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Abstract

Robots are used more and more in manufacturing, especially in tasks like robotic machining,
where understanding their vibration behavior is very important. However, robot vibrations
vary with posture, and evaluating all representative postures requires significant time and
cost. This study proposes a deep learning (DL) based transfer learning (TL) approach to
predict robot vibration behavior using fewer experiments. A large dataset was collected
from a KUKA KR300 robot (Robot A) by testing nearly 250 postures. This dataset was
then used to train a model to predict modal parameters such as natural frequencies (ω_n),
damping ratios (ξ), and modal stiffness (k) within the workspace. TL was then used to
apply the knowledge from Robot A to two other robots: a Comau NJ 650-2.7 (Robot B, high-
payload) and an ABB IRB 4400 (Robot C, low-payload). Only a small number of postures
were tested for Robots B and C. They were chosen carefully to cover different workspace
areas and avoid collisions. Hammer tests were performed, and a four-step process was used
to identify the real vibration modes. Stabilization diagrams were applied to confirm valid
modes and remove noise. The results show that TL can accurately predict modal parameters
for both Robot B and Robot C, even with limited data. These predictions were also used
to estimate frequency response functions (FRFs), which matched well with experimental
results. The main novelties of this work are: achieving accurate prediction of posture-
dependent dynamics using minimal experimental data, demonstrating generalization
across robots with different payload capacities, and revealing that data coverage across the
workspace is more critical than dataset size.

Keywords: robot machining; modal parameter identification; transfer learning (TL); vibra-
tion analysis; frequency response function (FRF)

1. Introduction
Industrial robotic manipulators are widely used in manufacturing, aerospace, health-

care, and logistics for tasks such as assembly, machining, inspection, and material handling.
In these applications, positioning accuracy, path repeatability, and dynamic stability are
critical. A persistent obstacle to high performance is vibration: structural flexibility in
long links, gear train compliance, and controller bandwidth limitations can excite modes
that reduce accuracy, degrade surface finish, and limit process productivity [1]. To un-
derstand and control these effects, engineers rely on modal parameters including natural
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frequencies, damping ratios, and modal stiffness, as well as the frequency response func-
tion (FRF), which characterizes how a robot responds to harmonic excitations across a
range of frequencies. However, measuring posture-dependent modal parameters and FRFs
requires extensive and costly experimental tests (hammer or shaker tests across many
joint configurations) and/or time-consuming modeling activities (finite element models
and parameter tuning). Such intensive testing and modeling requirements make it diffi-
cult to maintain accurate, up-to-date dynamic maps of large workspaces, especially for
high-payload, long-reach robots used in machining.

Recent works have explored data-driven methods to reduce this burden. Machine
learning (ML) and deep learning models can learn complex input–output relations from
data and have been used in robotics for quality inspection, fault detection, path planning,
and adaptive control, often improving robustness and decision-making in changing envi-
ronments [2–4]. For example, Mendez et al. [5] reported high task accuracy in collaborative
assembly using deep networks; Adebayo et al. [6] and Agrawal et al. [7] documented the
use of computer vision and predictive maintenance for defect detection and failure prog-
nosis. Singh et al. [8] showed ML-assisted material handling in dynamic factory layouts,
and Huang et al. [9] highlighted the synergy between digital twins and ML for real-time
monitoring. Reinforcement learning has also enabled force-sensitive tasks such as debur-
ring and polishing [10]. In parallel, ML has been applied to vibration analysis, including
ANN-based identification, chatter detection, and dynamic parameter estimation [11–13].
While promising, most of these studies require large labeled datasets gathered on a single
robot or within a narrow operating window. The data requirements and retraining effort
remain barriers when we need models that generalize across postures and, especially, across
different robot platforms.

Transfer learning offers a principled way to reduce data requirements by reusing
knowledge learned in a source setting to accelerate learning in a related target setting.
The idea mirrors human learning, where prior knowledge transfers across tasks [14–16].
In robotics, transfer learning has been used to adapt skills across tasks, embodiments,
and environments. Xiang et al. [17] proposed Diff-Transfer to leverage simulation as
prior knowledge; Yang et al. [18] used generative models for cross-robot policy sharing;
Chen et al. [19] adapted grasping skills across domains using visual cues; Monorchio
et al. [20] exploited image features in collaborative robots; Sun [21] and Scheiderer [22]
applied Progressive Neural Networks for faster reuse; and Guo et al. [23] decomposed
complex motions into reusable primitives. Additional studies have bridged the simulation-
to-reality gap using teacher–student schemes, domain adaptation, and safety-aware policy
transfer [24–28]. Despite this progress, most prior work targets control and task execution.
Far fewer studies use transfer learning to generalize vibration behavior (modal parameters
and FRFs) across postures and robots, where the governing dynamics vary due to changes
in joint angles, payloads, and end-effector conditions.

For vibration modeling, classical approaches—Experimental Modal Analysis (EMA),
Finite Element Modeling (FEM), and Operational Modal Analysis (OMA)—remain founda-
tional but can be expensive when applied over large posture grids [29]. Hybrid physics-
based model and data-driven methods have been introduced to scale dynamical predictions,
including digital twin frameworks to predict posture-dependent FRFs [30], multi-task Gaus-
sian process regression for efficient FRF estimation [31], random-forest models for joint
and cross-coupled modal behaviors [32], and Receptance Coupling Substructure Analysis
(RCSA) for posture-aware FRF estimation [33]. Recent studies also examined the influence
of tool–robot interface stiffness on FRFs [34] and evaluated experimental strategies for
FRF estimation in 6-axis robots [35]. These advances are important for generating stability
lobe diagrams used to avoid chatter and select productive cutting parameters in robotic
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machining [36–39]. Nevertheless, maintaining accurate FRF maps across the workspace
still requires significant data collection, highlighting the need for approaches capable of
learning effectively from limited new measurements.

Transfer learning offers a direct solution to this challenge. In the inductive case, the
source and target tasks share the same label space, but the target robot has very few labeled
samples. In this setting, a model trained on one robot with a large dataset (source) can be
adapted to another robot with only a few tests (target). Inductive transfer learning has
demonstrated strong performance in many fields when labeled data are limited [40–42].
Other forms of transfer learning are transductive transfer (domain adaptation with unla-
beled targets) and unsupervised transfer (no labels in either domain), which use methods
such as representation alignment, self-supervision, or disentanglement to reduce inter-
domain differences [43–51]. In industrial robots and machining, where performing exten-
sive hammer tests for every robot and posture is impractical, inductive transfer learning is
very useful. With a well-trained source model and a small number of labeled samples from
the target, the model can be adapted to new robots and operating conditions with minimal
additional effort.

Accurate FRFs are critical because stability lobe diagrams (SLDs), which guide chatter-
free machining, are directly derived from the tool–point FRF. Changes in robot posture
alter the FRF and therefore also shift the SLD. Previous studies have highlighted the
dependence of SLDs on robot posture, configuration, and cutting conditions [37–39,52].
Machine learning has also been applied to predict chatter or learn SLDs [53–57]. Other
approaches focused on in-process FRF prediction or combining static and motion-state
FRFs for chatter control [58–63]. Our study extends these works by linking FRF prediction
with transfer learning to enable posture-aware SLD construction for robots.

This paper develops a posture-aware method to model vibration and predict frequency
response functions (FRFs) of high-payload and low-payload industrial robots used in
machining. Using robot joint angles and a small set of hammer tests, we train deep models
to estimate modal parameters (natural frequencies, damping ratios, and stiffness) and full
FRFs. The model is first trained on a well-sampled reference robot (Robot A) and then
adapted to other robots (Robots B and C) using transfer learning, reducing the need for
large new datasets. The contribution of this work is indeed to provide reliable posture-
dependent FRFs with fewer experiments, making SLD construction more efficient and
practical for robotic machining.

1.1. Originality and Contribution of the Study

Prior ML studies in robotics have typically trained models separately for each
robot, requiring large labeled datasets gathered through extensive testing at many
postures [2–4,11–13]. In contrast, the originality of this work lies in an inductive trans-
fer learning framework for posture-dependent vibration modeling and FRF prediction that
reuses knowledge from one robot to another. We train a source model on Robot A with
comprehensive hammer-test data and transfer it to Robots B and C using only limited la-
beled samples. This reduces experimental effort and cost while maintaining high prediction
accuracy. The proposed approach is robot-agnostic (independent of the specific hardware
of a robot) at the architecture level and requires only lightweight fine-tuning, making it
suitable for deployment when new robots are introduced or when recalibration is needed
after maintenance or payload changes.

The present work also provides a practical method for making vibration identification
more data-efficient, including: (1) a posture sampling and testing plan designed to maxi-
mize information gained about the robot behaviour from each hammer test; (2) a model
architecure that separates general knowledge from robot-specific calibration layers; and
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(3) a validation protocol across different robots and dataset sizes to quantify the trade-off
between accuracy and data use. Unlike earlier studies that focused on transferring control
policies, adapting from simulation to reality, or task-level skills [17,18,21,23,27,64–68], our
work is distinct in that it transfers vibration-related knowledge (modal parameters and
FRFs) across robots. This contribution addresses a critical research gap and supports robotic
stability analysis (via FRF-based SLDs), predictive maintenance.

1.2. Paper Organization

Section 2 describes the methodology, including the experimental design, hammer tests,
data processing steps, and the deep learning framework with transfer learning. Section 3
presents and discusses the results, starting with modal prediction for Robot A, followed by
transfer learning results for Robot B, and concluding with results for Robot C, where the
effect of different training set sizes on prediction accuracy is analyzed. Finally, Section 4
summarizes the main findings and highlights the effectiveness of the proposed method in
predicting modal parameters and estimating FRFs using limited data.

2. Methodology
In our previous work [69], a deep learning-based framework was presented to predict

the modal parameters of a KUKA KR-300 robot manipulator (Robot A). Due to the posture-
dependent nature of robot vibrations, an extensive experiment was carefully designed,
comprising hammer tests in 254 robot configurations. Modal parameters in each robot
configuration, including natural frequencies, damping ratios, and stiffnesses, were extracted
to form a dataset. The challenges in selecting frequency peaks (modes) from FRF data
during modal analysis and the proposed four-step method to accurately target them
and extract modal parameters were explained in the reference [69]. The created dataset
was used to train a feedforward neural network capable of accurately predicting these
modal parameters in previously unseen robot configurations quickly. The predicted values
were then used to estimate Frequency Response Functions (FRFs), which showed strong
agreement with experimental results. A flowchart summarizing the complete methodology
is presented in Figure 1, showing all steps from data acquisition to validation.

Figure 1. Flowchart of the proposed methodology for predicting robot modal parameters and FRFs.
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In this section, only the methodology regarding the application of transfer learning
based on the pretrained neural networks of Robot A is discussed. The setup, data collection
and modal parameter extraction processes for Robot B (Comau, high-payload) and Robot
C (ABB, low-payload) are the same as discussed in [69]. The pretrained model was then
used to train new modal parameter prediction models for Robot B and Robot C, using
significantly smaller datasets. The predicted modal parameters are then used to estimate
the FRFs of Robots B and C and compared with the measured FRFs.

2.1. Experimental Design, Hammer Tests and Data Processing

The three robots selected for this study were KUKA KR300, Comau NJ 650-2.7 (high-
payload), and ABB IRB 4400 (low-payload), which differ in size, payload, and reach (Table 1,
Figure 2). Table 1 shows that the three robots have different rated joint speeds and physical
properties. The FRF experiments were performed with the robots at rest in fixed postures;
therefore, the A1–A6 speed limits do not directly affect the small-amplitude vibration
response measured. The main sources of variation across platforms are mass/inertia,
link geometry, joint/gear stiffness and damping, and the controller’s holding behavior,
which affect the effective mass, damping, and stiffness of the system. These robots were
intentionally chosen to evaluate the effectiveness of transfer learning and its ability to
generalize from one robot model to structurally different robots with different vibration
behavior, demonstrating the approach’s scalability both upward and downward. For Robot
A, over 250 hammer tests had already been performed in various postures, striking the
end-effector in X, Y, and Z directions and recording vibrations with accelerometers [69].

Table 1. Characteristics of Robot A (KUKA KR300), Robot B (Comau NJ 650-2.7), and Robot C (ABB
IRB 4400).

KUKA KR300 Comau NJ 650-2.7 ABB IRB 4400

Maximum reach 3095 mm 2703 mm 1950 mm
Rated payload 300 kg 650 kg 60 kg

Number of axes 6 6 6
Mounting position Floor Floor Floor

Repeatability ±0.06 mm 0.15 mm ±0.07 mm
Weight approx. 1092 kg 2450 kg 1040 kg

Motion (range) speed A1 ±185◦(123◦/s) ±180◦(75◦/s) ±165◦(150◦/s)
Motion (range) speed A2 −140◦/ − 5◦(115◦/s) −60◦/75◦(75◦/s) +96◦to − 70◦(120◦/s)
Motion (range) speed A3 −120◦/155◦(120◦/s) −231◦/−10◦(75◦/s) +65◦to − 60◦(120◦/s)
Motion (range) speed A4 ±350◦(292◦/s) ±2700◦(90◦/s) ±200◦(225◦/s)
Motion (range) speed A5 ±125◦(258◦/s) ±125◦(90◦/s) ±120◦(250◦/s)
Motion (range) speed A6 ±350◦(284◦/s) ±2700◦(120◦/s) ±400◦(330◦/s)

It is noted that the KUKA KR300 robot was manufactured by KUKA Roboter GmbH,
located in Augsburg, Germany. The Comau NJ 650-2.7 robot was produced by Comau
S.p.A., based in Turin, Italy and the ABB IRB 4400 robot was made by ABB Robotics
AB, part of ABB Ltd, headquartered in Zürich, Switzerland. These robots were sourced
from well-established international manufacturers known for their advanced industrial
automation technologies.
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(a) (b) 

 
(c) 

Figure 2. (a) The KUKA KR300 robot manipulator; (b) Comau NJ 650-2.7 robot manipulator; (c) ABB
IRB 4400 robot manipulator.

For this study, new experiments with a reduced number of tests (robot configurations)
were designed for two robot candidates: Robot B and Robot C, in alignment with the
study’s objective to minimize testing time and effort. Accordingly, only 25 postures were
selected for Robot B and 29 (25 + 4) for Robot C to perform the hammer test. These limited
tests were designed to evaluate whether transfer learning, using the knowledge learned
from Robot A, can be used to predict the behavior of Robot B and Robot C using only a
small amount of new data. The goal is to assess whether accurate predictions could be
made with minimal testing. Table 2 presents the range of motion for each joint of Robots
A, B, and C. All selected robot postures were verified in RoboDK software (version v5.9.1)
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to ensure their feasibility in terms of reachability, joint limits, and collision avoidance
(Figure 3). In the Comau NJ 650-2.7, the parallelogram linkage is equivalent to a 5-bar
parallel mechanism, with the two actuated joints being on the same axis of rotation. As
shown in Figure 4, the motors actuating Joint 2 and Joint 3 are coaxial. In Figure 4a,
actuating Joint 2 while keeping Joint 3 constant, moves the link highlighted in light red.
This changes the shape of the parallelogram and, consequently, the rotation limits of Joint
3, due to the mechanical constraints. The inverse effect occurs when actuating Joint 3
(Figure 4b—moving the link highlighted in light red), which affects the limits of Joint 2.
Therefore, depending on whether the parallelogram is flattened or square, the allowable
limits for both θ2 and θ3 vary. This coupling must be considered when defining valid robot
postures, as ignoring it can lead to configurations outside the robot’s mechanical range.

Table 2. Range of motion for each joint of Robots A, B, and C.

Axis
Motion Range

Robot A Robot B Robot C

Joint 1 (θ1) −50◦ to 50◦ −60◦ to 87◦ −59◦ to 47◦

Joint 2 (θ2) −50◦ to −90◦ −28◦ to 56◦ −10◦ to 48◦

Joint 3 (θ3) 70◦ to 150◦ −127◦ to −16◦ −30◦ to 79◦

Joint 4 (θ4) −300◦ to 300◦ −158◦ to 232◦ −184◦ to 190◦

Joint 5 (θ5) −90◦ to 90◦ −93◦ to 124◦ −116◦ to 114◦

Joint 6 (θ6) −300
◦

to 300◦ −283◦ to 201◦ −360◦ to 296◦

 

Figure 3. Posture validation of Comau NJ 650-2.7 robot manipulator using RoboDK simulation.

The vibration behavior at the tool center point (TCP) is critical because it directly affects
machining quality, chatter, and process stability. For this reason, a triaxial accelerometer was
mounted on the tool as close as possible to the TCP and oriented with the TCP axes so that
the measured directions matched the excitation and response directions used in analysis
and stability prediction. This position allowed vibration measurements in three directions
(X, Y, and Z) and enabled accurate capture of the robot’s dynamic response during hammer
tests. Care was taken to ensure rigid mounting and proper cable management to avoid
noise or measurement errors.
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(a) (b) 

Figure 4. Effect of parallelogram structure on joint motion in Comau NJ 650-2.7 (in each case, the
link moved by the motor’s joint is shown in light red). (a) Changing θ2 while θ3 is fixed reshapes
the parallelogram and modifies the possible rotation range of θ3 in both directions. (b) Changing θ3

while θ2 is fixed modifies the available rotation range of θ2.

To perform the hammer tests, we used a set of precise measurement instruments. The
setup included the LMS SCADAS Mobile data acquisition system connected to Siemens
LMS Test.Lab software (Simcenter Testlab 2306) (Figure 5). A modal impact hammer (model
086D20) was used to excite the robot structure, and a triaxial accelerometer (model PCB
HT356A43) was attached to the robot’s tool (end-effector) to record vibration signals in
three directions: X, Y, and Z. The acceleration data was sampled at 1024 Hz with a frequency
resolution of 0.25 Hz. The time of collecting the signal for each test was 4 s, and the number
of impacts per test was 5 to have a reliable signal. This setup ensured that we captured
detailed information about the robot’s dynamic behavior.

 

Figure 5. Cont.
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Figure 5. LMS SCADAS Mobile data acquisition system connected to Siemens LMS Test.Lab software.

2.2. Data Analysis and Post-Processing

Figure 6 shows some of the main challenges in selecting peaks from FRF data during
modal analysis. In the first plot on the left, the FRF has many peaks, but it’s hard to tell
exactly how many real modes are present, maybe 13 or 14. This uncertainty makes it
difficult to correctly identify modal parameters. In the second plot, it’s unclear whether
some of the small peaks are actual modes or just noise. This can cause errors if noise is
mistakenly selected as a mode during analysis.

 

Figure 6. Illustration of challenges in modal parameter estimation from FRF Data.
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The third plot shows another common issue: closely spaced modes. Here, multiple
modes overlap and create one large peak in the overall FRF. This issue was observed in
the FRFs obtained from the hammer tests conducted on the Comau robot. This makes
it hard to separate their individual effects. If these modes are not clearly separated, the
modal parameters (like natural frequency and damping) may not be estimated correctly.
Figure 6 highlights the importance of careful data post-processing, including filtering, using
stabilization diagrams, and expert judgment, to make accurate decisions about which peaks
represent real modes.

To deal with the problems shown in Figure 6, like not knowing how many peaks are
real, confusing noise with modes, or having peaks that are too close together, we needed a
careful method for peak selection. Looking at the FRF curves by eye was a good first step,
but it could sometimes lead to mistakes, especially when the data was noisy or complex.
To make the process more accurate, we used a stabilization diagram after the manual step.
This helped us check which peaks were real and stable, so we could be more confident in
finding the correct modal parameters [69].

Before using the stabilization diagram, the first step in peak selection was manual
inspection of the FRF curves. In this step, peaks were visually identified based on their
sharpness, height, and spacing. This method was simple and useful, especially when the
FRFs were clear and not too noisy. It allowed the user to focus on significant peaks that
likely represent real modes quickly. However, manual selection had some disadvantages.
It was time-consuming, depending on the user’s experience, and could be affected by noise
or closely spaced modes, leading to errors or missed peaks [69].

By comparing the FRFs from different postures that are close to each other, it becomes
easier to identify real peaks and avoid missing important modes. Some peaks may look
very small or almost hidden in one posture, but appear clearly in another. This happens
because the accelerometer might be placed at a nodal point (where vibration is minimal) in
one posture and at an anti-nodal point (where vibration is strong) in another [70]. Looking
at multiple FRFs helps reduce the chance of mistaking noise for a real mode and gives a
more complete picture of the system’s behavior (Figure 7).

Figure 7. Comparison of FRFs from similar postures to improve peak identification and reduce
noise influence.

To improve accuracy, the stabilization diagram was used after the manual step. This
diagram helped confirm which peaks were real by showing how modal parameters (such as
frequency and damping) changed as the model order increased. In the diagram, each point
represented a possible mode, and stable modes appeared as vertical lines that remained



Vibration 2025, 8, 65 11 of 31

consistent across model orders. Unstable or false modes caused by noise usually disappear
or shift position. By selecting only the stable poles, we could identify the correct modal
parameters more reliably. Figure 8 shows the stabilization diagram from the LMS Test.Lab,
where stable poles were marked and matched with the peaks in the FRF curve. This process
reduced errors and increased confidence in the results.

 

Figure 8. The stabilization diagram for the LMS PolyMAX® modal parameter identification software-
assisted modal analysis, using measured FRFs.

In summary, after collecting the signals in the time domain, we used Fast Fourier
Transform (FFT) and spectrum analysis to convert the data into the frequency domain
in LMS software. The resulting FRFs were then post-processed to extract their vibration
characteristics.

To further enhance accuracy, a special focus was given to identifying and validating
the resonance peaks, as these peaks directly determine the natural frequencies and damping
ratios of the robot. Modal assurance criteria (MAC) and repeated hammer tests were used
to verify that the resonance peaks corresponded to consistent mode shapes across trials.
Peaks that were unstable, shifted significantly between repeats, or failed MAC checks
were discarded. By focusing on stable resonance peaks, we ensured that the final dataset
contained only physically meaningful modes, reducing the influence of noise and spurious
responses and providing a solid foundation for training predictive models.

After performing hammer tests and post-processing the data, datasets for different
robots were prepared.

2.3. Deep Learning Framework Using Transfer Learning

Transfer learning is a method in machine learning where a model trained on one task is
used to help with another similar task [71]. In this work, a deep learning approach was used
to predict the vibration properties (like natural frequencies, damping ratios, and stiffness) of
industrial robots. A relatively large dataset from Robot A (KUKA KR300) was used to train
a predictive neural network for robot modal parameters in each configuration [69]. In this
section, the methodology will be described for how to leverage this knowledge from Robot
A to develop new prediction models for Robot B (Comau NJ 650-2.7) and Robot C (ABB
IRB 4400), with significantly smaller datasets. This helps reduce the effort by requiring
fewer tests and less data processing while still resulting in good prediction accuracy.
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The deep learning model was built using Python 3.10. Different libraries, such as
NumPy and Pandas, help manage the data, Matplotlib is used for visualizing results, and
Scikit-learn is used for data scaling. The neural network itself is created using Keras, which
is part of TensorFlow. These packages help prepare the data, train the model, and test
its performance. To organize the datasets, file paths for different robots are stored in a
dictionary called robot_configs, making it easy to switch between datasets for Robot A, B,
or C. This setup makes the code clean, flexible, and easy to reuse for different robots.

A function called “process_data ( )” is responsible for loading the dataset from a CSV
file and preparing it for training. First, it interpolates any missing values in the frequency
response columns using linear interpolation. Then, it performs data augmentation by
adding random noise (perturbation factor) to simulate variability and increased the dataset
size. This is mathematically represented as:

Xaug = X + ϵ where ϵ ∼ U (−δ, δ) (1)

The perturbation factor δ controls the strength of the artificial noise added during
data augmentation. In this study, δ = 0.10 was chosen after testing different values (0.05,
0.10, 0.15) to balance realism and stability. This level of noise simulates small variations
that can occur in practice, such as fluctuation in sensor readings or minor posture changes,
without distorting the main resonance peaks of the FRFs. Generating multiple augmented
samples increases model robustness, avoids overfitting, and improves generalization to
unseen data. The data is then scaled between 0 and 1 to make learning easier and faster,
using Min-Max normalization:

Xscaled =
X − Xmin

Xmax − Xmin
(2)

Finally, the data is split into training and test sets in an 80:20 ratio. Consequently, the
function “build_model ( )” creates a deep neural network using Keras. The network has an
input layer with six nodes (representing six joint angles), 5 hidden layers with 32 nodes
each, and an output layer with 15 nodes (representing modal parameters). The activation
function used in the hidden layers is ReLU (Rectified Linear Unit), defined as:

f (x) = max(0, x) (3)

The model is compiled using the Adam optimizer and mean squared error (MSE)
loss function:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

This loss function penalizes large differences between predicted and true values.

• Transfer Learning

The predictive model of Robot A was previously trained on a relatively large dataset
for over 500 epochs with a batch size of 8 (Figure 9).

Figure 9 shows the effect of batch size and number of epochs on the mean loss using
repeated 5-fold cross-validation. The results indicate that smaller batch sizes improve
learning stability, with the lowest loss achieved at a batch size of 8. Larger batch sizes led
to higher loss, weaker gradient updates, and reduced generalization. Similarly, the epoch
analysis shows that the loss decreases steadily up to around 500 epochs, after which the
model begins to overfit and the loss increases. This confirms that 500 epochs provide the
best balance between underfitting and overfitting, ensuring convergence without excessive
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training. These results justify the choice of 500 epochs and a batch size of 8 as optimal for
accurate and stable model performance.

Figure 9. Effect of batch size (left) and number of epochs (right) on mean loss.

Now, the model is referred to here as the pretrained model, and it contains underlying
relationship between robot joint angles and their corresponding modal parameters. Within
the transfer learning framework, as illustrated in Figure 10, this relationship is adjusted to
predict the modal parameters of Robot B and Robot C.

Figure 10. Transfer learning framework for modal parameter prediction from robot A (KUKA KR300)
to robot B (Comau NJ 650-2.7) and Robot C (ABB IRB 4400).

For transfer learning to a new robot, the pretrained model is used partially, with some
frozen layers, in our case, the first three layers. This helps preserve the learned features [72].
The remaining (trainable) layers are updated during training on the new robot’s smaller
dataset. This method works effectively when the new model is similar to the pretrained
model but less data is available for training. It is important to note that the number of
layers selected to remain frozen during transfer learning was chosen based on accuracy and
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loss values observed during training. Selecting the appropriate number of frozen layers
was determined through a trial-and-error process.

Figure 11 shows how transfer learning is used to build a deep learning model for Robot
B using an already trained model from Robot A. At the top of the figure, the pretrained
DNN for Robot A takes six robot joint angles as input (θ1 to θ6). This model has five
hidden layers. The first three hidden layers (shown in blue) are already trained and contain
important information about the robot’s vibration behavior. These layers are called frozen,
which means their weights do not change during training.

Figure 11. Transfer learning architecture from Robot A to Robot B using partially frozen deep neural
network (DNN).

In the bottom part of Figure 11, the first three layers of the base model trained on
Robot A are frozen and then reused to build a new model for Robot B. This step, indicated
by the red arrow labeled “Transfer & Fine-Tune”, ensures that the general features already
learned from Robot A are preserved. These frozen layers capture low-level patterns of
vibration and dynamic behavior, such as basic resonance trends, which are common across
both robots and do not need to be relearned. After these frozen layers, two new trainable
layers (shown in green) are added to the network. These layers remain adaptable and
can update their weights to capture the posture-dependent and robot-specific behavior of
Robot B.

During development, different freezing strategies were tested by locking 2, 3, or
4 layers. Freezing fewer than three layers led to excessive retraining, which caused overfit-
ting to Robot B’s limited dataset and poor generalization. Conversely, freezing more than
three layers reduced network flexibility and restricted its ability to learn Robot B’s unique
vibration patterns. Freezing exactly three layers provided the most stable and accurate
results, offering the best trade-off between preserving general vibration knowledge from
Robot A and adapting to the new robot. This approach follows common practices in
transfer learning, where early layers are kept fixed to retain general features, while later
layers are fine-tuned for the target task.
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As a result, the final transfer learning model for Robot B can predict modal
parameters—including natural frequency (ωn), damping ratio (ξ), and stiffness (k)—with
both stability and accuracy. This balanced strategy leveraged the strengths of the original
model while making the necessary adjustments to adapt to differences between robots.

2.4. Similarity Metrics: FRAC and NRMSE

To measure how well the predicted Frequency Response Functions (FRFs) match the
experimental ones, two similarity metrics are used: the Frequency Response Assurance
Criterion (FRAC) and the Normalized Root Mean Square Error (NRMSE) [73].

Frequency Response Assurance Criterion (FRAC):
FRAC is a correlation measure between two complex FRFs—the experimental FRF

Hexp(ω) and the predicted FRF Hpred(ω). It evaluates how similar the two responses
are in both magnitude and phase. FRAC values range from 0 (no correlation) to 1
(perfect correlation):

FRAC =

∣∣∣∑ω Hpred (ω)H∗
exp (ω)

∣∣∣2(
∑ω

∣∣∣Hpred (ω)
∣∣∣2)(

∑ω

∣∣Hexp(ω)
∣∣2) (5)

where (·)∗ denotes the complex conjugate. FRAC values above 0.8 generally indicate
good agreement.

Normalized Root Mean Square Error (NRMSE):
NRMSE compares the magnitudes of the predicted and the experimental FRFs, and is

calculated as:

NRMSE =

∥∥∥∣∣∣Hpred (ω)
∣∣∣− ∣∣Hexp(ω)

∣∣∥∥∥∥∥∣∣Hexp(ω)
∣∣∥∥ (6)

where ∥·∥ denotes the Euclidean norm. lower NRMSE values indicate closer agreement
between prediction and measurement, with 0 representing a perfect match. In vibration
studies, values below 0.3 are often considered acceptable.

3. Results and Discussion
This section presents and discusses the results of the proposed method for transferring

a pretrained model for modal parameters prediction to new robots and estimating the FRFs
of industrial robots.

First, the transfer learning approach, as presented in the previous section, is applied to
the pretrained model with the limited dataset of Robot B to predict its modal parameters.
The accuracy of the FRF estimation for Robot B is evaluated to demonstrate how well the
predicted modal parameters capture the robot’s vibration behavior.

Robot B has around twice the payload of Robot A. To further examine the effectiveness
of the transfer learning method for a low-payload robot manipulator, the same approach
was extended to Robot C, again using a small number of hammer tests. The performance of
this new model was evaluated in predicting the modal parameters and estimating the FRFs
of Robot C. For each robot, a comparison between the predicted and actual results was
provided to assess the accuracy, reliability, and generalizability of the proposed method.

3.1. Results of Modal Prediction for Robot B

From 25 records of the Robot B datatest, 20 records were used for retraining the
prediction model, and 5 were selected to evaluate the prediction accuracy. These postures
were chosen to represent a range of joint configurations and to simulate a realistic low-data
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scenario. The model was tasked with predicting modal parameters for these five new
configurations using only joint angle data as input.

Figure 12 shows, in its first row, the plots of the training results for Robot A, the
so-called pretrained model, as a reference. On the left, the accuracy plot shows how well
the model learned during 500 training rounds (called epochs). We can see that both the
training and validation accuracy steadily improved and reached around 90%, which means
the model correctly predicted the output most of the time. On the right, the loss plot shows
how much error the model made. The loss decreased quickly at the beginning and then
slowly decreased further, showing that the model kept improving over time.

Figure 12. Training and validation performance of the transfer learning model for Robot A and Robot
B: accuracy and loss over 500 epochs.

The second row of plots (Figure 12) shows the results after using transfer learning on
Robot B, which had only a small amount of data (20 training tests). In the accuracy plot
on the left, we can see that the model performed even better, with training and validation
accuracy going above 85%. This means the model was very good at predicting the output
for Robot B, even with fewer training samples. In the loss plot on the right, the error is
very low, showing that the model predictions are close to the actual values. These results
confirm that transfer learning achieved a good performance in using the knowledge of
Robot A to predict the modal parameters of Robot B with a significantly smaller dataset.

Figure 13 shows the five selected postures of the Comau robot used for prediction.
These postures are visually distinct and spread across the robot’s working range. Table 3
lists the exact joint angles (in degrees) for all six joints of the robot in each posture. These
postures were not part of the training data, so the results reflect the model’s ability to
generalize and predict unseen configurations.
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Posture 3 Posture 4 

 
Posture 5 

Figure 13. Selected postures of the Comau NJ 650-2.7 robot manipulator used for modal
parameter prediction.

Table 3. Joint angles of the Comau robot (in degrees) for the five selected postures used in the
testing phase.

Posture No. Joint 1 (◦) Joint 2 (◦) Joint 3 (◦) Joint 4 (◦) Joint 5 (◦) Joint 6 (◦)

1 −2 21 −27 5 1 −29
2 −60 50 −120 115 −66 −197
3 23 −28 −101 −82 124 168
4 59 51 −83 180 112 7
5 30 30 −102 −145 106 −11

Table 4 shows the comparison between the predicted modal parameters (using the
TL model) and the experimental values (EMA) for three robot postures in the Y direction.
The table includes three key modal parameters: natural frequency, damping ratio, and
modal stiffness for the first five vibration modes. For each value, the table also shows the
prediction error. As we can see, the predicted values are very close to the experimental
ones, and the error percentages are small in most cases. This means the TL model is able to
predict the dynamic behavior of the robot, making it useful when only a few experimental
tests are available.
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Table 4. The validation of modal parameters predicted by the proposed TL model and EMA for three
distinct postures of Robot B.

Mode Posture 1

Natural Frequency [Hz] Damping Ratio [%] Modal Stiffness [105 N/m]

EMA TL %Error EMA TL %Error EMA TL %Error

1 7.352 7.282 0.944 0.872 0.980 12.379 1.34682 1.35139 0.339
2 12.056 12.012 0.367 2.138 2.085 2.450 6.06784 6.19108 2.031
3 14.530 14.520 0.068 0.224 0.221 1.365 17.96839 18.20931 1.341
4 19.365 19.301 0.332 3.643 3.735 2.551 15.46110 15.32584 0.875
5 31.493 31.556 0.198 1.533 1.548 0.984 10.00344 9.93391 0.695

Mode Posture 2

Natural Frequency [Hz] Damping Ratio [%] Modal Stiffness [105 N/m]

EMA TL %Error EMA TL %Error EMA TL %Error

1 6.965 7.020 0.803 1.020 1.046 2.582 1.32453 1.32285 0.127
2 11.263 11.239 0.210 0.407 0.482 18.354 0.74342 0.72240 2.828
3 14.730 14.806 0.515 6.895 6.817 1.133 4.56509 4.54101 0.527
4 23.769 23.832 0.265 2.334 2.442 4.656 26.90947 26.90342 0.022
5 30.273 30.278 0.017 2.932 2.954 0.761 14.55168 14.47240 0.545

Mode Posture 3

Natural Frequency [Hz] Damping Ratio [%] Modal Stiffness [105 N/m]

EMA TL %Error EMA TL %Error EMA TL %Error

1 7.48 7.374 1.428 1.493 1.533 2.667 1.27141 1.28871 1.361
2 10.564 10.538 0.248 2.412 2.498 3.566 1.07695 1.20460 11.852
3 13.602 13.682 0.587 1.024 1.039 1.469 4.56509 4.52221 0.939
4 21.070 21.089 0.089 3.582 3.548 0.946 15.87799 15.95576 0.490
5 31.453 31.450 0.011 1.107 1.107 0.057 19.92689 19.97029 0.218

Figure 14 compares predicted and measured values for Robot B across five modes and
five validation postures (Table 3) for three quantities: natural frequency, damping ratio,
and modal stiffness. The predicted curves (dashed lines with squares) closely follow the
real curves (solid lines with circles) in almost all cases, peaks line up, trends match, and
levels are similar, with only small differences at a few points. Overall, the model estimates
frequency, damping, and modal stiffness reliably for new robot postures.
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Figure 14. Predicted vs. real values of natural frequencies, damping ratios, and modal stiffnesses (modes 1–5) for Robot B.
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3.2. Results of Modal Prediction for Robot C

The results of the retrained model for Robot C, applying the transfer learning approach,
demonstrate the reliability of this method in applying learned knowledge about robot
vibrations to different and distinct robots. For Robot C, we considered two significantly
small datasets to assess the impact of varying training data sizes. The first dataset includes
20 records, while the second dataset is enhanced by adding 4 additional records to cover
a more diverse range of joint configurations. This comparison highlights how dataset
diversity affects the model’s predictive accuracy and robustness.

The first row of plots in Figure 15 illustrates the training and validation performance of
the transfer learning model for Robot C, based on an initial dataset of 20 records. These plots
reveal that while the training accuracy and loss values of the new model are comparable
to those of the pretrained model (first row of Figure 12), it struggles in validation with
lower accuracy and higher loss values. This indicates that the model is limited in its ability
to generalize effectively to unseen robot configurations. This limitation highlights the
need for a more comprehensive dataset and further hammer tests to enhance the model’s
training data.

20 training tests 

24 training tests 

Figure 15. Training and validation performance of the transfer learning model for Robot C with 20
and 24 training tests.

The spatial distribution of the robot postures subjected to hammer tests and used for
retraining is depicted in Figure 16. It was created using RoboDK. The left image shows
that the initial 20 postures (Targets 1–20) were predominantly located on the robot’s left
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side, where many joint angles were negative. This unbalanced training set did not fully
represent the robot’s working range, which limited the model’s ability to generalize and
predict modal parameters accurately for all postures.

  
20 initial samples 24 samples (4 added samples) 

Figure 16. Distribution of training postures in RoboDK: initial vs. added positions for
improved accuracy.

To address this imbalance, four new postures were added for hammer testing, as
indicated in red in the right image of Figure 16 (Targets 21–24). These additional postures
were strategically placed on the right side of the robot and featured positive joint angles
(Table 5). It resulted in a more balanced dataset with 24 records.

Table 5. Four added joint angles of the Robot C (in degrees) for the five selected postures used in the
training phase.

Posture No. Joint 1 (◦) Joint 2 (◦) Joint 3 (◦) Joint 4 (◦) Joint 5 (◦) Joint 6 (◦)

21 12 26 9 50 −116 −286
22 23 6 −21 −117 −26 −37
23 32 36 35 143 46 −18
24 38 5 11 −92 114 152

Figure 17 compares the predicted and real natural frequencies for the 3rd and 5th
vibration modes of Robot C, using two different training datasets: one with the initial
dataset (20 tests) and another with the augmented and refined dataset (24 tests). With
the initial dataset, the predicted values are sometimes far from the real values, especially
for the 3rd mode, which shows larger prediction errors. With the augmented dataset,
the predictions are much closer to the real values with better accuracy, as shown in the
right-hand graphs of Figure 17. This proves that adding just a few extra training samples
to complement the solution space can significantly improve the performance of the transfer
learning model, especially in capturing the vibration behavior more precisely.



Vibration 2025, 8, 65 22 of 31

  

  
20 Training Tests 24 Training Tests (with 4 additional postures) 

Figure 17. Effect of increasing training tests on frequency prediction accuracy for 3rd and 5th modes.

Now, five different postures of the Robot C were selected to test the prediction of
modal parameters (Figure 18). These postures were chosen to represent various positions
and movements of the robot arm. The joint angles for each of these five postures are shown
in Table 6, where each row lists the angles (in degrees) for all six joints of the robot.

Table 6. Joint angles of the ABB robot (in degrees) for the five selected postures used in the
testing phase.

Posture No. Joint 1 (◦) Joint 2 (◦) Joint 3 (◦) Joint 4 (◦) Joint 5 (◦) Joint 6 (◦)

1 39 8 8 98 −18 −30
2 47 −10 36 74 −89 −13
3 −3 48 20 −129 −57 −2
4 −2 20 −21 −167 −66 180
5 −6 −6 36 83 100 29

  
Posture 1 Posture 2 

Figure 18. Cont.
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Posture 5 

Figure 18. Selected postures of the ABB IRB 4400 robot manipulator used for modal
parameter prediction.

The results in Figure 19 illustrate a comparison between the predicted and real values
of the modal parameters for Robot C as a low-payload robot manipulator in five different
modes. The predicted frequencies are very close to the real values in all modes. It shows
that the model can correctly estimate the dynamic behavior of the robot with a refined
dataset (24 training tests). Especially in the first and second modes, the predicted and real
frequency values almost overlap. For higher modes (3 to 5), small differences can be seen,
but the predicted curves still follow the same trend as the real data.
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Figure 19. Predicted vs. real values of natural frequency, damping ratio, and modal stiffness (modes 1–5) for robot C.
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For the damping ratio and modal stiffness, the predictions also match well with the
real values. While some small errors appear in a few modes and validation points, the
overall patterns are very similar. This means that the model can successfully predict how
the robot behaves in terms of energy loss (damping) and stiffness.

Table 7 shows the comparison between the real values obtained from the EMA and
the predicted values from the TL model for natural frequency, damping ratio, and modal
stiffness across three different postures and five vibration modes of Robot C. The results
demonstrate that the TL model predicts the modal parameters with high accuracy. Most of
the errors are very small, typically less than 1% for natural frequency and modal stiffness,
while damping ratio predictions show slightly higher errors in some cases, especially for
Posture 1, Mode 4, and Posture 2, Mode 2. However, they remain within acceptable ranges.

Table 7. The validation of modal parameters predicted by the proposed TL model and EMA for three
distinct postures of Robot C.

Mode Posture 1

Natural Frequency [Hz] Damping Ratio [%] Modal Stiffness [105 N/m]

EMA TL %Error EMA TL %Error EMA TL %Error

1 13.7 13.5 0.851 1.960 1.957 0.171 1.27141 1.27116 0.019
2 16.2 16.21 0.064 1.050 1.053 0.277 0.37339 0.35082 6.043
3 22.3 22.1 0.642 1.080 1.027 4.947 13.78216 13.56449 1.579
4 24.1 24.15 0.224 0.160 0.122 23.85 12.94221 12.87258 0.538
5 25.3 25.45 0.622 0.870 0.871 0.084 25.30907 25.18429 0.493

Mode Posture 2

Natural Frequency [Hz] Damping Ratio [%] Modal Stiffness [105 N/m]

EMA TL %Error EMA TL %Error EMA TL %Error

1 11.4 11.42 0.170 1.720 1.712 0.490 1.23723 1.23706 0.013
2 12.4 12.3 0.310 0.012 0.015 25.00 0.35768 0.38600 7.918
3 21.2 21.3 0.757 3.290 3.374 2.547 25.08313 24.60109 1.922
4 22.6 22.5 0.224 0.370 0.376 1.581 15.87798 12.87258 0.538
5 25.2 25.1 0.245 1.720 1.727 0.412 22.89233 22.91483 0.098

Mode Posture 3

Natural Frequency [Hz] Damping Ratio [%] Modal Stiffness [105 N/m]

EMA TL %Error EMA TL %Error EMA TL %Error

1 11.8 11.7 0.282 1.460 1.510 3.418 1.19254 1.19275 0.017
2 12.7 12.702 0.012 1.320 1.315 0.374 0.32806 0.33172 1.118
3 20.1 20.122 0.108 2.830 2.866 1.290 15.58686 15.49222 0.607
4 20.8 20.87 0.361 0.430 0.412 4.167 22.89233 23.03473 0.622
5 25.5 25.53 0.118 0.500 0.500 0.005 27.24097 27.08077 0.588

The prediction errors for the damping ratio were larger than those for the natural
frequency and modal stiffness, as shown in Tables 5 and 7 for Robots B and C. This trend
is consistent with observations in mechanical and robotic systems, where the damping
ratio is inherently more sensitive to uncertainties. Factors such as joint compliance, friction,
nonlinear stiffness, and control dynamics strongly influence damping and make it less
stable compared to natural frequency or stiffness. In addition, damping is highly affected
by measurement noise, which further complicates accurate estimation. Therefore, the
higher discrepancies observed in damping ratio predictions are not unexpected and reflect
the well-known challenges of damping identification in complex robotic manipulators.
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3.3. FRF Estimation for Robots B and C

The method for finding the relationship between the FRF and the equation of motion
was explained in the work by Hosseini et al. [69]. In that study, formulas are provided to
show how the FRF depends on modal parameters. These include the natural frequency (ωn)

and damping ratio (ξ), which are very important in describing how a system responds
to vibrations. Using these formulas, the FRF can be estimated based on the predicted
modal parameters.

Figure 20 compares the experimental (blue) and predicted (red dashed) FRF magnitude
and phase for three postures of Robot B (high-payload) and Robot C (low-payload). Across
all postures, the predicted curves closely follow the measured ones in the range of 0–40 Hz.
Resonance peaks occur at nearly the same frequencies and with similar amplitudes, and
the phase jumps near those peaks are well reproduced. The modal-frequency markers
(• = experimental, × = predicted) align closely, confirming accurate parameter estimates.
Small differences appear in the high-frequency tails.

To evaluate the similarity between experimental and predicted FRFs, as described in
Section 2.4, two metrics were used: FRAC and NRMSE. FRAC is a complex correlation
measure that quantifies the shape similarity of two FRFs and ranges between 0 and 1, with
values close to 1 indicating strong agreement [73]. NRMSE is defined as the root mean
square error between the magnitudes of the experimental and predicted FRFs, normalized
by the magnitude of the experimental FRF; values approaching 0 indicates better accuracy.
In practice, FRAC values above 0.8 and NRMSE values below 0.3 are generally interpreted
as evidence of a reliable match between two FRFs. In this study, the reported FRAC values
(≈0.86–0.99) and NRMSE values (≈0.03–0.32) confirm that the predicted FRFs align closely
with the experimental ones across different postures.

In summary, the results show that transfer learning can predict robot modal parameters
with minimal data. 20 training tests for Robot B and 24 for Robot C were enough to match
measurements across five modes and multiple postures, with FRFs rebuilt from predictions
showing high FRAC and low NRMSE. The key factor is data coverage of the workspace,
not just data size. Robot C initially underperformed because its training postures were
mostly on one side. Adding four targeted postures on the other side removed this bias and
clearly improved accuracy. These findings confirm that the developed model generalizes
well to both high-payload (Robot B) and low-payload (Robot C) manipulators, using
only joint angles as inputs, and can reproduce their posture-dependent dynamics with
reliable precision.
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Figure 20. FRF Magnitude–Phase comparison across postures (experimental vs. predicted) for both robot B and C.
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4. Conclusions
This study demonstrates that a deep learning (DL) model trained on Robot A can be

extended to new robots using transfer learning (TL) with only a few hammer tests. The
predicted modal parameters—natural frequencies (ωn), damping ratios (ξ), and modal
stiffness (k)—for Robot B (high-payload) and Robot C (low-payload) enabled accurate
reconstruction of frequency response functions (FRFs), which closely matched experimental
results with high Frequency Response Assurance Criterion (FRAC ≈ 0.86–0.99) and low
Normalized Root Mean Square Error (NRMSE ≈ 0.03–0.32).

A key insight of this work is that data coverage is more important than dataset size.
Robot C initially exhibited lower accuracy because its training postures were concentrated
on one side of the workspace. By adding only four targeted postures from the opposite
side, prediction accuracy improved, particularly for higher modes.

The novelty and main contributions of this research are: (1) applying DL with TL to
posture-dependent vibration analysis of robots, (2) achieving accurate predictions with
minimal experimental data, (3) demonstrating generalization across robots with different
payload capacities, (4) reconstructing full FRFs from predicted modal parameters, and
(5) showing that workspace coverage has a greater effect than dataset size.

Overall, the proposed TL framework provides a reliable and cost-effective approach
to predict posture-dependent vibration behavior in industrial robots, reducing the need for
extensive testing while maintaining high accuracy.
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