methods employed in
our experimental evaluation.

5. Experimental evaluation

We implemented the proposed methodology, as described in Sec-
tion 3, and evaluated it using the datasets detailed in Section 4.
Section 5.1 presents the evaluation of Netdata data collectors in a large-
scale infrastructure, while Section 5.2 provides two snapshots illustrat-
ing the graphical representation of monitoring metrics during dataset
construction. In Section 5.3, we present an experimental evaluation of
the Application Transition Detection mechanism, comparing the perfor-
mance and efficiency of the various machine learning models it employs.

Computer Networks 274 (2026) 111872

Section 5.4 presents a similar comparative evaluation for the model used
to identify application types. Finally, Section 5.5 summarizes the key
findings and insights gained from the experiments.

5.1. Evaluating collectors

Implementing the collectors as described in Section 3.2 we can mon-
itor and process millions of metrics for large infrastructures, where
thousands of metrics are auto-discovered per node (devices, virtual ma-
chines, applications), and there are thousands of nodes. In order to
experimentally compare the performance of collectors inside the Net-
data monitoring tool we compared them with Prometheus,® a well-
established monitoring tool in the industry. In this comparison, we
present the key differences in optimization and resource utilization re-
lated to collecting and handling large volumes of metrics on large sys-
tems, rather than focusing solely on the limited requirements of edge
computing.

We tested 4.6 million metrics, on ingestion, hardware utilization,
metric storage retention and API queries.* On CPU and Memory,
Prometheus required 15 cores and 383 GiB of memory to handle the
metrics, with regular freezes of ingestion, while the collectors of Net-
data needed only 9 cores and 47 GiB. For retention, Prometheus was
able to store 2h of data at per-second granularity. With the same disk
requirements, our solution retained 1.25 days worth of per-second data
and using its automatic downsampling tiers it managed to keep historic
data almost for 3 months. The disk IO of Prometheus was on average
147 MiB/s against Netdata’s 4.7 MiB/s. On network usage, Prometheus
used 515 Mbps, while our implementation used 448 Mbps.

Furthermore, on query performance on the API, our solution was 22
times faster than Prometheus in large queries, while also it preserved
100 % of the requested data, when Prometheus was having issues, hav-
ing data loss due to scrape loss and achieving only 93.7 %. In conclusion,
this comparison demonstrated that Netdata collectors offer significantly
greater efficiency and scalability than the corresponding mechanisms
of Prometheus, which is regarded as an established monitoring tool. In
addition, Netdata collectors come with default configurations that en-
able them to capture large volumes of metrics and node relationships. In
contrast, Prometheus requires advanced knowledge and extensive con-
figuration, along with integration of additional tools, to achieve similar
results.

5.2. Presenting monitoring metrics

During the construction of the AIMED-2025 dataset, we monitored
the Raspberry Pi while it was idle and during the execution of the object
detection application. Fig. 5 shows a snapshot of the metrics collected
during the idle state, whereas Fig. 6 presents a snapshot of the metrics
recorded during application execution.

The two figures consist of six Netdata charts each, containing one
or more time series as “dimensions”. At the top of the chart, the title is
displayed along with some useful programmatic information, including
the chart ID, which can be used for tasks such as API requests. The six
charts shown (from top to bottom) represent: committed RAM memory,
system active processes, system running processes, system CPU utiliza-
tion, file descriptors, and system RAM usage. The RAM usage includes
time series for free, used, cached RAM, and RAM buffers. The x-axis
represents time steps, while the y-axis varies depending on the type of
chart, with its title displayed vertically on the left side of each chart.

The timeseries are represented as colored lines, and are accompanied
by the comprehensive Netdata Ul to manipulate the view, like zooming
in and out, highlighting areas, filtering the view from multiple sources
to specific ones and more. Below each timeseries there is a matching col-
ored vertical bar, along with the name of the dimension, current value

3 https://prometheus.io
4 https://www.netdata.cloud/blog/netdata-vs-prometheus-2025/

https://prometheus.io
https://www.netdata.cloud/blog/netdata-vs-prometheus-2025/

J. Violos et al.

Computer Networks 274 (2026) 111872

Applications

Testing All Model-Application Combinations

~

Application Transition Detection

Bl

Xt A v P

Audio

(=

) @

classification N\ ¥
N

(@)

A) ’

e

=

g
[. Face landmarker §
A

m Gesture
recognizer

7 hS
IICEE IO TR

~—

15N To5] X

I

B

i

I | |
— ihf‘% %f i ﬁ [M i[% i A }” l 1
\ 3 ‘

N
SEYCIEYEYENCYEY

L

Edge Computing = [
e LR

Netdata

Application
Transition Detected

¢ Application Transition No Application
' ¢ Detection Model Transition Detected ,5

Fig. 4. Evaluation of each transition detection model across all application datasets.

and unit. In case there are multiple timeseries, like in the “System RAM”
chart, there is an equal number of dimensions. This is preferred when
the units are the same, and the timeseries can be visualized in a mean-
ingful way using colors. As the charts have the same vertical scales, we
can compare two workloads by taking two snapshots and previewing
them side by side.

The comparison of the two figures reveals notable differences in sys-
tem behavior between the two states. The committed memory usage
of the object detection application increased significantly compared to
the idle state. The number of active processes rose from approximately
2200 to 2900, while running processes experienced a pronounced spike,
increasing from 3 to 73. Modest increases were also observed in CPU
utilization and RAM usage, reflecting the heavier demands of the object
detection workload.

The monitored metrics are leveraged by the Application Transition
Detection mechanism. The novel detection model is trained using met-
rics collected during application runtime and can subsequently deter-
mine whether new incoming metrics correspond to the same applica-
tion or indicate a transition to a different one, as demonstrated in the
following subsection.

5.3. Testing models for application transition detection

5.3.1. Experimental evaluation protocol & evaluation metrics

To assess the performance of the proposed Application Transition
Detection methods, we designed an experimental protocol involving in-
dividual training and cross-application testing. Specifically, we trained
a separate machine learning model for each of the distinct applications
and idle states described in Section 4. This resulted in a total of nine in-
dependently trained models, one per application or idle state. In our test-
ing, each model occupied approximately 40 KB of space, which means
that even for the extreme scenario of having 100 different known ap-
plications that could run on the same system, we would need around
4MB of space to store their corresponding autoencoders. The footprint
of the models is very small, thus making it efficient to keep a model per
application.

Following training, each model was evaluated using monitoring data
corresponding to all seven application and two idle state scenarios. This
approach produced a total of 81 (9 x 9) evaluations, capturing all possi-
ble combinations of training and testing application-state pairs. The full
evaluation process is illustrated in Fig. 4. For instance, in the context
of audio classification, a model trained exclusively on metrics from the
audio application was tested not only on additional audio metrics but
also on metrics from the other applications and idle states. This strategy
enabled us to investigate the capabilities of each model trained in one
application to detect the transition across any different application.

To evaluate performance, we used standard classification metrics:
precision (Prec.), recall (Rec.), F1-score (F-1), and accuracy (Acc.). In
addition, we included specificity (Spec.) to assess whether a detection
model failed to recognize when both the training and testing data orig-
inated from the same application, a scenario that should ideally not be
flagged as a transition. For efficiency evaluation, we measured the train-
ing time (T'imey,,;,) of each model, the average inference time one sam-
ple (Timey,), and the average inference time of a batch of 100 samples
(Timegy,r)-

5.3.2. Outcomes

We conducted an experimental comparison of three distinct ap-
proaches for detecting application transitions: Out-of-distribution detec-
tion, Anomaly detection and Novelty detection. These approaches were
selected based on our investigation of the machine learning literature,
which revealed that they represent the main methodological categories
applicable to identifying shifts or transitions in data behavior. For Out-
of-distribution detection [36], we evaluated the Seasonal Ratio Scor-
ing [23] using both 135-step and 10-step windows (SRS-135, SRS-10).
For Anomaly detection[37], we tested autoencoders with 1-step (AE-
1) [24], isolated forests [38] with 1-step and 3-steps (IF-1, IF-3), long
short-term memory [39] with one-step and 3-steps (LSTM-1, LSTM-3)
and the autoencoder with LSTM layers [40] with 10-steps (LSTM-AE-
10). For Novelty detection we used autoencoders [41] with 3-steps (AE-
3). Model names include a digit suffix indicating the length of the look-
back window used [42]. In all experiments, each step corresponds to a

J. Violos et al.

Committed (Allocated) Memory » mem.committed = [gibibytes

SUM() 1 1 i

@ -
o 56
)
a
o
17:55:30 17:55:40 17:55:50 17:56:00 17:56:20
ate 25+ 17:56:20
Committed_AS
d
56.28 .5
System Active Processes « system.active_processes * [thousand processes]
1 Gre dimension he SUM() 1 21
h VG 1
23
@ a
:i): g 2.2
S a
17:55:30 17:55:40 17:56:00 - 17:56:20
srest un 25+ 17:56:19
l active
PP (e

System Pr ses « system.processes « [processes|

| dimension SUM() 1 2 i

processes
=

runnin
4 9
3 processe

Total CPU utilization = system.cpu = [percent]

| dimension SUM() 1 9 i

percent
percent
5

17:55:30 17:55:40 17:55:50 17:56:00 17:56:10

! user
6.0759

17:56:20
35+ 17:56:19

File Descriptors + system.file_nr_used -+ [thousand files]

SUM() 1

dimension

thousand
files
o

17:56:00 17:56:10 17:56:20

e 17:56:20

-

used
62.712 g files
System RAM « system.ram « [gibibytes]

| dimension SUM() 1 4 i

gibibytes

0
17:55:30 17:55:40 7:55:50 17:56:00
l free used cached buffers
577 cis 23.83 o5 74 g 0.61 ¢

Fig. 5. Workload: idle state.

one-second interval. The performance and efficiency results are summa-
rized in Table 2.

The experimental results show that the AE-3 following the novelty
detection approach and LSTM-3 following the anomaly detection, de-
liver the highest performance, achieving 100 % accuracy, F1-score, and
specificity, while also maintaining low computational overhead during
both training and inference. Both methods require approximately 3s
to generate the three-step vectorized multivariate time series. Further-
more, the AE-3 takes 0.032 s per single sample inference and 3.626 s for
a batch of 100 samples, while the LSTM requires 0.034 s per sample and
3.815s for batch inference. These outcomes indicate that autoencoders
are the best option, as they are the most resource-efficient among the
highest-performing models.

10

Computer Networks 274 (2026) 111872

Committed (Allocated) Memory * mem.committed « [gibibytes
d SUM()
A\ 1
3
< 80
3
2
o
18:10:50 18:11:00 18:11:10 18:11:20 18:11:30 18:11:40
atest: Sun, Jun 15, 2025 » 18:1
1 Committed_AS
TR
System Active Processes * system.active_processes » [thousand processes]
dimension v the SUM() v 1 2
G 1
2 Y
5 4 3
g 3
S a 25
18:10:50 18:11:00 18:11:10 18:11:20 18:11:40
un 15, 2025 + 1
N

active
2.994 ¢ ocesses

Systemn Processes » system.processes * [processes)

nension SUM() 1 1 2

AVG(1

processes
N
=1
=)

18:10:50 18:11:.00 18:11:10 18:11:20 18:11:30

runnin
¢ | 9

18:11:40
1 -1

73 processes
Total CPU utilization - system.cpu = [percent]

dimensior SUM()

0
18:10:50 18:11:00 18:11:10 18:11:20 18:11:30 18:11:40
atest un 15, 2 o 4
.‘L user
8.8 o
File Descriptors * system.file_nr_used « [thousand files]
nension SUM() 1 1
VG 1
2
5 o 70
a8
Sz
3=
= 18:10:50 18:11:00 18:11:10 18:11:20 18:11:40
un 15,2025 = 18:11:4
N

used
68.832 i file:
Systemn RAM « system.ram « [gibibytes]

nension SUM() 1 1 4

gibibytes

18:10:50 18:11:00 18:11:10 18:11:20 18:11:30
Latest: Sun, Jun as
1 free used cached buffers
3.16 ;s 30.36 ¢ 3.86 i 0.23 s

Fig. 6. Workload: object detection application.

In terms of efficiency, IF-3 achieved the fastest training time at
0.105s, although their performance metrics were slightly lower than
those of AE-3. ARIMA provided the quickest inference times, with
0.001s for a single sample and 0.152s for a batch of 100 samples,
but this came at the cost of significantly lower performance. Out-of-
distribution detection methods intrinsically rely on long look-back win-
dows to capture temporal dependencies, which is why we initially eval-
uated a 135-step window. This configuration yielded results with an
F1-score of 0.957 and specificity of 0.789, indicating reasonable perfor-
mance. However, this came at the cost of poor efficiency, as training
took 81 s and inference averaged 40, resulting in a total of 175s from
data monitoring to prediction. This is far too slow for detecting appli-
cation transitions, where near-instant response is required. To improve
speed, we reduced the window to 10 steps, which achieved an F1-score

J. Violos et al.

Computer Networks 274 (2026) 111872

Table 2
Evaluation outcomes of application transition detection models.

Model Prec. Rec. F-1 Acc. Spec. Timey,,, Timey,, Timepy,;

SRS-135 0.972 0.943 0.957 0.925 0.789 81.387 40.000 42.000

SRS-10 0.888 1 0.941 0.888 0 84.227 30.000 35.000

AE-1 0.920 0.985 0.951 0.913 0.454 6.335 0.083 8.842

IF-1 0.920 0.985 0.951 0.913 0.454 0.109 0.040 4.164

LSTM-1 0.909 1 0.952 0.913 0.363 7.247 0.066 7.233

ARIMA-1 0.864 1 0.927 0.864 0 2.576 0.114 11.866

AE-3 1 1 1 1 1 0.795 0.032 3.626

IF-3 0.972 1 0.985 0.975 0.818 0.105 0.019 2.130

LSTM-3 1 1 1 1 1 4.994 0.034 3.815

ARIMA-3 0.886 1 0.939 0.888 0.181 2.846 0.001 0.152

LSTM-AE-10 1 0.457 0.627 0.530 1 149.192 0.039 0.309

Table 3
Evaluation outcomes of application type identification models.

Model Prec. Rec. F-1 Acc Spec. Timer,qin Time,, Timegy,;
RF-3 1 1 1 1 1 0656 0004 0339
LSTM-3 0314 0429 0333 0429 0905 4632 0346 3383
CNN-3 1 1 1 1 1 2015 0095 3329
RF-10 1 1 1 1 1 0338 0003 0335
LSTM-10 0314 0429 0333 0429 0905 3202 0289 3395
CNN-10 0786 0857 0810 0857 0976 1185 0089 3466

of 0.941 but resulted in a specificity of 0, meaning the model predicted
almost all samples as positive. These findings show that the method is
not only too slow for real-time detection but also ineffective for accurate
detection.

5.4. Testing models for application type identification

5.4.1. Experimental evaluation protocol & evaluation metrics

To assess the applicability of machine learning models for Ap-
plication Type Identification, we employed an experimental evalua-
tion protocol in which each model was trained as a multiclass clas-
sifier using 70% of the monitored metric sequences from the work-
load of the applications and the idle states of the dataset described in
Section 4. Accordingly, the application types employed for both train-
ing and testing include Object Detector, Audio Classifier, Face Detector,
Face Landmarker, Gesture Recognizer, Hand Landmarker, Pose Land-
marker, and the two Idle States. The remaining 30 % of the data was used
for testing, where sequential segments of monitored metrics were pro-
vided as input to evaluate model performance. For classification evalu-
ation, we used the same performance and efficiency evaluation metrics
described before.

To evaluate the performance of the proposed methodology on pre-
viously unseen applications, we conducted experiments involving two
new workloads that were not part of the AIMED-2025 dataset. The first
application was a lightweight Redis key-value store,” for which we gen-
erated workload traffic using the memtier benchmark performance test-
ing tool.® The second application was an NGINX edge proxy,” for which
we generated workload using the wrk HTTP benchmarking utility.® The
monitoring procedure remained identical to that used for the AIMED-
2025 dataset, collecting the same system and resource utilization met-
rics listed in Table 1. The data obtained from these two applications
were excluded from model training and were used solely to assess the
ability of the Application Type Identification model to recognize when
the edge device is executing an application that has not been encoun-
tered before.

5 https://pimylifeup.com/redis-docker/

6 https://redis.io/docs/latest/operate/rs/clusters/optimize/
memtier-benchmark/

7 https://pimylifeup.com/docker-nginx-reverse-proxy/

8 https://github.com/wg/wrk/

11

5.4.2. Outcomes

We conducted experiments using three well-established methods
for multiclass classification: Random Forests [43] with 3-steps and 10-
steps look back window (RF-3, RF-10), Long Short-Term Memory net-
works [44] (LSTM-3, LSTM-10), and Convolutional Neural Networks
[45] (CNN-3, CNN-10). The results of these evaluations, covering both
classification performance and computational efficiency, are summa-
rized in Table 3.

The experimental results demonstrate that the RF-3, RF-10 and CNN-
10, achieved 100 % accuracy in correctly identifying the application
type. From an efficiency standpoint, the RF-3 outperformed the oth-
ers, achieving sub-second training time and millisecond-level inference
time. As a result, the Random Forest model with a 3-step window offers
the best balance between accuracy and efficiency for the Application
Type Identification task.

The LSTM model consistently performed the worst in both predictive
performance and computational efficiency. Furthermore, both the LSTM
and CNN models required significantly more time for training and in-
ference, with inference times in the range of several tenths of a second.
While the CNN-10 reached 100 percent accuracy, its longer training and
inference times and the additional 7-s delay before producing an output
make it less suitable for time-sensitive applications.

When executing applications that belong to one of the previously
trained classes of the AIMED-2025 dataset, the Application Type Iden-
tification model consistently produces high confidence scores for the
correct class, typically close to or exceeding 0.9. In contrast, when eval-
uating applications that were not included in the training set, the model
exhibits significantly lower confidence levels across all known classes,
with maximum scores remaining below 0.45. Table 4 presents the

Table 4
Class confidence of application type identifica-
tion on unseen data.

Class Redis NGINX
Object detection 0,01 0,02
Audio classifier 0,37 0,4
Face detector 0,02 0

Face landmarker 0,12 0,04

Gesture recognizer 0 0
Hand landmarker 0,32 0,43
Pose landmarker 0,16 0,11

https://pimylifeup.com/redis-docker/
https://redis.io/docs/latest/operate/rs/clusters/optimize/memtier-benchmark/
https://redis.io/docs/latest/operate/rs/clusters/optimize/memtier-benchmark/
https://pimylifeup.com/docker-nginx-reverse-proxy/
https://github.com/wg/wrk/

J. Violos et al.

confidence values obtained for the unseen Redis and NGINX applications
using the Random Forest trained on the application classes presented in
Section 4. By establishing a confidence threshold of 0.45 to distinguish
between known and unseen applications, the proposed methodology
achieves 100 % accuracy in identifying whether a running application
has been previously observed or represents a new, unseen application.

5.5. Discussion

An important design choice in our pipeline was to perform Applica-
tion Transition Detection prior to initiating Application Type Identifi-
cation. This sequence was chosen because the multiclass classification
model used for type identification cannot reliably detect unseen appli-
cation types. It can only classify inputs among the known categories it
was trained on. Even when we experimented with using prediction con-
fidence scores to infer whether an input belonged to an unknown class,
the accuracy remained significantly lower compared to the proposed
approach. By introducing a dedicated novelty detection mechanism to
identify transitions first, we ensured that classification is only attempted
when a new application is likely present. This design improves reliabil-
ity while also avoiding unnecessary computations.

Given the importance of computational efficiency in IBNA systems
operating at the edge, we deliberately avoided resource intensive deep
learning models. The autoencoder used for transition detection is an
undercomplete variant, chosen specifically for its simplicity and low re-
source demands. While out-of-distribution detection techniques might
be theoretically suitable for identifying changes in application behav-
ior, we found them to be too computationally expensive for real-time
use and therefore excluded them early in the design phase. Our goal
was to support lightweight, low-latency operations that align with the
limited capacity of edge devices.

Intent-Based Network mechanisms, including monitoring and or-
chestration components, should impose minimal overhead, as the pri-
mary role of the network infrastructure is to support the operation of ac-
tual applications rather than interfere with the application performance.
To demonstrate the lightweight nature of our approach, we evaluated
the overhead introduced by the developed Netdata collectors and mon-
itoring processes, comparing them with Prometheus, one of the most
widely used monitoring tools. For the Application Transition Detection
and Application Type Identification mechanisms, we measured the time
required to train their models (T'imey,,;,), to make a single prediction
in the decentralized approach (Time,,), and to make one hundred pre-
dictions in the centralized approach (Timepg,,). The response times
presented in Tables 2 and 3 indicate the minimal execution overhead
of these processes. All time metrics were computed directly within the
code using Python’s time library, by capturing timestamps immediately
before and after the corresponding events.

Regarding the scalability of the proposed methodology, it is impor-
tant to note that, regardless of the number of devices or applications
operating in an edge environment, the inference process of the applica-
tion transition detection method can function in both decentralized and
centralized modes. In a decentralized configuration, each edge device
runs its own novelty detection mechanism for the application it hosts,
meaning that the addition of new devices does not affect those already
operating, and scalability concerns do not arise. In a centralized con-
figuration, a single edge server can execute multiple novelty detection
mechanisms, each corresponding to a specific device-application pair.
Our experiments indicate that the execution time for one hundred ob-
servations remains low, suggesting that a single server can efficiently
handle a large number of models. The same rationale applies to the
training process, which can also be performed either in a decentralized
manner on individual devices independently or centrally on an edge
server serving all connected devices. Although training requires more
time, it occurs infrequently, typically only when a new application is
introduced. In highly dynamic scenarios with a large number of applica-
tions, scalability can be further improved by deploying additional edge

12

Computer Networks 274 (2026) 111872

servers and distributing the models among them for training and infer-
ence, since the novelty detection models operate independently of one
another.

Another important design parameter was the number of time steps
used in constructing the data input. Including more time steps can pro-
vide additional historical information, which may improve the model’s
performance. However, this decision would introduce a delay in shaping
the input, which is undesirable in scenarios that require timely detec-
tion and adaptation. Our experiments showed that both the Application
Transition Detection and Application Type Identification modules could
achieve 100 percent accuracy using a three-second window. This find-
ing indicates that our models can deliver rapid and accurate responses,
which is essential for maintaining performance in dynamic edge envi-
ronments.

In addition to inference speed, training time is also critical, espe-
cially because new applications require the system to train new models.
Since this training must often take place at the edge, where compu-
tational resources are limited, models must be lightweight. The pro-
posed approach meets this requirement. Furthermore, the prediction
models can be deployed locally on each individual monitored device,
or they can operate in a centralized manner on an orchestration node
responsible for managing predictions across the entire edge network. In
the centralized setup, the orchestrator processes inference in batches.
In our experiments, we measured the time required to process batches
for 100 devices using a Raspberry Pi. These results demonstrated that
even on limited hardware, batch inference is feasible. On a more pow-
erful orchestration machine, inference times would be significantly
reduced.

The tracking of intents is carried out in an application-agnostic man-
ner, relying on the highest degree of direct observation. Specifically, our
methodology monitors the applications that users express through their
intents independently of the application type and without requiring any
intervention from the network user. This is achieved by observing the
relevant metrics listed in Table 1, which allow the IBNA to infer the ap-
plication intent fulfillment while maintaining application-agnostic mon-
itoring.

The setup we followed ensured that the methodology can be applied
on most standard monitoring solutions. Netdata is providing the most
granular observability in the form of per-second metrics and is open
source, so it was the preferred platform to capture the metrics. Our
proposed solution can be integrated with other, except Netdata, open-
source monitoring tools provided that their pipeline is adapted to their
respective API and metric granularity.

Furthermore, the Netdata platform incorporates Al-driven insights,
including local anomaly scoring and cross-node correlation analysis, to
generate precise, actionable reports. Each report delivers a clear expla-
nation of observed events, their underlying causes, and recommended
next steps, presented in straightforward, accessible language. Building
upon these capabilities, the Application Transition Detection and Ap-
plication Type Identification mechanisms offer additional on-demand,
detailed insights into the behavior and characteristics of running appli-
cations.

The proposed framework is designed to interoperate with monitor-
ing frameworks beyond Al workloads by relying exclusively on generic,
application-agnostic system metrics such as CPU utilization, RAM us-
age, and active processes which are universally available across all types
of applications and operating systems. Since the transition detection
and application identification models are trained on these low-level re-
source usage signatures rather than on Al-specific logic, the methodol-
ogy can be directly applied to any workload, including web services,
databases, or IoT applications, by simply retraining the models on the
corresponding monitoring data. Furthermore, the pipeline is adaptable
to other monitoring tools like Prometheus by aligning with their APIs
and metric granularity, ensuring broad compatibility and making it
a general-purpose solution for intent-based assurance in diverse edge
environments.

J. Violos et al.

The Application Transition Detection method requires one hour of
monitoring data to train the undercomplete autoencoder. This duration
was determined empirically by testing various time windows to iden-
tify the minimum monitoring period that maintains model accuracy.
In scenarios where multiple rapid application transitions occur on the
same device, the model will detect and report the first transition, but
subsequent transitions within the same one-hour window may not be
captured. This limitation is not critical, as the initial alert already in-
forms the network operator, who can then investigate the cause of the
application change. Nevertheless, extending the proposed methodology
to handle multiple successive transitions represents a direction for future
research, with techniques such as time series structural break detection
offering a potential solution. Moreover, the current design assumes edge
devices typically run a single isolated application, so another valuable
avenue for future work is adapting the approach to environments where
multiple applications may run in parallel, with one or more changing
dynamically.

The proposed methodology can generalize across different types of
edge workloads, hardware platforms, and more diverse Al applications.
The Application Transition Detection and Application Type Identifica-
tion models are developed using an undercomplete autoencoder and
a random forest classifier, respectively, trained on generic monitoring
metrics produced by the edge devices executing the applications. Since
the metrics described in Table 1 are commonly available across all
edge platforms and workloads, the same methodology can be applied
to other devices and application types by repeating the data collection
and model training process. In this work, we focus on Al applications
due to their increasing adoption and significance in edge computing and
smart environments [46]; however, future studies could further validate
the method’s robustness by extending it to different edge devices and
non-Al workloads.

6. Conclusions

We have introduced a lightweight, end-to-end framework for IBNA
that dynamically detects application transitions on edge devices and
accurately identifies newly active workloads. By transforming high-
frequency, multivariate Netdata metrics into fixed-length vectorized
time series and applying an undercomplete autoencoder for low-latency
novelty detection followed by a Random Forest classifier for multiclass
application labeling, our pipeline achieves perfect accuracy and speci-
ficity while respecting strict edge constraints. The public release of the
AIMED-2025 dataset, which captures seven MediaPipe edge Al applica-
tions and two idle states on a Raspberry Pi, provides a valuable resource
for the network research community in studying and benchmarking ap-
plication behavior at the edge.

Declaration of generative Al and Al-assisted technologies in the
writing process

During the preparation of this work the authors used the ChatGPT
in order to improve language and readability, with caution. After using
the ChatGPT, the authors reviewed and edited the content as needed
and take full responsibility for the content of the publication.

CRediT authorship contribution statement

John Violos: Writing — review & editing, Writing — original draft,
Visualization, Supervision, Project administration, Methodology, Inves-
tigation, Formal analysis, Conceptualization; Fotios Voutsas: Writing —
original draft, Visualization, Validation, Software, Resources, Data cura-
tion; Christos Diou: Supervision, Methodology; Aris Leivadeas: Project
administration, Methodology, Conceptualization.

13

Computer Networks 274 (2026) 111872
Data availability

The dataset used in this study will be made publicly available upon
acceptance of the paper.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

We thank Netdata engineers for their valuable collaboration and
technical insights throughout the development of this work. We would
also like to thank the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), grant No. RGPIN-2019-05250, for supporting in
part our work. The authors would also like to thank the MPhil program
in Computer Science and Informatics of Harokopio University of Athens
https://mphil.dit.hua.gr/en/home/ for supporting this work.

References
[1] M. Falkner, J. Apostolopoulos, Intent-based networking for the enterprise: a modern
network architecture, Commun. ACM 65 (11) (2022) 108-117. https://doi.org/10.
1145/3538513
A. Leivadeas, M. Falkner, A survey on intent-based networking, IEEE Commun. Surv.
Tutor. 25 (1) (2023) 625-655. https://doi.org/10.1109/COMST.2022.3215919
Y. Njah, A. Leivadeas, J. Violos, M. Falkner, et al., Toward intent-based network
automation for smart environments: a healthcare 4.0 use case, IEEE Access 11 (2023)
136565-136576. https://doi.org/10.1109/ACCESS.2023.3338189
X. Wang, Z. Tang, J. Guo, T. Meng, C. Wang, T. Wang, W. Jia, Empowering edge
intelligence: a comprehensive survey on on-device Al models, ACM Comput. Surv.
57 (9) (2025) 228:1-228:39. https://doi.org/10.1145/3724420
Q. Liang, W.A. Hanafy, A. Ali-Eldin, P. Shenoy, et al., Model-driven cluster resource
management for Al workloads in edge clouds, ACM Trans. Auton. Adapt. Syst. 18
(1) (2023) 2:1-2:26. https://doi.org/10.1145/3582080
K. Dzeparoska, N. Beigi-Mohammadi, A. Tizghadam, A. Leon-Garcia, et al., To-
wards a self-driving management system for the automated realization of intents,
IEEE Access 9 (2021) 159882-159907. https://ieeexplore.ieee.org/abstract/docu-
ment/9625012. https://doi.org/10.1109/ACCESS.2021.3129990
M.A.F. Pimentel, D.A. Clifton, L. Clifton, L. Tarassenko, A review of novelty detec-
tion, Signal Process. 99 (2014) 215-249. https://doi.org/10.1016/j.sigpro.2013.12.
026
S. Minhas, R. Jaswal, A. Sharma, S. Singla, Revolutionizing networking: a compre-
hensive overview of intent-based networking, in: 2024 International Conference on
Emerging Innovations and Advanced Computing INNOCOMP), 2024, pp. 463-468.
https://doi.org/10.1109/INNOCOMP63224.2024.00081
A.A. AlSamarneh, A.T. Al-Hammouri, O.Y. Al-Jarrah, Navigating intent-based net-
working: from user descriptions to deployable configurations, Neural Comput. Appl.
(2025). https://doi.org/10.1007/s00521-025-11193-7
A. Leivadeas, M. Falkner, Autonomous network assurance in intent based net-
working: vision and challenges, in: 2023 32nd International Conference on Com-
puter Communications and Networks (ICCCN), 2023, pp. 1-10. ISSN: 2637-9430,
https://doi.org/10.1109/ICCCN58024.2023.10230112
Y. Song, C. Yang, J. Zhang, X. Mi, D. Niyato, et al., Full-life cycle intent-driven
network verification: challenges and approaches, Netw. Mag. Glob. Internetworking
37 (5) (2023) 145-153. https://doi.org/10.1109/MNET.124.2200127
F. Voutsas, J. Violos, A. Leivadeas, Mitigating alert fatigue in cloud monitoring sys-
tems: a machine learning perspective, Comput. Netw. 250 (2024) 110543. https:
//doi.org/10.1016/j.comnet.2024.110543
K. Dzeparoska, A. Tizghadam, A. Leon-Garcia, Intent assurance using LLMs guided
by intent drift, in: NOMS 2024-2024 IEEE Network Operations and Manage-
ment Symposium, 2024, pp. 1-7. ISSN: 2374-9709, https://doi.org/10.1109/
NOMS59830.2024.10575429
M. Gharbaoui, B. Martini, D. Berardi, P. Castoldi, Towards intent assurance: a traf-
fic prediction model for software-defined networks, in: 2025 28th Conference on
Innovation in Clouds, Internet and Networks (ICIN), 2025, pp. 135-139. ISSN:
2472-8144, https://doi.org/10.1109/1CIN64016.2025.10942926
S. Lévesque, X. Zheng, J. Violos, A. Leivadeas, M. Falkner, An incremental learn-
ing assurance approach for intent based networking enabled data centers, in: 2024
15th International Conference on Information, Intelligence, Systems & Applications
(IISA), 2024, pp. 1-4. https://doi.org/10.1109/11SA62523.2024.10786660
R. Hurtado, M. Torres, B. Pintado, A. Muiloz, Development of an intent-based net-
work incorporating machine learning for service assurance of e-commerce online
stores, in: E. Renault, P. Muhlethaler (Eds.), Machine Learning for Networking,
Springer Nature Switzerland, Cham, 2023, pp. 12-23. https://doi.org/10.1007/
978-3-031-36183-8_2

[2]

[3]

[4]

(5]

(6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

http://dx.doi.org/10.13039/501100000038
http://dx.doi.org/10.13039/501100000038
https://mphil.dit.hua.gr/en/home/
https://doi.org/10.1145/3538513
https://doi.org/10.1145/3538513
https://doi.org/10.1145/3538513
https://doi.org/10.1145/3538513
https://doi.org/10.1109/COMST.2022.3215919
https://doi.org/10.1109/COMST.2022.3215919
https://doi.org/10.1109/ACCESS.2023.3338189
https://doi.org/10.1109/ACCESS.2023.3338189
https://doi.org/10.1145/3724420
https://doi.org/10.1145/3724420
https://doi.org/10.1145/3582080
https://doi.org/10.1145/3582080
https://doi.org/10.1109/ACCESS.2021.3129990
https://doi.org/10.1109/ACCESS.2021.3129990
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1109/INNOCOMP63224.2024.00081
https://doi.org/10.1109/INNOCOMP63224.2024.00081
https://doi.org/10.1007/s00521-025-11193-7
https://doi.org/10.1007/s00521-025-11193-7
https://doi.org/10.1109/ICCCN58024.2023.10230112
https://doi.org/10.1109/ICCCN58024.2023.10230112
https://doi.org/10.1109/MNET.124.2200127
https://doi.org/10.1109/MNET.124.2200127
https://doi.org/10.1016/j.comnet.2024.110543
https://doi.org/10.1016/j.comnet.2024.110543
https://doi.org/10.1016/j.comnet.2024.110543
https://doi.org/10.1016/j.comnet.2024.110543
https://doi.org/10.1109/NOMS59830.2024.10575429
https://doi.org/10.1109/NOMS59830.2024.10575429
https://doi.org/10.1109/NOMS59830.2024.10575429
https://doi.org/10.1109/NOMS59830.2024.10575429
https://doi.org/10.1109/ICIN64016.2025.10942926
https://doi.org/10.1109/ICIN64016.2025.10942926
https://doi.org/10.1109/IISA62523.2024.10786660
https://doi.org/10.1109/IISA62523.2024.10786660
https://doi.org/10.1007/978-3-031-36183-8_2
https://doi.org/10.1007/978-3-031-36183-8_2
https://doi.org/10.1007/978-3-031-36183-8_2
https://doi.org/10.1007/978-3-031-36183-8_2

J. Violos et al.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

Y. Sharma, D. Bhamare, N. Sastry, B. Javadi, R. Buyya, et al., SLA Management in
intent-driven service management systems: a taxonomy and future directions, ACM
Comput. Surv. 55 (13s) (2023) 292:1-292:38. https://doi.org/10.1145/3589339.
https://doi.org/10.1145/3589339

X. Zheng, View Profile, A. Leivadeas, View Profile, M. Falkner, View Profile, In-
tent based networking management with conflict detection and policy resolution in
an enterprise network, Comput. Netw. 219 (C) (2022). Publisher: Elsevier North-
Holland, Inc., https://doi.org/10.1016/j.comnet.2022.109457

R.K. Pandey, T.K. Das, Anomaly detection in cyber-physical systems using actuator
state transition model, Int. J. Inf. Technol. 17 (3) (2025) 1509-1521. https://doi.
org/10.1007/541870-024-02128-x

L. Bernaille, R. Teixeira, K. Salamatian, et al., Early application identification, in:
Proceedings of the 2006 ACM CoNEXT Conference, CONEXT 06, Association for
Computing Machinery, New York, NY, USA, 2006, pp. 1-12. https://doi.org/10.
1145/1368436.1368445

S. Zander, T. Nguyen, G. Armitage, et al., Automated traffic classification and appli-
cation identification using machine learning, in: The IEEE Conference on Local Com-
puter Networks 30th Anniversary (LCN’05)1, 2005, pp. 250-257. ISSN: 0742-1303,
https://doi.org/10.1109/LCN.2005.35

S. Rezaei, B. Kroencke, X. Liu, Large-scale mobile app identification using deep
learning, IEEE Access 8 (2020) 348-362. https://doi.org/10.1109/ACCESS.2019.
2962018

T. Belkhouja, Y. Yan, J.R. Doppa, et al., Out-of-distribution detection in time-series
domain: a novel seasonal ratio scoring approach, ACM Trans. Intell. Syst. Technol.
15 (1) (2023) 8:1-8:24. https://doi.org/10.1145/3630633

A.A. Neloy, M. Turgeon, A comprehensive study of auto-encoders for anomaly de-
tection: efficiency and trade-offs, Mach. Learn. Appl. 17 (2024) 100572. https:
//doi.org/10.1016/j.mlwa.2024.100572

K. Mehmood, K. Kralevska, D. Palma, Knowledge-driven intent life-cycle man-
agement for cellular networks, IEEE Trans. Netw. Serv. Manag. 22 (5) (2025)
4806-4826. https://doi.org/10.1109/TNSM.2025.3579547

Netdata, Memcached | Learn Netdata. Published: 2 months ago, https://learn.
netdata.cloud/docs/collecting-metrics/databases/memcached.

Netdata, MySQL | Learn Netdata. Last updated on Sep 25, 2025, https://learn.
netdata.cloud/docs/collecting-metrics/databases/mysql.

H. Mandler, B. Weigand, A review and benchmark of feature importance methods
for neural networks, ACM Comput. Surv. 56 (12) (2024) 318:1-318:30. https://doi.
org/10.1145/3679012

K. Yang, S. Kpotufe, N. Feamster, et al., Feature Extraction for Novelty Detection in
Network Traffic, 2021. https://doi.org/10.48550/arXiv.2006.16993

T. Tziolas, K. Papageorgiou, T. Theodosiou, E. Papageorgiou, T. Mastos, A. Pa-
padopoulos, et al., Autoencoders for anomaly detection in an industrial multivariate
time series dataset, Eng. Proc. 18 (1) (2022) 23. Number: 1 Publisher: Multidisci-
plinary Digital Publishing Institute, https://doi.org/10.3390/engproc2022018023
M.A. Hussain, M. Saif-ur Rehman, C. Klaes, I. Iossifidis, Comparison of anomaly
detection between statistical method and undercomplete autoencoder, in: Proceed-
ings of the 5th International Conference on Big Data and Computing, ICBDC ’20,
Association for Computing Machinery, New York, NY, USA, 2020, pp. 32-38. https:
//doi.org/10.1145/3404687.3404689

M. Dilshad, B. Almas, N. Tariq, H.B. Jazri, G.N. Alwakid, J.S. Khan, P. Kumar, R.
Kumar, IoV Cyber defense: advancing DDoS attack detection with gini index in
tree models, in: 2024 International Conference on Emerging Trends in Networks
and Computer Communications (ETNCC), 2024, pp. 1-8. https://doi.org/10.1109/
ETNCC63262.2024.10767505

14

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Computer Networks 274 (2026) 111872

M. Su, W. Zhao, Y. Zhu, D. Zha, Y. Zhang, P. Xu, et al., Anomaly detection of vec-
torized time series on aircraft battery data, Expert Syst. Appl. 227 (2023) 120219.
https://doi.org/10.1016/j.eswa.2023.120219

F. Voutsas, Ancairon/intent-networks-app-transitions-types, 2025. original-
date: 2025-08-04T08:22:32Z, https://github.com/Ancairon/intent-networks-app-
transitions-types.

C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang, C.-L.
Chang, M.G. Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg, M. Grundmann, et al.,
MediaPipe: A Framework for Building Perception Pipelines, 2019. https://doi.org/
10.48550/arXiv.1906.08172

J. Yang, K. Zhou, Y. Li, Z. Liu, Generalized out-of-distribution detection: a sur-
vey, Int. J. Comput. Vis. 132 (12) (2024) 5635-5662. https://doi.org/10.1007/
s11263-024-02117-4

S. Wang, J.F. Balarezo, S. Kandeepan, A. Al-Hourani, K.G. Chavez, B. Rubinstein,
et al., Machine learning in network anomaly detection: a survey, IEEE Access 9
(2021) 152379-152396. https://doi.org/10.1109/ACCESS.2021.3126834

W.S. Al Farizi, 1. Hidayah, M.N. Rizal, Isolation forest based anomaly detection: a
systematic literature review, in: 2021 8th International Conference on Information
Technology, Computer and Electrical Engineering (ICITACEE), 2021, pp. 118-122.
https://doi.org/10.1109/ICITACEE53184.2021.9617498

S. Parsai, S. Mahajan, Anomaly detection using long short-term memory, in: 2020
International Conference on Electronics and Sustainable Communication Systems
(ICESC), 2020, pp. 333-337. https://doi.org/10.1109/ICESC48915.2020.9155897
Y. Wei, J. Jang-Jaccard, W. Xu, F. Sabrina, S. Camtepe, M. Boulic, et al., LSTM-
Autoencoder-based anomaly detection for indoor air quality time-series data, IEEE
Sens. J. 23 (4) (2023) 3787-3800. https://doi.org/10.1109/JSEN.2022.3230361
F. Del Buono, F. Calabrese, A. Baraldi, M. Paganelli, F. Guerra, et al., Novelty de-
tection with autoencoders for system health monitoring in industrial environments,
Appl. Sci. 12 (10) (2022) 4931. Number: 10 Publisher: Multidisciplinary Digital
Publishing Institute, https://doi.org/10.3390/app12104931

M.-C. Lee, J.-C. Lin, E.G. Gran, et al., How far should we look back to achieve
effective real-time time-series anomaly detection?, in: L. Barolli, I. Woungang,
T. Enokido (Eds.), Advanced Information Networking and Applications, Springer
International Publishing, Cham, 2021, pp. 136-148. https://doi.org/10.1007/
978-3-030-75100-5_13

A. Prinzie, D. Van den Poel, Random forests for multiclass classification: random
MultiNomial logit, Expert Syst. Appl. 34 (3) (2008) 1721-1732. https://doi.org/10.
1016/j.eswa.2007.01.029

P.S. Muhuri, P. Chatterjee, X. Yuan, K. Roy, A. Esterline, et al., Using a long short-
term memory recurrent neural network (LSTM-RNN) to classify network attacks,
Information 11 (5) (2020) 243. Number: 5 Publisher: Multidisciplinary Digital Pub-
lishing Institute, https://doi.org/10.3390/info11050243

S. Potluri, S. Ahmed, C. Diedrich, Convolutional neural networks for multi-class
intrusion detection system, in: A. Groza, R. Prasath (Eds.), Mining Intelligence
and Knowledge Exploration, Springer International Publishing, Cham, 2018, pp.
225-238. https://doi.org/10.1007/978-3-030-05918-7_20

A. Bimpas, J. Violos, A. Leivadeas, 1. Varlamis, Leveraging pervasive computing
for ambient intelligence: a survey on recent advancements, applications and open
challenges, Comput. Netw. 239 (2024) 110156. https://doi.org/10.1016/j.comnet.
2023.110156

https://doi.org/10.1145/3589339
https://doi.org/10.1145/3589339
https://doi.org/10.1016/j.comnet.2022.109457
https://doi.org/10.1016/j.comnet.2022.109457
https://doi.org/10.1007/s41870-024-02128-x
https://doi.org/10.1007/s41870-024-02128-x
https://doi.org/10.1007/s41870-024-02128-x
https://doi.org/10.1007/s41870-024-02128-x
https://doi.org/10.1145/1368436.1368445
https://doi.org/10.1145/1368436.1368445
https://doi.org/10.1145/1368436.1368445
https://doi.org/10.1145/1368436.1368445
https://doi.org/10.1109/LCN.2005.35
https://doi.org/10.1109/LCN.2005.35
https://doi.org/10.1109/ACCESS.2019.2962018
https://doi.org/10.1109/ACCESS.2019.2962018
https://doi.org/10.1109/ACCESS.2019.2962018
https://doi.org/10.1109/ACCESS.2019.2962018
https://doi.org/10.1145/3630633
https://doi.org/10.1145/3630633
https://doi.org/10.1016/j.mlwa.2024.100572
https://doi.org/10.1016/j.mlwa.2024.100572
https://doi.org/10.1016/j.mlwa.2024.100572
https://doi.org/10.1016/j.mlwa.2024.100572
https://doi.org/10.1109/TNSM.2025.3579547
https://doi.org/10.1109/TNSM.2025.3579547
https://learn.netdata.cloud/docs/collecting-metrics/databases/memcached
https://learn.netdata.cloud/docs/collecting-metrics/databases/memcached
https://learn.netdata.cloud/docs/collecting-metrics/databases/mysql
https://learn.netdata.cloud/docs/collecting-metrics/databases/mysql
https://doi.org/10.1145/3679012
https://doi.org/10.1145/3679012
https://doi.org/10.1145/3679012
https://doi.org/10.1145/3679012
https://doi.org/10.48550/arXiv.2006.16993
https://doi.org/10.48550/arXiv.2006.16993
https://doi.org/10.3390/engproc2022018023
https://doi.org/10.3390/engproc2022018023
https://doi.org/10.1145/3404687.3404689
https://doi.org/10.1145/3404687.3404689
https://doi.org/10.1145/3404687.3404689
https://doi.org/10.1145/3404687.3404689
https://doi.org/10.1109/ETNCC63262.2024.10767505
https://doi.org/10.1109/ETNCC63262.2024.10767505
https://doi.org/10.1109/ETNCC63262.2024.10767505
https://doi.org/10.1109/ETNCC63262.2024.10767505
https://doi.org/10.1016/j.eswa.2023.120219
https://doi.org/10.1016/j.eswa.2023.120219
https://github.com/Ancairon/intent-networks-app-transitions-types
https://github.com/Ancairon/intent-networks-app-transitions-types
https://doi.org/10.48550/arXiv.1906.08172
https://doi.org/10.48550/arXiv.1906.08172
https://doi.org/10.48550/arXiv.1906.08172
https://doi.org/10.48550/arXiv.1906.08172
https://doi.org/10.1007/s11263-024-02117-4
https://doi.org/10.1007/s11263-024-02117-4
https://doi.org/10.1007/s11263-024-02117-4
https://doi.org/10.1007/s11263-024-02117-4
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ACCESS.2021.3126834
https://doi.org/10.1109/ICITACEE53184.2021.9617498
https://doi.org/10.1109/ICITACEE53184.2021.9617498
https://doi.org/10.1109/ICESC48915.2020.9155897
https://doi.org/10.1109/ICESC48915.2020.9155897
https://doi.org/10.1109/JSEN.2022.3230361
https://doi.org/10.1109/JSEN.2022.3230361
https://doi.org/10.3390/app12104931
https://doi.org/10.3390/app12104931
https://doi.org/10.1007/978-3-030-75100-5_13
https://doi.org/10.1007/978-3-030-75100-5_13
https://doi.org/10.1007/978-3-030-75100-5_13
https://doi.org/10.1007/978-3-030-75100-5_13
https://doi.org/10.1016/j.eswa.2007.01.029
https://doi.org/10.1016/j.eswa.2007.01.029
https://doi.org/10.1016/j.eswa.2007.01.029
https://doi.org/10.1016/j.eswa.2007.01.029
https://doi.org/10.3390/info11050243
https://doi.org/10.3390/info11050243
https://doi.org/10.1007/978-3-030-05918-7_20
https://doi.org/10.1007/978-3-030-05918-7_20
https://doi.org/10.1016/j.comnet.2023.110156
https://doi.org/10.1016/j.comnet.2023.110156
https://doi.org/10.1016/j.comnet.2023.110156
https://doi.org/10.1016/j.comnet.2023.110156

	Detecting application transitions and identifying application types for intent-based network assurance: A machine learning perspective
	1 Introduction
	2 Related work & background
	3 Proposed methodology
	3.1 Overview
	3.2 Data collectors
	3.2.1 Collector configuration
	3.2.2 API with application
	3.2.3 Parsing of the response
	3.2.4 Health alerts

	3.3 Monitored metrics & vectorized multivariate time series representation
	3.4 Application transition detection
	3.5 Application type identification
	3.6 The role of the application transition detection and type identification in network assurance and intent lifecycle

	4 Construction of the AIMED-2025 dataset
	5 Experimental evaluation
	5.1 Evaluating collectors
	5.2 Presenting monitoring metrics
	5.3 Testing models for application transition detection
	5.3.1 Experimental evaluation protocol & evaluation metrics
	5.3.2 Outcomes

	5.4 Testing models for application type identification
	5.4.1 Experimental evaluation protocol & evaluation metrics
	5.4.2 Outcomes

	5.5 Discussion

	6 Conclusions

