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The Pauli exclusion principle is fundamental
to understanding electronic quantum systems,
imposing constraints on the expected occupan-
cies ni of orbitals φi, such that 0 ≤ ni ≤ 2.
In this work, we refine the underlying one-
body N-representability problem by incorpo-
rating spin symmetries and a potential de-
gree of mixedness w of the N-electron quan-
tum state. Employing basic tools from repre-
sentation theory, convex analysis, and discrete
geometry, we derive a comprehensive solution
to this problem. Specifically, we demonstrate
that the set of admissible orbital one-body re-
duced density matrices is fully characterized
by linear spectral constraints on the natural
orbital occupation numbers, defining a convex
polytope ΣN,S(w) ⊂ [0, 2]d. These constraints
are independent of the magnetization M and
the number d of orbitals, while their depen-
dence on N and the total spin S is linear, and
we thus calculate them for arbitrary system
sizes and spin quantum numbers. Our results
provide a crucial missing cornerstone for en-
semble density (matrix) functional theory.

1 Introduction
The original Pauli exclusion principle has profoundly
shaped our understanding of N -electron quantum sys-
tems, as it imposes the fundamental restriction that
each orbital can accommodate at most one spin-up
and one spin-down electron. This principle lies at
the core of the Aufbau principle, which explains the
structure of the periodic table of elements. When in-
corporating the probabilistic nature of quantum me-
chanics and the influence of electron correlation, the
Pauli exclusion principle can be reformulated as a
universal kinematic constraint on the orbital one-
particle reduced density matrix (1RDM) γl: for any
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N -electron quantum state, the vector of orbital oc-
cupancies ⟨φi|γl|φi⟩ of d reference orbitals φi is con-
fined to the Pauli hypercube [0, 2]d. This geometric
interpretation corresponds to the solution of the so-
called one-body ensemble N -representability problem,
which seeks to characterize the set of orbital 1RDMs
γl that can be derived from some N -electron density
matrix [1, 2].

Despite its broad relevance, the Pauli exclusion
principle ignores two critical features of realistic N -
electron quantum states, particularly in the context of
quantum chemistry. First, these states are often char-
acterized by definite spin quantum numbers, reflecting
the spin symmetries of the underlying Hamiltonian.
Furthermore, electron spin plays a fundamental role
in various physical phenomena, such as magnetism
and the quantum Hall effect [3–6], and its incorpora-
tion in numerical methods is essential for achieving
high predictive accuracy. Second, due to thermal ef-
fects or entanglement arising from interactions with
the environment, N -electron states frequently exhibit
a certain degree of mixedness. It is therefore the pri-
mary goal of this work to introduce and solve a refined
version of the one-body ensemble N -representability
problem that accounts for these two crucial aspects.
To achieve this, we employ basic mathematical tools
to construct a comprehensive solution. This approach
leads to a generalized exclusion principle that, from a
geometric perspective, identifies a subpolytope of the
Pauli hypercube, ΣN,S(w) ⊂ [0, 2]d, representing the
admissible natural orbital occupation numbers.

From a practical point of view, our work is moti-
vated by the growing interest in reduced density ma-
trix methods for targeting excited states using a dis-
tinctive ensemble variational principle [7, 8]. Specifi-
cally, we demonstrate that solving the spin-symmetry-
adapted ensemble N -representability problem pro-
vides a compact and rigorous characterization of the
yet-unknown domain of universal interaction func-
tionals in the rapidly evolving field of ensemble den-
sity functional theory (EDFT) [9–21] and ensemble
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one-particle reduced density matrix functional theory
(w-RDMFT) [22–25]. In this context, our work ad-
dresses a critical gap, providing a foundational cor-
nerstone for the advancement of these ensemble-based
methodologies.
This paper is organized as follows. In Sec. 2,

we introduce the notation and foundational concepts
needed to address spin symmetries at both the one-
and N -particle levels (Sec. 2.1). We then formally
define the orbital one-body w-ensemble (N, S, M)-
representability problem in Sec. 2.2. In Sec. 3, we de-
velop a general solution to this problem for fermions,
highlighting its key properties. Sec. 4 provides explicit
computations and illustrative examples of the derived
constraints. Finally, in Sec. 5, we demonstrate three
applications of these new constraints in the context of
reduced density matrix methods.

2 Key concepts and scientific problem

In Sec. 2.1, we introduce some notation and basic
concepts such as spin symmetries and reduced den-
sity matrices. This will then allow us to formally
introduce the symmetry-adapted orbital one-body
w-ensemble N -representability problem in Sec. 2.2,
which is the scientific problem addressed and com-
prehensively solved in this work.

2.1 Notation
We consider non-relativistic spin-1/2 fermions whose
one-particle Hilbert space H1 exhibits the tensor
product structure

H1 = H(l)
1 ⊗ H(s)

1
∼= Cd ⊗C2 , (1)

where H(l)
1 denotes the orbital component of H1 with

dimension dim(H(l)
1 ) = d < ∞, and H(s)

1 describes
the spin degrees of freedom. The Hilbert space of N -
fermions, HN , follows as the N -fold wedge product of
H1, that is HN = ∧N H1. Due to the relevance of spin
symmetries in physics and chemistry as explained in
the introduction, we consider N -fermion states with
well-defined total spin S and magnetization M . The
magnetization M follows in general as the expectation
value of the Sz operator,

Sz = 1
2

d∑
i=1

(
f†

iαfiα − f†
iβfiβ

)
, (2)

where f†
iσ, fiσ denote the fermionic cre-

ation/annihilation operators for a fermion in a
spatial orbital i with spin σ = α, β1 and we set

1We resort in our work to a notation for the two spin
states used commonly in quantum chemistry, also since the
symbols ↑ / ↓ will be used to indicate vectors with increas-
ingly/decreasingly ordered entries.

ℏ ≡ 1. Moreover, the total spin quantum number S
is determined by the so-called Casimir operator S2

of the Lie group SU(2),

S2 =
d∑

i,j=1
Sz

i Sz
j + 1

2
(
S+

i S−
j + S−

i S+
j

)
, (3)

where S+
i = f†

iαfiβ , S−
i = f†

iβfiα denote the spin rais-
ing and lowering operators. The operators Sz, S± con-
stitute the generators of the group SU(2) and com-
mute with spin-independent Hamiltonians as, for in-
stance, the non-relativistic electronic structure Hamil-
tonian. Which such applications in mind, it is then
advantageous to exploit the Peter-Weyl decomposi-
tion of the N -fermion Hilbert space HN into symme-
try sectors labelled by the quantum numbers S, M
according to (see, e.g., [26, 27])

HN =
N/2⊕

S=Smin

S⊕
M=−S

H(S,M)
N , (4)

where Smin = 0 for N even and Smin = 1/2 for N
odd.

The set of density operators corresponding to pure
quantum states with spin quantum numbers S, M fol-
lows as

PN
S,M ≡

{
Γ : H(S,M)

N → H(S,M)
N | Γ ≥ 0,

TrN [Γ] = 1, Γ = Γ2
}

. (5)

Here, it is taken into account that for finite-
dimensional Hilbert spaces positivity Γ ≥ 0 implies
hermiticity, Γ = Γ†, and the condition Γ = Γ2 to-
gether with the normalization implies that Γ = |Ψ⟩⟨Ψ|
for some suitable |Ψ⟩ ∈ H(S,M)

N . What is more, the el-
ements of the set PN

S,M constitute the extremal points

of the convex and compact set EN
S,M of all ensemble

N -fermion quantum states,

EN
S,M = conv

(
PN

S,M

)
, (6)

where here and in the following conv(·) always denotes
the convex hull operation. The one-particle reduced
density matrix (1RDM) γ of a quantum state Γ ∈
EN

S,M is obtained by tracing out all except one fermion
according to γ = NTrN−1[Γ]. Conservation of the
total magnetization M implies that the 1RDM γ is
block-diagonal with respect to the spin states |α⟩, |β⟩
and the only non-vanishing blocks in γ are the α, β-
blocks, γαα, γββ , i.e.,

[Sz, Γ] = 0 ⇒ γ = γαα ⊕ γββ . (7)

Furthermore, tracing out the spin degree of freedom
yields the so-called orbital (or spin-traced) 1RDM

γl ≡ TrH(s)
1

[γ] = γαα + γββ . (8)
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Accordingly, the orbital 1RDM γl is obtained from Γ
by applying the map µ

µ = TrH(s)
1

◦ NTrN−1 , (9)

a composition of two partial traces. Since partial
traces are linear, µ is a linear map on the space of
(density) operators, a property that will be crucial for
our work. The matrix elements of the orbital 1RDM
in a given basis of H(l)

1 ,

⟨i|γl|j⟩ ≡ (γl)ij = TrN [EijΓ] , (10)

are nothing else than the expectation values of the
U(d) generators [28, 29]

Eij = f†
jαfiα + f†

jβfiβ . (11)

These generators will be essential for deriving the so-
lution to the orbital one-body w-ensemble (N, S, M)-
representability problem introduced in the next sec-
tion.

2.2 Orbital one-body w-ensemble (N, S, M)-
representability problem
The set of orbital 1RDMs γl, which are compatible to
a pure N -fermion state Γ ∈ PN

S,M is denoted by

L1
N,S =

{
γl | γl = µ(Γ) for some Γ ∈ PN

S,M

}
. (12)

Since the orbital 1RDM is spin-traced, this and vari-
ous other sets of orbital 1RDMs introduced through-
out this work are independent of the magnetic quan-
tum number M . We therefore omit indices M when-
ever possible.
Since the map µ(·) is linear, the image of the set

EN
S,M under the map µ(·) (9) is equal to the convex

hull of L1
N,S , such that

L1
N,S ≡ µ

(
EN

S,M

)
= conv

(
L1

N,S

)
. (13)

An orbital 1RDMs γl is called pure state (N, S, M)-
representable if and only if γl ∈ L1

N,S . Similarly, γl

is called ensemble (N, S, M)-representable if and only

if γl ∈ L1
N,S . The sets of pure/ensemble (N, S, M)-

representable orbital 1RDMs are invariant under uni-

tary transformations ul on H(l)
1 , i.e.,

γ ∈ L1
N,S ⇒ ulγu†

l ∈ L1
N,S (14)

and analogously for L1
N,S . Therefore, for any values

N, S, M and d, both sets are fully characterized by
purely spectral constraints, conditions on the vector
λ of eigenvalues of γl, also called natural orbital oc-
cupation numbers. A formal mathematical procedure
for deriving the spectral characterization of the set
L1

N,S has been provided by Klyachko and Altunbu-
lak in Refs. [30, 31]. Yet, due to its mathematical

complexity, this problem could be solved only for ar-
tificially small values N, d. Quite in contrast, by us-
ing tools from convex analysis, a complete spectral

characterization of L1
N,S could be derived recently in

Ref. [32] for arbitrary system sizes N, d. In analogy
to the spin-adapted generalized Pauli constraints de-
rived by Klyachko and Altunbulak in Refs. [30, 31],
these convex relaxed spin-adapted exclusion principle
constraints take the form of linear inequalities result-
ing in a convex spectral polytope, a spin-dependent
subset of the Pauli hypercube [0, 2]d.

Moreover, we like to stress that the pure state
setting of Refs. [30, 31] means to restrict to N -
fermion density matrices Γ with specific fixed spec-
trum spec↓(Γ) = w0 ≡ (1, 0, . . .). Therefore and
due to the physical relevance of mixed states, one
might be also interested in the solution of the one-
body N -representability problem for a generic choice
of the fixed spectrum spec↓(Γ) = w = w↓, where
w1 ≥ w2 ≥ ... ≥ wD. This more general one-body N -
representability problem contains indeed Klyachko’s
pure state N -representability problem as a special in-
stance, namely for w = w0. This also implies that
solving the more general problem with generic w will
be more complicated than the one for pure states.

To this end, we first introduce the respective sets
of N -fermion states and orbital 1RDMs. The set of
N -fermion states Γ ∈ EN

S,M with fixed spectrum w is
denoted by

EN
S,M (w) ≡

{
Γ ∈ EN

S,M | spec↓(Γ) = w
}

. (15)

The set EN
S,M (w) is in general not convex, as the con-

vex combination of two states with fixed spectrum
w usually yields a state with a different spectrum.
Therefore, we also introduce its convex hull,

EN
S,M(w) ≡ conv

(
EN

S,M (w)
)

. (16)

A basic mathematical result (see, e.g., Ref. [23]) pro-
vides a simple characterization of such convex hulls as
the one in Eq. (16): A density matrix Γ belongs to the

set EN
S,M(w) if and only if its spectrum is majorized

by w, spec↓(Γ) ≺ w. In general, we say that a vector
x ≡ (x1, . . . , xD) majorizes a vector y ≡ (y1, . . . , yD),
y ≺ x, if and only if for all k = 1, 2, . . . , D the follow-
ing condition holds

y↓
1 + . . . + y↓

k ≤ x↓
1 + . . . + x↓

k , (17)

with equality for k = D and the superscript ↓ indi-
cates that the entries in a vector are rearranged de-
creasingly, i.e., the entries of x↓ satisfy x↓

1 ≥ x↓
2 ≥

... ≥ x↓
D. The majorization ≺ defines a (pre)order

on the space of vectors. Moreover, when applied
to the spectra of density matrices it compares them
in terms of their degree of mixedness. In particu-
lar, spec(Γ) ≺ spec(Γ′) implies S(Γ) ≥ S(Γ′), where
S(Γ) ≡ −Tr[Γ log Γ] is the von Neumann entropy [33].
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Figure 1: Commutative diagram illustrating the relation
among the two non-convex sets EN

S,M (w), L1
N,S,M (w) and

their convex hulls EN
S,M (w), L1

N,S,M (w) via the map µ(·).

Applying the map µ(·) in Eq. (9) to the N -fermion

states in EN
S,M (w), EN

S,M(w) yields the following sets
of admissible orbital 1RDMs,

L1
N,S(w) ≡ µ

(
EN

S,M (w)
)

, (18)

L1
N,S(w) ≡ µ

(
EN

S,M(w)
)

.

As it is explained and illustrated in Fig. 1, the set

L1
N,S(w) is the convex hull of L1

N,S(w), in analogy to
Eq. (13) for the specific case w = w0,

L1
N,S(w) = conv

(
L1

N,S(w)
)

. (19)

The relations among the four sets

EN
S,M (w), EN

S,M(w), L1
N,S , L1

N,S(w) are illustrated in
Fig. 1.
We are now in a position to present in concise terms

the scientific problem introduced and addressed by
our work:

Scientific Problem: Spin-symmetry adapted or-
bital one-body w-ensemble N -representability
problem

For given weights w and values N, d, S, M , deter-
mine necessary and sufficient conditions that de-

scribe whether a given orbital 1RDM γl on H(l)
1

∼=
Cd is representing an N -fermion density matrix
with spin quantum numbers S, M and spectrum
at least as mixed as w, i.e., spec↓(Γ) ≺ w (recall
Eq. (17)). By recalling definitions (9),(15),(16) and
Fig. 2, this means to find an efficient characteriza-
tion of the convex set

L1
N,S(w) ≡ µ( EN

S,M(w))
= µ

(
conv

(
EN

S,M (w)
))

. (20)

We refer to γl ∈ L1
N,S(w) as being (relaxed) w-

ensemble (N,S,M)-representable.

We provide a comprehensive solution to this relaxed
orbital one-body spin-adapted N -representability
problem in the subsequent sections. In order to com-
plete the present section a couple of comments are in

order concerning (i) the form of the anticipated solu-
tion, (ii) its physical relevance and (iii) the connection
of our work to previous ones on related topics:

(i) First, as already stressed at the beginning
of Sec. 2 and as our derivation below will
make explicit, various sets of orbital 1RDMs
defined throughout this work (such as those
in Eqs. (12),(13),(18)) are independent of the
magnetic quantum number M . Moreover, as

L1
N,S(w) is invariant under unitary transforma-

tions on the orbital one-particle Hilbert space

H(l)
1 , in analogy to Eq. (14), the solution to

the relaxed (S, N, M)-representability problem is
fully characterized by the spectral set

ΣN,S(w) ≡
{

λ | ∃π ∈ Sd, γl ∈ L1
N,S(w) :

λ = π(spec↓(γl))
}

, (21)

where Sd denotes the symmetric group of de-
gree d. The symmetric group Sd acts on a vec-
tor λ↓ = (spec↓(γl)) ∈ Rd by permutations of
its d entries. Moreover, it is sufficient to con-
sider only the set Σ↓

N,S(w) of decreasingly or-
dered natural orbital occupation number vectors
λ. Both sets ΣN,S(w), Σ↓

N,S(w) are at most
(d−1)-dimensional due to the normalization con-

dition on λ,
∑d

j=1 λj = N . We refer the reader
to Fig. 2 for a schematic illustration and sum-
mary of the relations between the different sets
of density matrices and spectral sets introduced
in this section. Finally, we anticipate that the
sought-after sets ΣN,S(w), Σ↓

N,S(w) are taking
the form of convex polytopes, i.e., the solution to
the scientific problem is given by a finite family
of linear conditions on the natural orbital occu-
pation numbers. These w-ensemble constraints
are found to be effectively form-independent of
N, S and d. In particular, a remarkable hierar-
chy is discovered by referring to the number r of
non-vanishing entries in w. To be more specific,
the constraints for any value of r are given by
those for r − 1 complemented by some additional
new ones. It is exactly the parameter r rather
than N and d that determines the complexity of
our scientific problem. Since most of the essen-
tial low-energy physics is captured by the lowest
two or three eigenstates, it suffices for most appli-
cations (see subsequent point (ii)) to restrict to
r ≤ 3. This allows us, in each symmetry sector,
to compute the ground state and the first two ex-
cited states, and hence the two lowest excitation
gaps.

(ii) Since our work introduces and solves a new vari-
ant of the single-body quantum marginal prob-
lem, it contributes to the general development
in the quantum information sciences [22, 23, 30,
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Figure 2: Illustration of the relations between the most relevant sets of (reduced) density matrices and spectra introduced in
Sec. 2.2. For the sake of clarity, we also present as an intermediate level the corresponding set E1

N,S,M (w) of full 1RDMs γ.
Accordingly, the map µ(·) introduced in Eq. (9) maps an N -fermion density matrix Γ ∈ EN

S,M to its orbital 1RDM γl. The
solution to the relaxed orbital one-body w-ensemble N -representability problem characterizes the spectral set Σ↓

N,S(w).

31, 34–53] that is all about describing the com-
patibility of reduced density matrices (quantum
marginals), with ample applications in quantum
information processing.

The ultimate motivation of our work, however,
was to support the recent development of re-
duced density matrix methods, particularly en-
semble density functional theory (EDFT) [9–
21] and ensemble one-particle reduced density
matrix functional theory (w-RDMFT) [22–25],
for targeting excited states. As we will ex-
plain in detail in Sec. 5, the solution of our (re-
laxed) spin-symmetry adapted w-ensemble N -
representability problem will reveal a compact
characterization of the still unknown domain of
the universal interaction functionals. In that
sense, our work will provide a crucial missing cor-
nerstone for these methods.

From a general point of view, the reader may
also wonder why we address the spin-symmetry
adapted N -representability problem not on the
level of the full 1RDM γ. As explained for pure
states in Refs. [31, 32, 54], the reason for this is
that the corresponding set of 1RDMs is not in-
variant under unitary transformations on H1 and
thus impossible to compute for practically rele-
vant system sizes N, d. This follows from the fact
that the total spin operator S2 does not commute
with arbitrary one-particle operators.

(iii) The relaxed w-ensemble N -representability
problem without spin has already been solved
by some of us in Refs. [22, 23, 52]. Yet, this
solution is not directly applicable in w-RDMFT
or EDFT for the calculation of excited states.
The reason for this is that common functional
approximations refer to a specific spin-symmetry
sector. Changing this paradigm is problematic
since finding an accurate ansatz for the un-
derlying N -electron ensemble state is almost
impossible if one has to treat different spin
states on the same footing. Accordingly, it is a

formidable challenge to address the case with
spin.

Unlike the spin-independent case, the present
work requires the additional integration of
representation theory into the toolkit devel-
oped for solving the one-body w-ensemble N -
representability problem in Refs. [22, 23, 52].
Moreover, incorporating spin quantum numbers
S and M necessitates a modified derivation of the
vertex representation of the spectral polytope. A
crucial difference to the spin-independent setting
is that two orthonormal configuration states (see
below) can now correspond to the same spectrum
of the orbital 1RDM.

3 Solution of relaxed spin-adapted
one-body N -representability problem
The spectral set ΣN,S(w) is a convex polytope as a
direct consequence of the convexity theorems about
moment polytopes in Refs. [55–57]. According to the
Minkowski-Weyl theorem, this implies that ΣN,S(w)
is equivalently characterized by its vertex represen-
tation or a minimal hyperplane representation [58].
In this section we derive first the vertex represen-
tation and then turn it into a minimal hyperplane
representation by using tools from discrete geometry.
The general scheme uses similar mathematical tools
as presented in detail for the spin-independent case
in Refs. [23, 52, 53]. Nevertheless, there are several
crucial differences compared to the spin-independent
setting. This includes in particular a different con-
struction of the Hasse diagram of partially ordered
configurations and its dependence on the quantum
numbers S, M . Therefore, we focus in the follow-
ing on these differences in the solution to the w-
ensemble (N, S, M)-representability problem arising
from fixing the spin quantum numbers S, M . The
derivation of the spin adapted w-ensemble (N, S, M)-
representability constraints of the orbital 1RDM pro-
vides insights into the geometric structure of the re-
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spective convex polytopes ΣN,S(w). Readers only in-
terested in the constraints themselves might directly
jump to Sec. 4.

3.1 Hasse diagram of partially ordered config-
urations

As a consequence of the duality principle for com-
pact convex sets and the Minkowski-Weyl theorem,
the spectral set ΣS,M (w) is fully characterized by the
intersection of its supporting hyperplanes [58, 59]. A
supporting hyperplane of the polytope ΣN,S(w) at
a point λ′ ∈ ΣN,S(w) is a hyperplane that satisfies
aT · λ ≤ aT · λ′ for all λ ∈ ΣN,S , where a denotes the
normal vector of the hyperplane [58]. Moreover, the

dual variable of the orbital 1RDM γl on H(l)
1 is the

orbital one-particle Hamiltonian

hl ≡
d∑

i,j=1
hijEij (22)

and, in analogy to Refs. [22, 23], we can assume with-
out loss of generality that hl and γl share a common
eigenbasis. We denote the vector of eigenvalues of hl

by h ∈ Rd. In combination with the aforementioned
duality principle, this means that we have to mini-
mize linear functionals ⟨h, λ⟩ = const. over the set
ΣN,S for all possible normal vectors h of the corre-
sponding hyperplanes. Due to the unitary invariance

of the set L1
N,S(w) we can further restrict to those or-

bital one-particle Hamiltonians hl with a increasingly

ordered spectrum h
(l)
1 ≤ h

(l)
2 ≤ . . . ≤ h

(l)
d and discuss

only Σ↓
N,S(w) instead of ΣN,S(w), as introduced in

Sec. 2.2.

The supporting hyperplanes are calculated by con-
sidering a so-called Hasse diagram of partially or-
dered configurations. To this end, we first introduce
the set IN,S,M of configuration states |i⟩ that con-

stitute a basis for the N -particle Hilbert H(S,M)
N of

states with fixed quantum numbers S, M . The set
IN,S,M can be constructed from chosen orthonormal

bases Bl, Bs of H(l)
1 , H(s)

1 by constructing a Verma
basis of the irreducible representation space as ex-
plained in Refs. [60, 61] (see also the textbook [26]).
The spatial (or, also called orbital) configurations
i = (i1, i2, . . . , iN ) denote the spatial orbitals |i⟩, i =
1, . . . , d occupied by the N fermions. Due to the spin
degree of freedom each i can appear at most twice
in a configuration i. The energetically lowest config-
uration |i0⟩ ∈ IN

S,M is the highest weight state |Λ⟩
[26, 32], which is unique according to Cartan’s theo-
rem [26]. By definition, the highest weight state |Λ⟩
is annihilated by all positive root operators Eij , j < i
with Eij defined in Eq. (11). For S and the spe-
cial case M = S as good quantum numbers, a state
|ΛS,M=S⟩ is the unique highest weight state if and

only if

∀j < i : Eij |ΛS,M=S⟩ = 0 ∧ S+|ΛS,M=S⟩ = 0 ,
(23)

where S+ =
∑d

i=1 S+
i . Therefore, the highest weight

state for H(S,S)
N is given by

|ΛS,M=S⟩ = | 1α, 1β, . . . , Kα, Kβ︸ ︷︷ ︸
N−2S

, (K + 1)α, . . . , Jα︸ ︷︷ ︸
2S

, 0, . . .⟩ ,

(24)
where we introduced

K = N − 2S

2 , J = N + 2S

2 . (25)

The highest weight state |ΛS,M ⟩ of H(S,M)
N follows

then from |ΛS,M=S⟩ by a finite number of applica-

tions of the negative root operator S− =
∑d

i=1 S−
i

until the desired M is reached. In particular, in con-
trast to Slater determinants, as used in Refs. [22, 23],
the weights of the configurations i for (S, M) do not
necessarily correspond to vertices of the set ΣN,S(w =
(1, 0, . . .)). Here, the word weight originates from a
representation theoretical point of view and refers to
the natural occupation number vector of the orbital
1RDM of a configuration state. If these weights are
not extremal elements of the set ΣN,S(w), this im-
plies that they do not correspond to non-degenerate
ground states of a non-interacting Hamiltonian (22).
Still they have to be taken into account when con-
structing the excitation pattern. This will become
important in Sec. 3.2. Beyond the ground state con-
figuration, the partial ordering of the configurations i
is defined equivalently to Ref. [23]: i ≤ j if and only
if ik1 + . . . + ikN

≤ jk1 + . . . + ≤ jkN
.

Before we work out the Hasse diagram of par-
tially ordered configurations, we observe that the op-
erators Eij are singlet irreducible tensor operators
of the group SU(2). Therefore, the Wigner-Eckart
theorem [26] implies that the expectation value of
the 1RDM matrix elements (γl)ij for a given state

|ΨS,M ⟩ ∈ H(S,M)
N equal the reduced matrix elements

(see also Eq. (10)). This implies that despite the con-
figuration states for S, M differ for different M , their
configurations i are equal and we can restrict without
loss of generality to S = M for the construction of
the Hasse diagram of partially ordered orbital config-
urations. On the level of the spectral set this implies
that ΣN,S(w) = ΣS,M ′(w) for all M, M ′ = −S, . . . , S.
Furthermore, we observe that the structure of Hasse
diagram is effectively independent of S, N, d if they
satisfy the three conditions

d − N + 2S

2 ≥ r − 1 , (26)

N − 2S

2 ≥ r − 1 , (27)

2S ≥ r − 1 , (28)

where r denotes the number of non-vanishing entries
in w. These three stability conditions are important
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Figure 3: Illustration of the Hasse diagram of partially or-
dered configurations for r ≤ 3 satisfying the stability condi-
tions for S, N, d with N = 7, S = 3/2. (see text for more
explanations).

as the resulting Hasse diagram and, therefore, the so-
lution to the N -representability problem is effectively
independent of S, N, d as long as they are fulfilled.
In particular, this allows us to derive the relaxed
w-ensemble (N, S, M)-representability constraints for
generic N, S, d in Sec. 3.3.

To build the Hasse diagram, we start from the
ground state configuration state, namely the high-
est weight state |ΛS,S⟩. We then determine all sin-

gle negative root operators E†
ij , j < i that satisfy

E†
ij |ΛS,M ⟩ ̸= 0 with i − j = 1. The construction

of the next higher orbital configurations follows anal-
ogously. The restriction on i − j = 1 guarantees that
we find the configuration corresponding to the first
excited state, i.e., that the partial ordering condi-
tion is satisfied. For N, S, d satisfying the stability
conditions Eqs. (26)-(28) this implies that there are
two possible configurations of first excitation. In fact,
this is in contrast to the spin-independent case where
the first excitation is always unique as explained in
Refs. [22, 23, 52]. We use the resulting Hasse diagram
in the next section to construct the vertex represen-
tation of the spectral polytope ΣN,S(w).
We illustrate the Hasse diagram of partially or-

dered configurations for generic S, d, N satisfying
Eqs. (26)-(28) for N = 7, S = 3/2 in Fig. 3. The
orbital configuration of the unique highest weight
state |ΛS,S⟩ = |1α, 1β, 2α, 2β, 3α, 4α, 5α⟩ is given by
i0 = (1, 1, 2, 2, 3, 4, 5). The two orbital configurations
i = (1, 1, 2, 3, 3, 4, 5), (1, 1, 2, 2, 3, 4, 6) of the first exci-
tation are obtained by acting with the respective neg-
ative root operators E†

32, E†
65 on the highest weight

state |ΛS,S⟩. Moreover, the singlet case, S = 0, does
not satisfy the third condition (28) for r ≥ 2. There-
fore, we still have a unique first excited state for S = 0
and the Hasse diagram for a singlet with N = 6 il-
lustrated in Fig. 4 indeed differs from Fig. 3. Due
to this difference between S = 0 and generic S satis-
fying the stability conditions Eqs. (26)-(28), we also

have to derive the corresponding relaxed orbital one-
body w-ensemble N -representability constraints for
the two cases separately in Sec. 4. The two Hasse di-
agrams in Figs. 3 and 4 provide the key ingredient for
the derivation of these constraints as explained in the
following.

3.2 Vertex representation
Equipped with the Hasse diagram determined in the
previous section, we are now in a position to derive
the vertex representation of ΣN,S(w). The new sta-
bility conditions in Eqs. (26)-(28) and the different
construction of the Hasse diagram of the orbital con-
figurations through the positive root operators Eij of
u(d) are the first two important differences to the spin-
independent case discussed in Refs. [22, 23, 52]. In
the following, we will discuss the third main differ-
ence, namely that the configurations i can have mul-
tiplicities larger than one, which is not possible for
Slater determinants as in the spin-independent set-
ting of Refs. [22, 23, 52]. The multiplicity mi of a
configuration i is given by (e.g., see the textbook [62])

mi =
(

Nu
Nu

2 − S

)
−

(
Nu

Nu

2 − S − 1

)
, (29)

where Nu denotes the number of unpaired electrons
in i. Alternatively, the multiplicity of a configuration
can be calculated using Kostant’s multiplicity formula
[26, 63]. Moreover, the configuration of the highest
weight state always has multiplicity one due to the
uniqueness theorem of the highest weight proved by
Cartan [26]. The other configurations in Figs. 3 and
4 also have multiplicity one. However, configurations
with mi > 1 occur when including the configurations
of higher excited states in those Hasse diagram. For
instance, in the case of N = 9, S = 3/2 in Fig. 4, the
configuration i = (1, 1, 2, 2, 3, 4, 5, 6, 7) with mi = 4
will occur if more orbital configurations are included
in the Hasse diagram. At the same time, it can be
easily verified that the three stability conditions en-
sure that mi = 1 for S, N, d satisfying Eqs. (26)-(28)
for a given fixed rank r of the N -fermion states Γ.

The multiplicities of the configurations are impor-
tant as they have to be taken into account when con-
structing the so-called lineups l as explained in the
following. A lineup l of length r is a sequence of the r
largest configurations that respects the partial order
between them [23, 52, 53]. The possible lineups are
determined by the Hasse diagram as follows: consider
first r = 2, i.e., rank-2 states with fixed spectrum w
on the N -particle level. As explained in Sec. 3.3, there
are two possible orbital configurations for the second
lowest orbital configuration for r = 2. This leads to
R = 2 lineups for r = 2. For the examples of Hasse di-
agrams in Figs. 3 and 4 this leads to two lineups l1, l2
for Fig. 3, while we have only one lineup l1 for Fig. 4.
The number of distinct lineups for fixed r is denoted
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Figure 4: Illustration of Hasse diagram of partially ordered configurations for a singlet and N = 6.

Figure 5: Hasse diagram of partially ordered configurations
for N = d = 3 and S, M = 1/2.

by R(r). As the multiplicity mi of a configuration
corresponds to the number of orthogonal configura-
tion states mapping to it, configurations have to be
taken into account mi-many times.

As a simple example, we consider the setting of
N = 3 fermions in d = 3 orbitals (recall that

d = dim(H(l)
1 )) and S = M = 1/2. The respective

Hasse diagram is shown in Fig. 5. The dimension of

H(S,M)
N is DS,M = 8 but there are only seven configu-

rations as the configuration i = (1, 2, 3) has multiplic-
ity two. Thus, for r ≥ 5, the configuration i = (1, 2, 3)
has to be taken into account twice before considering
(1, 3, 3), (2, 2, 3). This example leads for r = 5 to the
two lineups

l1 : (1, 1, 2) → (1, 1, 3) → (1, 2, 2) → (1, 2, 3) → (1, 2, 3) ,

l2 : (1, 1, 2) → (1, 2, 2) → (1, 1, 3) → (1, 2, 3) → (1, 2, 3) .
(30)

Moreover, the vector of eigenvalues λ of γl that cor-
responds to i = (1, 2, 3) is not extremal in the set
ΣN,S(w0), w0 = (1, 0, . . .) [32]. This leads to a
further important difference to the spin-independent
case, namely that going from r = 2 to r = 3 in this
example does not yield additional constraints beyond
those of r = 2.
The remaining part of the derivation of the vertex

representation is analogous to the spin-independent
setting and we refer the reader for more details to
Refs. [22, 23]. Each lineup li, i = 1, . . . , R(r) of length
r then leads to a generating vertex v(i) according to

v(i) =
r∑

J=1
wJn(J) , (31)

where n(J) = spec (µ(|jJ⟩⟨jJ |)) with n
(J)
j ∈ {0, 1, 2}.

The vertices v(i), i = 1, . . . , R(r) are called generating
vertices as all other vertices of ΣN,S(w) follow from
permutations of their entries. In particular, the vertex
representation of ΣN,S(w) is given by

ΣN,S(w) = conv
({

π(v(i)) | i = 1, . . . , R(r), π ∈ Sd

})
.

(32)

3.3 Minimal hyperplane representation
In this section, we translate the vertex representation
of ΣN,S(w) to a minimal hyperplane representation.
We use the same techniques that were worked out in
detail in Ref. [52]. To keep the work self-contained,
we therefore only briefly recap the most important
concepts from discrete geometry that are required
in Sec. 4 to derive the relaxed orbital one-body w-
ensemble (N, S, M)-representability constraints. For
a single generating vertex this is trivial since the lin-
ear constraints follow directly from a theorem by Rado
[64]. However, the number of lineups and, thus, the
number of generating vertices grows with r which
makes the task highly non-trivial.
Let us assume that N, S, d satisfy the stability con-

ditions in Eqs. (26)-(28) for a given r. The first step
to arrive at the hyperplane representation of ΣN,S(w)
is to determine all lineups li, i = 1, . . . , R(r) and cal-
culate the corresponding R(r) generating vertices as
described in Sec. 3.2. A linear inequality is called
valid if it is satisfied by all points in the polytope
ΣN,S(w). The normal fan N (ΣN,S(w)) of ΣN,S(w)
is determined from the normal cones of the vertices of
ΣN,S(w) derived in Sec. 3.2. The facets of ΣN,S(w)
provide all missing normal cones of ΣN,S(w) and yield
the rays used to calculate the facet-defining inequal-
ities. Due to permutation invariance of ΣS,M (w)
it is further sufficient to study the fundamental fan
Nf (ΣS,M (w)), which is given by the intersection of
the normal fan with the fundamental chamber Φd, i.e.
Nf (ΣN,S(w)) = N (ΣN,S(w)) ∩ Φd. The fundamental
chamber Φd is defined as the set

Φd ≡
{

η ∈ (Rd)∗ | η = η↓}
(33)
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of linear functionals on the dual space (Rd)∗. Fur-
thermore, we introduce the dual fundamental basis
Bf = {f i}d

i=1 whose basis vectors are given by

f i ≡
i∑

j=1
εj , ∀ i = 1, . . . , d , (34)

where εi are the elements of the dual elementary
basis. The set of linear constraints is expressed as
A · λ↓ ≤ B · w, where A, B are coefficient matrices
and each row determines one linear constraint that
has to be satisfied by any λ ∈ ΣN,S(w). For each
lineup lk we then determine the set of fundamen-
tal linear functionals η uniquely maximised at the
corresponding generating vertex v(k) and determine
from that the rays of Nf (ΣN,S(w)). The resulting
rays determine the left hand-side of the linear con-
straints in our hyperplane representation of ΣN,S(w),
i.e., the matrix A, and evaluating them on the vertices
v(k), k = 1, . . . , R yields the right hand-side of the in-
equalities. Due to the intersection with the fundamen-
tal chamber this procedure might lead to redundant
inequalities which are removed afterwards. Thus, the
last step is to determine the minimal hyperplane rep-
resentation of ΣN,S(w) by identifying the redundant
inequalities. We illustrate these concepts and derive
the resulting inequalities for different r and S and
generic N, d in Sec. 4. This will eventually lead to the
sought-after spin-dependent w-ensemble orbital one-
body (N, S, M)-representability constraints.

4 Spin-adapted exclusion principle
constraints for mixed states

In this section we explicitly derive the relaxed w-
ensemble one-body N -representability constraints for
different values of the total spin quantum number S.

4.1 Geometrical aspects of spin-adapted Pauli
constraints

Before deriving the spin-adapted w-ensemble one-
body N -representability constraints for r ≥ 2, we
discuss in this section the case r = 1 from a ge-
ometric perspective. The unique generating ver-
tex of ΣN,S(w0), w0 = (1, 0, . . .) follows as the
highest weight as explained in Sec. 3.1 as (recall
Eqs. (24),(25))

v = ( 2, . . . , 2︸ ︷︷ ︸
(N−2S)/2

, 1, . . . , 1︸ ︷︷ ︸
2S

, 0, . . . , 0︸ ︷︷ ︸
d−(N+2S)/2

) (35)

which leads to the so-called spin-adapted Pauli con-
straints [32, 54]

λ↓
1 ≤ 2 ,

...

K∑
i=1

λ↓
i ≤ N − 2S ,

K+1∑
i=1

λ↓
i ≤ N − 2S + 1 ,

...

J∑
i=1

λ↓
i ≤ N . (36)

We are interested in the geometric structure of the
permutohedron ΣN,S(w0). To this end, we define the
two vertices

p(1) = ( 1, . . . , 1︸ ︷︷ ︸
(N−2S)/2

, 0, . . . , 0︸ ︷︷ ︸
d−(N−2S)/2

)

p(2) = ( 1, . . . , 1︸ ︷︷ ︸
(N+2S)/2

, 0, . . . , 0︸ ︷︷ ︸
d−(N+2S)/2

) . (37)

and the corresponding permutohedra

P
(i)
N,S = conv

({
π(p(i)) | π ∈ Sd

})
. (38)

Thus, P
(1)
N,S is nothing else than the Pauli simplex for

the setting of Nβ ≡ K = (N − 2S)/2 spin-β elec-

trons, while P
(2)
N,S corresponds to the Pauli simplex

for Nα ≡ J = (N + 2S)/2 spin-α electrons. Then,
ΣN,S(w0) follows as the Minkowski sum of the two

permutohedra P
(1)
N,S , P

(2)
N,S according to

ΣN,S(w0) = P
(1)
N,S + P

(2)
N,S (39)

=
{

x1 + x2 | x1 ∈ P
(1)
N,S , x2 ∈ P

(2)
N,S

}
.

We illustrate this Minkowski sum for N = d =
4, S = 1 in Fig. 6, where λ4 = N −

∑3
i=1 λi is fixed

through the normalization condition. In that case,
p(1) = (1, 0, 0, 0) and p(2) = (1, 1, 1, 0). Therefore,
Σ4,1(w0) with generating vertex v = (2, 1, 1, 0) (right)
is nothing else than the Minkowski sum of P

(1)
4,1 (left)

and P
(2)
4,1 (middle).

As ΣN,S(w0) is the sum of two hypersimplices

P
(1)
N,S , P

(2)
N,S , it has a richer geometric structure than

the Pauli hypersimplex (for spinless fermions), which
is the permutohedron of the Hartree-Fock point
vHF = (1, . . . , 1, 0, . . .). In fact, the volume of a hy-
persimplex is well-known since more than 100 years
[65], while the volume of the sum of hypersimplices is
in general more complicated to determine [66, 67].
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+ =

Figure 6: The spectral polytope ΣN,S(w0) with w0 = (1, 0, . . .) for S = 1, d = N = 4 follows as the Minkowski sum
of the permutohedra of v1 = (1, 0, 0, 0) and v2 = (1, 1, 1, 0) of N = 1 and N = 3 fermions, respectively. The value of
λ4 = N −

∑3
i=1 λi is fixed through the normalization of γl to the total particle number N .

4.2 Constraints for generic S, N, d and r = 2
In the following, we derive the hyperplane represen-
tation of the spectral polytope ΣN,S(w) for r = 2.
We consider generic S, N, d satisfying the three sta-
bility constraints in Eqs. (26)-(28). Thus, we con-
sider the setting illustrated in Fig. 3, where there are
two possible first excited states and, thus, two cor-
responding orbital configurations. These two orbital
configurations are obtained from the highest weight
state |ΛS,M=S⟩ in Eq. (24) by applying the two nega-

tive root operators E†
K+1,K , E†

J+1,J , respectively. For
the example of N = 7, S = 3/2 in Fig. 3 these are the

operators E†
32, E†

65 with K, J defined in Eq. (25).
These two configuration are then used as described

in Sec. 3.2 to derive the vertex representation of the
spectral polytope ΣN,S(w) in Eq. (32) for r = 2. This
leads to the following two generating vertices (see Ap-
pendix A.1 for a detailed derivation)

v(1) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2

, 1, . . . , 1︸ ︷︷ ︸
2S−1

, w1, 1 − w1, 0, . . .) ,

v(2) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2 −1

, 1 + w1, 2 − w1, 1, . . . , 1︸ ︷︷ ︸
2S−1

, 0, . . .) . (40)

To translate this vertex representation of ΣN,S(w) in
Eq. (32) into a hyperplane representation, we follow
in Appendix A.1 the formalism outlined in Sec. 3.3.
The vertices in Eq. (40) are used in this derivation
to calculate from the fundamental rays of the normal
cone the right hand-side of the respective inequali-
ties. This eventually yields the spin-adapted Pauli
constraints in Eq. (36) for r = 1 and the new and
non-trivial constraint for r = 2

2
K∑

i=1
λ↓

i +
J∑

j=K+1
λ↓

j ≤ 2(N − S) − 1 + w1 , (41)

which indeed depends on w as well as on the quantum

numbers S, N . Its independence from M is a conse-
quence of the Wigner-Eckart theorem as explained in
Sec. 3.1. The additional w-dependent constraint for
r = 2 constitutes the first non-trivial exclusion princi-
ple constraint for w-ensembles with fixed good quan-
tum numbers S, M . For r = 3 discussed in the next
section, we again have the constraints from r = 1, 2 in
Eq. (41) together with a finite number of additional
constraints.

We illustrate the more restrictive spin-adapted w-
ensemble (N, S)-representability constraints for three
different choices of the weight vector w and N =
d = 4, S = 1 in Fig. 7. For these values of N, d, S
the stability conditions in Eqs. (26)-(28) are satis-
fied. Due to the normalization of the orbital 1RDM
γl to the total particle number N , the forth dimen-
sion can be discarded as λ4 = 4 −

∑3
i=1 λ3. The spec-

tral polytope arising from the spin-adapted Pauli con-
straints in Refs. [32, 54] is shown by the gray dashed
lines and contains ΣN,1(w). Moreover, we observe
an inclusion relation with respect to w in analogy to
Refs. [23, 52], namely Σ(w′) ⊆ Σ(w) if and only if
w′ ≺ w. For example, this implies that the right
polytope for w′ = (0.5, 0.5, 0, . . .) is contained in the
left polytope with w = (0.7, 0.3, 0, . . .).

4.3 Constraints for generic S, N, d and r = 3
In the following, we derive the constraints for r = 3
and generic S, N, d satisfying the stability conditions
in Eqs. (26)-(28). We will see that this leads again to
the spin-adapted Pauli constraints (36), the new spin-
adapted w-constraint in Eq. (41) and additional new
constraints. Moreover, the hyperplane representation
for r = 3 has to reduce to the one for r = 2 in the
limit w3 → 0.

For r = 3, the vertex representation of ΣN,S(w) for
generic S, N, d follows from the respective Hasse dia-
gram of partially ordered configurations as (see Ap-
pendix A.1)
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Figure 7: Illustration of the spectral polytope ΣN,S(w) for N = d = 4, S = 1 and three different vectors w with r = 2
non-vanishing weights. The value of λ4 = N −

∑3
i=1 λi is fixed through λ1, λ2, λ3. The spectral set ΣN,S(1, 0, . . .) that

corresponds to the Pauli constraints (36) is shown in gray. The additional w-dependent constraint for r = 2 removes the
corners of the spin-adapted Pauli spectral polytope and its w-dependence reduces the size of ΣN,S(w) as the mixedness of w
increases.

v(1) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2 −1

, 2 − w2, 1 + w2, 1, . . . , 1︸ ︷︷ ︸
2S−2

, w1 + w2, 1 − w1 − w2, 0, . . .) ,

v(2) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2 −1

, 1 + w1 + w2, 2 − w1 − w2, 1, . . . , 1︸ ︷︷ ︸
2S−2

, 1 − w2, w2, 0, . . .) ,

v(3) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2 −1

, 1 + w1, 1 + w2, 2 − w1 − w2, 1, . . . , 1︸ ︷︷ ︸
2S−2

, 0, . . .) ,

v(4) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2 −2

, 1 + w1 + w2, 2 − w2, 2 − w1, 1, . . . , 1︸ ︷︷ ︸
2S−1

, 0, . . .) ,

v(5) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2

, 1, . . . , 1︸ ︷︷ ︸
2S−1

, w1, w2, 1 − w1 − w2, 0, . . .) ,

v(6) = (2, . . . , 2︸ ︷︷ ︸
N−2S

2

, 1, . . . , 1︸ ︷︷ ︸
2S−2

, w1 + w2, 1 − w2, 1 − w1, 0, . . .) . (42)

Calculating the rays of the normal fan as explained in
Sec. 3.3 eventually yields the constraints in Eq. (41)
and we derive in Appendix A.1 the additional two
constraints that are characteristic for r = 3. Thus,
for r = 3 there are three w-dependent relaxed orbital
one-body (N, S)-representability constraints, namely

2
K∑

i=1
λ↓

i +
J∑

i=K+1
λ↓

i ≤ 2(N − S) − 1 + w1 ,

3
K−1∑
i=1

λ↓
i + 2

K+1∑
i=K

λ↓
i +

J∑
i=K+2

λ↓
i

≤ 3N − 4S − 2 + w1 + w2 ,

3
K∑

i=1
λ↓

i + 2
J−1∑

i=K+1
λ↓

i +
J+1∑
i=J

λ↓
i

≤ 3N − 2S − 2 + w1 + w2 . (43)

This illustrates again the hierarchy in r of the exclu-
sion principle constraints: In general, the constraints
for any value of r are given by those for r − 1 com-

plemented by some additional new ones. This is also
consistent with the crucial fact that the polytope for
the case of r non-vanishing weights simplifies to the
one with r−1 non-vanishing weights in any limit with
wr → 0. Moreover, the three stability conditions (26)-
(28) ensure that the constraints in Eq. (43) are effec-
tively form-independent of N, S, d. In particular, this
implies that they do not really dependent on the size
d of the underlying basis set used in quantum chem-
ical calculations and the constraints are known even
in the complete basis set limit. Moreover, this form-
independence of the exclusion principle constraints
of N, S, d is in striking contrast to Klyachko’s solu-
tion to the pure state N -representability problem [31],
which strongly depends on the system size. Thereby,
we eventually demonstrate that the constraints in
Eq. (43) and the hyperplane representation for generic
r (whose derivation is described in Sec. 3) constitute
a generalization of the spin-adapted Pauli exclusion
principle constraints (36) to w-ensemble states.
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4.4 Singlet constraints
The ground state of many atomic or molecular sys-
tems is a singlet state. We therefore derive in the
following the constraints for S = 0 and generic N, d
for r ≤ 3. The w-ensemble exclusion principle con-
straints for arbitrary r can again be calculated by fol-
lowing the general derivation of the vertex and hyper-
plane representation in Sec. 3. As indicated above, the
case S = 0 requires particular care since the stability
constraint (28) is only met for r = 1. In turn this
means that we have to study the distinctive excita-
tion diagrams for S = 0, such as the one shown in
Fig. 4.

We first recall from Sec. 3.1 that for S = 0 the
spectrum of the orbital 1RDM corresponding to the
unique highest weight vector is given by

λ(Λ) = spec↓(µ(|Λ⟩⟨Λ|)) = (2, 2, . . . , 2, 0, . . .) . (44)

The Hasse diagram of partially ordered configurations
for generic N, d and S = 0 is constructed as described
in Sec. 3.1 and illustrated as an example in Fig. 4. In
particular, we obtain from Sec. 3.1 that the unique
lineup for r = 2 is given by(

1, 1, . . . ,
N

2 ,
N

2

)
→

(
1, 1, . . . ,

N

2 − 1,
N

2 − 1,
N

2 ,
N

2 + 1
)

. (45)

According to Eq. (31), this yields the generating ver-
tex

v = (2, . . . , 2︸ ︷︷ ︸
N/2−1

, 1 + w1, 1 − w1, 0, . . .) . (46)

Thus, the hyperplane representation of the spectral
polytope ΣN,S(w) for r = 2 follows directly from
Rado’s theorem. ΣN,S(w) is characterized by the
spin-adapted Pauli constraint following from (36) for
S = 0 (see also Ref. [32]), i.e.,

λ↓
1 ≤ 2 (47)

and the additional w-dependent constraint

N/2∑
i=1

λ↓
i ≤ N − 1 + w1 . (48)

The spectral polytope for r = 2 and N = d = 4, w =
(0.6, 0.4, 0, . . .) is illustrated in the left panel of Fig. 8.
The forth entry of λ is discarded due to the normal-
ization

∑4
i=1 λi = 4, in analogy to the visualization

in Fig. 7. The facet-defining hyperplane that removes
the vertices of the Pauli simplex (gray) is determined
by Eq. (48).

For r = 3, there are three possible options for the
third excitation as illustrated for the example of N =
6 in Fig. 4. Their explicit form for generic N, d in
provided in Appendix A.2. These three lineups then
yield the three generating vertices

v(1) = (2, . . . , 2︸ ︷︷ ︸
N
2 −1

, 1 + w1, w2, 1 − w1 − w2, 0, . . .) ,

(49)
v(2) = (2, . . . , 2︸ ︷︷ ︸

N
2 −1

, 2w1 + w2, 2 − 2w1 − w2, 0, . . .) ,

v(3) = (2, . . . , 2︸ ︷︷ ︸
N
2 −2

, 1 + w1 + w2, 2 − w2, 1 − w1, 0, . . .) .

We then show in Appendix A.2 that these three ver-
tices yield in addition to the Pauli exclusion principle
(47) and

∑N
i=1 λ↓

i = N the following two constraints,

N/2∑
i=1

λ↓
i ≤ N − 1 + w1 ,

3
N/2−1∑

i=1
λ↓

i + 2λ↓
N/2 + λ↓

N/2+1 ≤ 3N − 4 + 2w1 + w2 .

(50)

Thus, there exists one additional inequality, namely
the second one in Eq. (50), in addition to the con-
straint for r = 2 in Eq. (48). This demonstrates again
the hierarchy in r of the w-ensemble exclusion princi-
ple constraints. We present a graphical illustration of
the polytopes ΣN,S(w) in Fig. 8 for N = d = 4, S = 0.
Comparing the three different panels clearly show-
cases the hierarchy in r and confirms that the poly-
tope’s volume shrinks as the degree of mixedness of w
increases (referring to majorization (17)), in analogy
to Fig. 7 for triplets.

For r = 4, there are in general eight lineups, as
discussed in Appendix A.2, which yield the following
eight vertices
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Figure 8: Illustration of the spectral polytope ΣN,S(w) for N = d = 4, S = 0 and different vectors of w for r = 2, 3
non-vanishing weights in w. The spectral set ΣN,S(1, 0, . . .) that corresponds to the Pauli constraints for the chosen S, N, d
is shown in gray. The left panel corresponds to r = 2 non-zero weights and, thus there is only one additional w-dependent
inequality (48) that cuts out the corners of the Pauli polytope. For r = 3 (middle and right panel), this constraint is still
facet-defining but there is one new constraint resulting in additional facets.

v(1) = (2, . . . , 2︸ ︷︷ ︸
N
2 −1

, 1 + w1, w2, w3, 1 − w1 − w2 − w3, 0, . . .) ,

v(2) = (2, . . . , 2︸ ︷︷ ︸
N
2 −1

, 2w1 + w2 + w3, 2 − 2w1 − w2 − 2w3, w3, 0, . . .) ,

v(3) = (2, . . . , 2︸ ︷︷ ︸
N
2 −1

, 1 + w1 − w3, w2 + 2w3, 1 − w1 − w2 − w3, 0, . . .) ,

v(4) = (2, . . . , 2︸ ︷︷ ︸
N
2 −2

, 1 + w1 + w2 + w3, 2 − w2 − 2w3, 1 − w1 + w3, 0, . . .) ,

v(5) = (2, . . . , 2︸ ︷︷ ︸
N
2 −2

, 2 − w3, 2w1 + w2 + 2w3, 2 − 2w1 − w − 2 − w3, 0, . . .) ,

v(6) = (2, . . . , 2︸ ︷︷ ︸
N
2 −2

, 1 + w1 + w2 + w3, 2 − w2 − w3, 1 − w1 − w3, w3, 0, . . .) ,

v(7) = (2, . . . , 2︸ ︷︷ ︸
N
2 −2

, 2 − w3, 1 + w1 + w3, w2 + w3, 1 − w1 − w2 − w3, 0, . . .) ,

v(8) = (2, . . . , 2︸ ︷︷ ︸
N
2 −3

, 1 + w1 + w2 + w3, 2 − w3, 2 − w2, 1 − w1, 0, . . .) . (51)

These generating vertices yield the vertex representa-
tion of ΣN,S(w) in virtue of Eq. (32).
We then transform this vertex representation into

a minimal hyperplane representation (see Appendix
A.2). This eventually yields for r = 4 and S = 0
three additional w-dependent constraints,

3
N/2−1∑

i=1
λ↓

i + 2λ↓
N/2 + λ↓

N/2+1 + λ↓
N/2+2 ≤ 3N − 4 + 2w1 + w2 + w3 ,

2
N/2−1∑

i=1
λ↓

i + λ↓
N/2 + λ↓

N/2+1 ≤ 2N − 3 + w1 + w2 + w3 ,

3
N/2−2∑

i=1
λ↓

i + 2λ↓
N/2−1 + 2λ↓

N/2 + λ↓
N/2+1 ≤ 3N − 6 + 2w1 + w2 + w3 , (52)
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which complement the constraints for r = 3, i.e., the
Pauli exclusion principle (47) and the constraints in
Eq. (50).

5 Applications
In this section, we discuss three direct applications
of the spin-adapted orbital one-body w-ensemble N -
representability constraints derived in the previous
sections. They are all concerned with the task of cal-
culating the lowest few energy eigenstates of an in-
teracting N -electron system in virtue of the ensemble
variational principle due to Gross, Oliveira and Kohn
[7] (see also Ref. [8]): Let H be a Hamiltonian with
increasingly ordered eigenvalues E1 ≤ E2 ≤ . . . ≤ ED

on a D-dimensional Hilbert space H and denote the
set of density matrices on H with spectrum w = w↓

by E(w). Then,

Ew ≡
D∑

i=1
wiEi = min

Γ∈E(w)
Tr [HΓ]

= min
Γ∈E(w)

Tr [HΓ] , (53)

i.e., the w-averaged energy Ew can be obtained vari-
ationally by minimizing the energy expectation value
Tr [HΓ] over all density matrices with spectrum w.
The resulting minimum is not changed if one extends
the variational principle to the convex hull E(w) of
E(w), i.e., by including also those density matrices Γ
whose spectrum is majorized by w (recall the com-
ment above Eq. (17)).

5.1 Functional theory for excited states
The scope of a one-body reduced density matrix func-
tional theory (RDMFT) is characterized by a family
of Hamiltonians of interest [68] that take the form
H(hl) = hl + W which we assume to commute with
S2, Sz. Here, the interaction W between the electrons
(or any other spin-1/2 fermions) is kept fixed, while

the orbital one-particle Hamiltonian hl on H(l)
1 can

be varied 2. Moreover, we denote for a fixed choice
of S, M the increasingly ordered eigenvalues of H(hl)
within H(S,M)

N by E
(S,M)
1 (hl) ≤ E

(S,M)
2 (hl) ≤ . . . ≤

E
(S,M)
D (hl) with D ≡ D

(S,M)
N . Applying now the en-

semble variational principle (53) yields the weighted

sum of the lowest r eigenenergies within H(S,M)
N ,

E(S,M)
w (hl) ≡

r∑
i=1

wiE
(S,M)
i

= min
Γ∈EN

S,M
(w)

TrN [H(hl)Γ]

= min
Γ∈EN

S,M(w)
TrN [H(hl)Γ] . (54)

2For the sake of simplicity, we use here the same symbol for
that Hamiltonian as an operator on H(l)

1 and HN .

Moreover, it follows from the ensemble variational

principle that E
(S,M)
w (hl) is a concave functional of hl.

Accordingly, we obtain a spin-adapted w-ensemble
RDMFT directly by applying the ideas in Refs. [22–

25] to each spin sector H(S,M)
N separately. The univer-

sal interaction functional follows from the Legendre-

Fenchel transformation of E
(S,M)
w (hl) in analogy to

Lieb’s convex formulation of DFT [69, 70] according
to

F (S,M)(w) ≡ sup
hl

(
E(S,M)

w (hl) − TrH(l)
1

[hlγl]
)

. (55)

Therefore, the functional F (S,M)(w) is convex by def-
inition and thus equal to the ensemble constrained
search functional [71]

F (S,M)(w) = min
EN

S,M(w)∋Γ7→γl

TrN [ΓW ] . (56)

Moreover, following Ref. [72] reveals that

F (S,M)(w) is the lower convex hull, F (S,M)(w) =
conv(F (S,M)(w)), of the (typically non-convex) pure
constrained search functional [73],

F (S,M)(w) ≡ min
EN

S,M
(w)∋Γ7→γl

TrN [ΓW ] . (57)

The functionals F (S,M)(w) and F (S,M)(w) both de-
pend explicitly on the quantum numbers S, M as well
as the weight vector w. More importantly, their do-
mains are given precisely by the set L1

N,S(w) and

its convex hull L1
N,S(w), respectively. The latter

is nothing else than the set of orbital 1RDMs that
are compatible to an N -fermion quantum state with
well-defined spin quantum numbers S, M and spec-
trum majorized by the vector w. With the compact
characterization of that domain at hand derived in
Secs. 3, 4, the process of deriving more and more ac-

curate functional approximations for F (S,M)(w) can
now commence.

5.2 Lattice density functional theory
The application of the solution to the orbital one-
body w-ensemble (N, S, M)-representability problem
in functional theories is not limited to RDMFT. In
this section, we demonstrate that it also constrains
the set of admissible occupation number vectors in
the so-called ensemble DFT for excited states (EDFT)
based on the ensemble variational principle (53) [9–
15, 17, 18, 20, 21] when applied to lattice systems
with a global SU(2) spin symmetry. For an introduc-
tion to lattice DFT, see Refs. [74–82]. In DFT, we
consider Hamiltonians H(v) = v + t + W , which are
parameterized by a local external potential v while
the kinetic energy operator t and the interaction W
are kept fixed. Then, the natural variable in lattice
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DFT is the vector ρ ∈ Rd of (site) occupation num-
bers ρi = (γl)ii, which are the conjugate variables
to the local external potentials vi on the lattice sites
i ∈ {1, . . . , d}. Through the dual pairing, the expec-
tation value of the local external potential follows as
⟨v, ρ⟩ =

∑d
i=1 viρi. Excited states can be calculated

by means of the ensemble variational principle, as ex-
plained in detail in the review article [15]. Similarly to
Eqs. (55) and (56), the ensemble universal functional
in lattice GOK-DFT is defined as

G(S,M)(ρ) ≡ min
EN

S,M(w)∋Γ7→ρ

TrN [(t + W )Γ] . (58)

The domain of G(S,M)(ρ) is given by all those lattice
site occupation number vectors ρ, which are compati-

ble to an N -particle state Γ ∈ EN
S,M(w) and, thus, also

to an orbital 1RDM γl ∈ L1
N,S(w). The domain of

G(S,M)(ρ) explicitly depends on the total spin quan-
tum number S as well as the weight vector w, as
shown in the following.

To this end, we first recall from Ref. [23] that a
vector λ is an element of the permutation invariant
polytope ΣN,S(w) if and only if it is majorized by a

convex combination u ≡
∑R

i=1 qiv
(i) of the generating

vertices v(i), i ∈ {1, . . . , R}, that is

λ ∈ ΣN,S(w) ⇔ λ ≺ u ≡
R∑

i=1
qiv

(i), qi ≥ 0,

R∑
i=1

qi = 1 .

(59)
Moreover, ρ is majorized by the vector λ of eigenval-
ues of γl as a consequence of the Schur-Horn theorem
[83, 84]. Thus, it follows from the transitivity of the
majorization that

ρ ≺ λ ≺ u . (60)

We therefore conclude that the domain of G(S,M)(ρ) is
determined precisely by the relaxed orbital one-body
w-ensemble N -representability constraints derived in
Secs. 3, 4, yet here applied to ρ rather than λ. Besides
its w-dependence, this also shows that the domain of

G(S,M)(ρ) explicitly depends on the total spin quan-
tum number S.

5.3 Contraction conditions for higher order re-
duced density matrices
As a third application, the orbital one-body w-
ensemble (N, S, M)-representability constraints pro-
vide necessary but not sufficient conditions for the w-
ensemble (N, S, M)-representability of higher-order
reduced density matrices (RDMs). This includes the

full 1RDM γ = NTrN−1[Γ], Γ ∈ EN
S,M(w), as well

as p-particle reduced density matrices (pRDMs) with
p ≥ 2.

We denote by

Ep
N,S,M (w) ≡

(
N
p

)
TrN−p

[
EN

S,M(w)
]

(61)

the set of pRDMs Γ(p) compatible with an N -fermion

state Γ ∈ EN
S,M(w). The restriction to N -fermion

states Γ ∈ EN
S,M(w) instead of all N -fermion den-

sity operators imposes additional w-dependent con-
straints beyond the previously derived ensemble p-
body N -representability conditions [1, 85–89]. Every
Γ(p) ∈ Ep

N,S,M (w) satisfies

µ(p)
(

Γ(p)
)

∈ L1
N,S(w) , (62)

where we defined the linear function µ(p) which maps
a pRDM to its orbital 1RDM according to

µ(p) : Ep
N,S,M (w) → L1

N,S(w)
Γ(p) 7→ γl , (63)

where Hp ≡ ∧pH1 denotes the Hilbert space of p spin-
1/2 fermions.

Solving the relaxed w-ensemble (N, S, M)-
representability problem for pRDMs is highly
complex even for p = 1, since the corresponding
sets Ep

N,S,M (w) are not unitarily invariant anymore.
This in turn highlights the potential significance of
the contraction relation (62). For instance, it might
be valuable for implementing variational 2RDM
approaches [90–96] within the w-ensemble framework
based on the ensemble variational principle [7, 8].

6 Summary and outlook
Motivated by recent advances in reduced density ma-
trix methods, we have developed a comprehensive so-
lution to the convex-relaxed, spin-adapted one-body
w-ensemble N -representability problem for the or-
bital 1RDM γl. We demonstrated that the set of
admissible γl is defined by linear spectral constraints
on the natural orbital occupation numbers λi, form-
ing a convex polytope ΣN,S(w) ⊂ [0, 2]d. These
w-ensemble exclusion principle constraints refine the
Pauli exclusion principle, 0 ≤ λi ≤ 2, and depend
linearly on N and S, while being independent of M
and the number d of orbitals. This allows their com-
putation for arbitrary spin quantum numbers and
system sizes, including the infinite basis set limit.
Additionally, we uncovered a hierarchical structure
in these constraints as a function of the number r
of non-vanishing entries in w: constraints for r are
given by those for r − 1, supplemented by new ones.
Importantly, our constraints explicitly account for
spin, a feature essential for many quantum physics
and chemistry applications, distinguishing them from
prior works.
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We also demonstrated three applications of the
spin-dependent w-ensemble constraints in reduced
density matrix methods (Sec. 5). First, these con-
straints are pivotal for w-RDMFT in fermionic sys-
tems with global SU(2) spin symmetry, enabling the
calculation of low-lying excited states in specific spin
sectors. Through the constrained search formalism,
we establish the universal interaction functional of the
orbital 1RDM γl, whose domain is precisely described
by these constraints. Second, as a consequence of the
Schur-Horn theorem [83, 84], the constraints also de-
fine the set of admissible densities in ensemble den-
sity functional theory (EDFT). Third, they provide
a first outer approximation to the set of w-ensemble
(N, S, M)-representable p-RDMs, with potential sig-
nificance for variational 2RDM approaches [90–96]
within the w-ensemble framework.

Beyond RDM theories, the vertices of the spectral
polytopes ΣN,S(w) correspond to spin-symmetry re-
stricted Hartree-Fock (HF) states for w-ensembles.
By minimizing the energy expectation value over
these states, we establish a mean-field theory for tar-
geting excited states. The distance of a given N -
electron density matrix’s natural orbital occupation
numbers λ from the vertices of ΣN,S(w) serves as
both a metric for the accuracy of spin-adapted w-
HF calculations and a measure of correlation be-
yond spin-adapted HF states. This insight paves the
way for a theory of electron correlation that quanti-
fies quantum correlations beyond spin- and exchange-

symmetry, extending to mixed states.
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A Derivation of relaxed orbital one-
body w-ensemble N -representability
constraints
A.1 Generic N, S, d

We derive the relaxed orbital one-body w-ensemble
N -representability constraints for N, S, d satisfying
Eqs. (26)-(28) for r ≤ 3. The constraints for any
larger r can be derived in an analogous manner. In
the derivation we exploit the so-called hierarchy of ex-
clusion principle constraints explained in the Sec. (4),
which states that the constraints for r + 1 consist of
the constraints for r and a finite number of additional
ones. We therefore start with r = 2.
For generic N, S, d and r = 2, we obtain (recall also

the example in Fig. 3) two distinct lineups,

l1 : (1, 1, 2, 2, . . . , K, K, K + 1, . . . , J)︸ ︷︷ ︸
≡ i

(1)
1

→ (1, 1, 2, 2, . . . , K, K, K + 1, . . . , J − 1, J + 1)︸ ︷︷ ︸
≡ i

(1)
2

,

l2 : (1, 1, 2, 2, . . . , K, K, K + 1, . . . , j)︸ ︷︷ ︸
≡ i

(2)
1

→ (1, 1, 2, 2, . . . , K − 1, K − 1, K, K + 1, K + 1, K + 2, . . . , J)︸ ︷︷ ︸
≡ i

(2)
2

, (64)

where K = (N − 2S)/2, J = (N + 2S)/2. These two
lineups correspond, in full analogy to Refs. [22, 23],
to two distinctive N -fermion states, namely,

Γ(1)
w = w|i(1)

1 ⟩⟨i(1)
1 | + (1 − w)|i(1)

2 ⟩⟨i(1)
2 |

Γ(2)
w = w|i(2)

1 ⟩⟨i(2)
1 | + (1 − w)|i(2)

2 ⟩⟨i(2)
2 | . (65)

For both states Γ(1)
w , Γ(2)

w we calculate the orbital

1RDM γ
(1/2)
l via the map µ(·) defined in Eq. (9).

Then, the generating vertices v(1/2) of the spectral

polytope ΣN,S(w) follow as the spectra of γ
(1/2)
l ac-

cording to

v(i) = spec
(

γ
(i)
l

)
. (66)

For the two states Γ(1)
w , Γ(2)

w in Eq. (65), we eventually

obtain the two generating vertices in Eq. (40).
In the next step, we apply the formalism outlined

in Sec. 3.3 to translate the vertex representation of
ΣN,S(w) into a minimal hyperplane representation.
By using the two lineups in Eq. (64), we first deter-
mine the normal cones of the vertices of ΣN,S(w). To
this end, we have calculate the set of linear function-
als, which are uniquely maximized or, equivalently,
minimized at a generating vertex v(i). We say that
a linear functional η enforces a lineup li if it is con-
tained in the (open) normal cone of the vertex v(i).
To enforce the first lineup l1, the fundamental linear
functional η has to satisfy (recall Eq. (25))

⟨η, eK + eJ+1 − eK+1 − eJ⟩ > 0 , (67)

Accepted in Quantum 2025-11-24, click title to verify. Published under CC-BY 4.0. 16



where ei = (0, . . . , 1, 0, . . .) are the basis vectors of the
standard basis. Thus, all entries of ei are zero except
for a single ‘1’ in the i-th entry. Moreover, using f i

defined in Eq. (34) we see that the fundamental linear
functional η is given by

η =
d∑

i=1
ηif i (68)

with ηi ≥ 0 ∀i = 1, .., d − 1 and ηd ∈ R. Then,
Eq. (67) simplifies to

ηK − ηJ > 0 . (69)

Similarly, we obtain that the second lineup l2 is en-
forced if ηK − ηJ < 0. The two inequalities imply
the ray fK + fJ as explained in Sec. 3.3. The left
hand-side of the corresponding inequality then fol-
lows from taking the inner product of all rays with

λ↓ and the right hand-side from evaluating the rays
at the generating vertices. This leads to a non-trivial
w-dependent linear constraint on λ given by

⟨fK+fJ , λ↓⟩ = 2
K∑

i=1
λ↓

i +
J∑

j=K+1
λ↓

j ≤ 2(N−S)−1+w1 .

(70)
The hyperplane representation of ΣN,S(w) for r = 2
is then given by the constraint in Eq. (70) and the
spin-adapted Pauli constraints derived in Ref. [32].

Next, we derive the spin-dependent w-ensemble
exclusion principle constraints that characterize the
hyperplane representation of ΣN,S(w) for r = 3.
The Hasse diagram of partially ordered configurations
yields the following R = 6 lineups

l1 : (1, 1, . . . , K, K, K + 1, . . . , J) → (1, 1, . . . , K − 1, K − 1, K, K + 1, K + 1, K + 2, . . . , J)
→ (1, 1, . . . , K, K, K + 1, . . . , J − 1, J + 1) , (71)

l2 : (1, 1, . . . , K, K, K + 1, . . . , J) → (1, 1, . . . , K, K, K + 1, . . . , J − 1, J + 1)
→ (1, 1, . . . , K − 1, K − 1, K, K + 1, K + 1, K + 2, . . . , J) ,

l3 : (1, 1, . . . , K, K, K + 1, . . . , J) → (1, 1, . . . , K − 1, K − 1, K, K + 1, K + 1, K + 2, . . . , J)
→ (1, 1, . . . , K − 1, K − 1, K, K + 1, K + 2, K + 2, K + 3, . . . , J) ,

l4 : (1, 1, . . . , K, K, K + 1, . . . , J) → (1, 1, . . . , K − 1, K − 1, K, K + 1, K + 1, K + 2, . . . , J)
→ (1, 1, . . . , K − 2, K − 2, K − 1, K, K, K + 1, K + 1, K + 2, . . . , J) ,

l5 : (1, 1, . . . , K, K, K + 1, . . . , J) → (1, 1, . . . , K, K, K + 1, . . . , J − 1, J + 1)
→ (1, 1, . . . , K, K, K + 1, . . . , J − 1, J + 2) ,

l6 : (1, 1, . . . , K, K, K + 1, . . . , J)
→ (1, 1, . . . , K, K, K + 1, . . . , J − 1, J + 1) → (1, 1, . . . , K, K, K + 1, . . . , J − 2, J, J + 1) .

From the lineups in Eq. (71), we eventually obtain
the six generating vertices v(i), i = 1, . . . , 6 shown
in Eq. (42) which fully characterize the vertex rep-
resentation of ΣN,S(w) in Eq. (32) for r = 3 non-zero
weights wi.

Next, we determine the conditions on the funda-
mental linear functional η such that they enforce the
lineups li, i = 1, . . . , 6. Let us start with the first
lineup l1. According to Sec. 4.2 the orbital configura-
tion in its second entry is enforced by ηJ − ηK > 0.
Moreover, there are three possible orbital configura-
tions for the third position in the lineup having fixed
the second one. To enforce the lineup l1, the funda-
mental linear functionals η thus need to satisfy both

⟨η, eK + eJ+1 − eK+2 − eJ⟩ > 0 ,

⟨η, eJ+1 + eK−1 − eK+1 − eJ⟩ > 0 , (72)

which is equivalent to

ηK + ηK+1 > ηJ > ηK ,

ηK−1 + ηK > ηJ > ηK . (73)

Similarly to l1, the second lineup l2 is enforced if ηK −
ηJ > 0 in combination with

ηJ + ηJ+1 > ηK > ηJ (74)

from enforcing l2 over l5 and

ηJ−1 + ηJ > ηK > ηJ (75)

is obtained from enforcing l2 over l6. The second po-
sition in the third lineup l3 is enforced by ηJ −ηK > 0.
To enforce the correct third position in l3, we further-
more require that

ηJ > ηK + ηK+1 ,

ηK−1 > ηK+1 . (76)
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To enforce the second entry in the forth lineup l4 we
need ηJ − ηK > 0 and the third position requires

ηK+1 > ηK−1 ,

ηJ > ηK−1 + ηK . (77)

Moreover, the linear functional η enforces the lineup
l5 if ηK − ηJ > 0 and in addition

ηK > ηJ + ηJ+1 ,

ηJ−1 > ηJ+1 . (78)

For the sixth lineup l6, we finally obtain in addition
to ηK > ηJ the constraint

ηJ+1 > ηJ−1 ,

ηK > ηJ−1 + ηJ . (79)

As in Appendix A.1 one of the resulting rays is
fK + fJ . From l1, l3, l4 we further obtain the ray
fK−1 + fK+1 + fJ . In addition the constraints on
η from l2, l5, l6 generate the ray fK + fJ−1 + fJ+1.
These rays are complemented by fK , fJ . Evaluating
these rays on the six vertices to obtain the right hand-
side of the inequalities finally yields

2
K∑

i=1
λ↓

i +
J∑

i=K+1
λ↓

i ≤ 2(N − S) − 1 + w1 ,

3
K−1∑
i=1

λ↓
i + 2

K+1∑
i=K

λ↓
i +

J∑
i=K+2

λ↓
i ≤ 3N − 4S − 2 + w1 + w2 ,

3
K∑

i=1
λ↓

i + 2
J−1∑

i=K+1
λ↓

i +
J+1∑
i=J

λ↓
i ≤ 3N − 2S − 2 + w1 + w2 ,

K∑
i=1

λ↓
i ≤ N − 2S ,

J∑
i=1

λ↓
i ≤ N . (80)

A.2 Singlet setting and r = 3, 4

In this section, we explicitly derive the relaxed orbital
one-body w-ensemble N -representability constraints
for singlets, i.e., S = 0, and r = 3, 4 non-zero weights
wi. The simple case of r = 2 is discussed in the main
text in Sec. 4.4. The singlet setting requires a sepa-
rate treatment from the general case in Appendix A.1
since the three stability conditions in Eqs. (26)-(28)
are not met for S = 0. The derivation of the addi-
tional w-dependent constraint for r = 2 was shown
in the main text and reduces to the spin-independent
constraint for r = 2 in Refs. [22, 23, 52]. For larger
r the constraints for S = 0 do not coincide with the
spin-independent constraints anymore, as a result of
the different Hasse diagram of partially ordered con-
figurations, which was illustrated for up to three ex-
citations on top of the non-interacting ground state
and N = 6 in Fig. 4.

For r = 3, i.e., states with fixed spectra w =
(w1, w2, 1−w1−w2, 0, . . .) there are three lineups given
by

l1 :
(

1, 1, . . . ,
N

2 ,
N

2

)
→

(
1, 1, . . . ,

N

2 − 1,
N

2 − 1,
N

2 ,
N

2 + 1
)

→
(

1, 1, . . . ,
N

2 − 1,
N

2 − 1,
N

2 ,
N

2 + 2
)

,

l2 :
(

1, 1, . . . ,
N

2 ,
N

2

)
→

(
1, 1, . . . ,

N

2 − 1,
N

2 − 1,
N

2 ,
N

2 + 1
)

→
(

1, 1, . . . ,
N

2 − 1,
N

2 − 1,
N

2 + 1,
N

2 + 1
)

,

l3 :
(

1, 1, . . . ,
N

2 ,
N

2

)
→

(
1, 1, . . . ,

N

2 − 1,
N

2 − 1,
N

2 ,
N

2 + 1
)

→
(

1, 1, . . . ,
N

2 − 2,
N

2 − 2,
N

2 − 1,
N

2 ,
N

2 ,
N

2 + 1
)

.

(81)

As explained in Sec. 3.2, they yield the three generat-
ing vertices in Eq. (51). Since the first two entries in
the three lineups are equal, we only have to investigate
the third entry to derive the hyperplane representa-

tion of ΣN,0(w). The first lineup is induced unique if
a fundamental linear functional η satisfies

η N
2

> η N
2 +1 (82)
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and in addition

η N
2 −1 > η N

2 +1 . (83)

To determine the two strict inequalities that induce l2
uniquely, we first have to invert Eq. (82) which yields

η N
2 +1 > η N

2
(84)

and, second, to ensure that l2 is obtained instead of
l3, η has to satisfy

η N
2 −1 > η N

2
. (85)

It follows that the third lineup is induced uniquely if

η N
2 +1 > η N

2 −1 ,

η N
2

> η N
2 −1 . (86)

The inequalities lead to two rays, the ray fN/2 ob-
tained for r = 2 and a new ray fN/2−1+fN/2+fN/2+1
which leads to an additional w-dependent exclusion

principle constraint. Thus, the hyperplane represen-
tation of ΣN,0(w) for r = 3 is again given by the
spin-adapted Pauli constraints [32] and the now two
new w-dependent constraints

N/2∑
i=1

λ↓
i ≤ N − 1 + w1 ,

3
N/2−1∑

i=1
λ↓

i + 2λ↓
N/2 + λ↓

N/2+1 ≤ 3N − 4 + 2w1 + w2 .

(87)

For r = 4, there are in general eight lineups that
yield the eight vertices in Eq. (51) in the main text
in Sec. 4.4. In analogy to the previous cases we then
determine the corresponding rays of ΣN,0(w) that fol-
low from the eight lineups and the vertex representa-
tion of the polytope. Besides the trivial rays from the
spin-adapted Pauli constraints, there are the two rays
fN/2, fN/2−1 + fN/2 + fN/2+1 from r = 3 and the
three new rays fN/2−1 + fN/2 + fN/2+2, fN/2−1 +
fN/2+1, fN/2−2 + fN/2 + fN/2+1. The first two rays
lead to the two inequalities in Eq. (87), while the three
new rays yield the additional constraints

3
N/2−1∑

i=1
λ↓

i + 2λ↓
N/2 + λ↓

N/2+1 + λ↓
N/2+2 ≤ 3N − 4 + 2w1 + w2 + w3 ,

2
N/2−1∑

i=1
λ↓

i + λ↓
N/2 + λ↓

N/2+1 ≤ 2N − 3 + w1 + w2 + w3 ,

3
N/2−2∑

i=1
λ↓

i + 2λ↓
N/2−1 + 2λ↓

N/2 + λ↓
N/2+1 ≤ 3N − 6 + 2w1 + w2 + w3 . (88)
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