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ARTICLE INFO ABSTRACT

Keywords: We propose an approach to synthesize textures for the animated free surfaces of fluids. Because fluids deform
Texture synthesis and experience topological changes, it is challenging to maintain fidelity to a reference texture exemplar
Animation

while avoiding visual artifacts such as distortion and discontinuities. We introduce an adaptive multiresolution
synthesis approach that balances fidelity to the exemplar and consistency with the fluid motion. Given a 2D
exemplar texture, an orientation field from the first frame, an animated velocity field, and polygonal meshes
corresponding to the animated liquid, our approach advects the texture and the orientation field across frames,
yielding a coherent sequence of textures conforming to the per-frame geometry. Our adaptiveness relies on
local 2D and 3D distortion measures, which guide multiresolution decisions to resynthesize or preserve the
advected content. We prevent popping artifacts by enforcing gradual changes in color over time. Our approach
works well both on slow-moving liquids and on turbulent ones with splashes. In addition, we demonstrate good
performance on a variety of stationary texture exemplars.

Fluid simulation

1. Introduction

Exemplar-based texture synthesis is a longstanding research topic
in computer graphics. The goal is to synthesize an output texture that
resembles an input texture exemplar without being an exact duplicate.
The film and game industries often need textures for visual effects,
and they require methods that can synthesize large textures from a
small exemplar. At the same time, simulated fluids are often used for
visual effects, and while texturing the surfaces of these fluids is of
great interest, doing so is challenging. Texture synthesis on the surface
of fluids requires special attention to ensure that the patterns do not
exhibit too much distortion or discontinuity and to reduce temporally
incoherent texture motion. Furthermore, splashes result in topological
changes to the surface, amplifying concerns related to distortions and
discontinuities of the texture.

Most texture synthesis methods generate 2D planar textures, which
cannot be applied to surfaces without introducing discontinuities or
distortions. Some texture synthesis methods allow the creation of a
texture on a static 3D surface. Many such methods synthesize the
texture colors on the vertices of the mesh, which improperly couples the
geometric and texture resolution. Other methods flatten the 3D surface
into a texture atlas before conducting the texture synthesis, allowing
independent mesh and texture resolutions. Only a few methods allow
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the synthesis of textures on the animated free surface of a fluid. These
methods suffer from a variety of problems such as exhibiting stiff
texture patterns, producing ghosting of the patterns from the exemplar,
and displaying objectionable discontinuities throughout the animation.

In this work, we present a new approach (Fig. 1) for texturing fluids
that aims to preserve fidelity to a texture exemplar, maintain temporal
coherence, reduce distortions, and favor the continuity of the patterns,
even during complex deformations and topological changes. Our ap-
proach requires as input a texture exemplar (we expect a stationary
texture), an animation (velocity field together with sequence of meshes,
obtained from a typical off-the-shelf simulator), and an orientation field
on the first frame. An existing appearance-space method synthesizes
the texture for the first frame. For subsequent frames, the velocity field
advects the texture from frame to frame in 3D and in per-frame 2D atlas
parameterizations; these are used to condition the synthesis to favor
temporally consistent features.

Strict advection of the texture quickly results in heavily distorted
features which diverge from the look of the exemplar, even if
appearance-space texture corrections are applied to the texture. To
address this, from the advected texture, we create a multiresolution ad-
vection pyramid, used together with a multiresolution synthesis pyramid
which will contain the newly synthesized texture. One might imagine
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d) Texured surface

Fig. 1. Our synthesis process. Inputs: (a) texture exemplar, (b) 3D mesh together with an orientation field, (c) animated frames with velocity field. (d) We

synthesize an animated texture which can be used in off-the-shelf 3D software.

initializing the coarsest level of the synthesis pyramid from the coarsest
level of the advection pyramid, and then creating higher-resolution
levels by only upsampling and conducting appearance-space texture
correction. While this strategy produces good-quality textures that are
faithful to the exemplar, the temporal continuity is very poor.

We thus introduce multiresolution per-texel decision criteria to set
each synthesized texel either from the same-level advection pyramid
(more faithful to the advected texture) or from upsampling the coarser
synthesis pyramid level (more faithful to the texture exemplar). Our
criteria to decide between the advection and synthesis pyramid are
based on detecting stretching both in 2D and in 3D. Our approach also
prevents frame-to-frame sudden and drastic changes in color (popping
artifacts) by replacing them with gradual changes in color over a few
frames.

Our final animated liquids show that our approach is successful in
promoting textures faithful to the exemplar while encouraging tem-
poral consistency, even in the presence of severe disruptions to the
surface such as splashes. The paper contains numerous examples of
animated fluids with various textures, including both arbitrary textures
and plausible textures such as foam. Our main contributions can be
summarized as follows:

+ Identification of locally distorted texels based on 2D and 3D
features;

Adaptive multiresolution texture synthesis approach with advec-
tion and synthesis pyramids;

Advection of the texture and orientation field adapted to the
appearance-space synthesis and texture atlases;

Interpolation, extrapolation, and downsampling of the UV coor-
dinates used in the appearance-space synthesis;

Mechanism for gradual change in color to prevent popping arti-
facts.

2. Related work

Our review concentrates on exemplar-based texture synthesis meth-
ods. Such methods take as input an exemplar texture and synthesize a
new output texture that is visually the same as the exemplar. Additional
information about the texture synthesis area can be found in the survey
by Wei et al. [1].

Pixel-based methods synthesize the output texture on a pixel-by-
pixel basis. Efros and Leung [2] pioneered this method, using a best-
match search to find a neighborhood in the exemplar similar to the
neighborhood in the output. Wei and Levoy [3] accelerated the search
with a specialized data structure and later used the same technique
to synthesize colors on 3D meshes [4]. While this is closer to what
we want to achieve, they synthesize the colors on the vertices of the
mesh which links the resolutions of the mesh and the texture. This

limits flexibility and makes it more complicated to generate high-
resolution textures for lower-resolution meshes. Lefebvre and Hoppe
[5] synthesize textures by working on the UV coordinates of the ex-
emplar instead of RGB colors; this work was later extended [6] to 3D
objects by parameterizing the surface to a 2D atlas where the synthesis
is conducted. Appearance-space texture synthesis [6] introduced com-
pressed search windows and drastically reduced synthesis time. It also
support 2D advection of the texture through a surface velocity field.
While this is going in the direction of our work, it keeps the same
atlas throughout the whole animation and as such does not support
surfaces that evolve through time, like liquids. Another drawback of
the work of Lefebvre and Hoppe [6] is its long precomputation times;
subsequent methods [7,8] replace the offline precomputation step with
an online random walk search that is equally effective, greatly reducing
precomputation. Our approach uses the appearance-space compression
and atlas of Lefebvre and Hoppe [6] together with the random walk
search of Busto et al. [8]. We provide a significant extension to the
method of Lefebvre and Hoppe [6] which is limited to static meshes.

Texture optimization methods [9-11] optimize to find a set of
overlapping windows of texels from the exemplar. Optimization was
also used to synthesize texture based on a 2D orientation field [12].
On structured exemplars, such methods perform remarkably well. How-
ever, as noted by Jamriska et al. [13], applying them to more stochastic
textures tends to produce wash-out, where detail is lost in regions of
the output texture. Jamriska et al. [13] reduce wash-out by preventing
excessive reuse of the same window of texels from the exemplar.
Despite these improvements, most optimization methods [9-12] are
limited to synthesizing static 2D textures. While the method of Jamriska
et al. [13] can synthesize animated textures, the textures remain 2D and
cannot be applied to dynamic surfaces.

Solid texture synthesis generates textures over entire volumes,
avoiding reliance on surface parameterizations and UV mapping. Such
methods are expensive to execute and solid textures are costly to
store, as the texel count increases as the cube of the spatial resolution.
Kopf et al. [14] introduced a method for generating 3D solid textures
from 2D images. It combines non-parametric texture optimization with
histogram matching. To improve synthesis speed, Dong et al. [15]
proposed a method that takes advantage of the GPU. Chen et al.
[16] proposed a method based on tiling, deformation, and resampling
techniques, capable of working in real-time. Takayama et al. [17]
synthesized local volumetric patches with partial overlap, producing
visually coherent solid textures with sharp features and smooth color
variations. While solid texture methods can synthesize volumetric
textures and bypass the need for surface parameterization, challenges
remain for dynamic or animated surfaces. In order to obtain plausible
animated textures, the solid texture contents would need to be advected
by the surface motion, a task not considered by the preceding methods.
Advecting full 3D data would be computationally expensive compared
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to advecting a 2D atlas, and furthermore, no practical solution currently
exists for temporal coherence in this setting.

Texture synthesis with Convolutional Neural Networks (CNN) [18]
and Generative Adversarial Networks (GANs) [19] can generate a great
variety of textures through the generative capabilities of deep neural
networks. Relying extensively on image convolutions, these synthesis
methods work very well to output rectangular 2D images. In the case
of synthesis on 3D surfaces, the continuity, regularity, and grid-type
layout between adjacent texels, required by the convolution kernels, is
not present. The work of Kovéacs et al. [20] partly solves the problem
by defining CNN operations on meshes, then minimizing the distances
of VGG-19 features measured over the mesh and the examplar. The
process is slow (around 50 min for a 1024 x 1024 output) and produces
blurry patch seams related to overlapping CNN footprints. Instead of us-
ing CNNs, the method of Hu et al. [21] uses diffusion-based inpainting.
It is successful at allowing users to paint a texture on a 3D mesh. One
drawback of the methods of Hu et al. [21] and Kovécs et al. [20] is that
they rely on resampling (from the CNN footprint or camera-space 2D
diffusion) onto a 2D atlas which introduces a certain level of blurring.
Similarly, while methods employing latent diffusion models for texture
synthesis look promising [22,23], such methods generate 2D images
and are remapped onto the mesh; many images must be generated from
different views so as to fully cover the mesh. An alternative proposed by
Mitchel et al. [24] synthesizes texture directly on a mesh; synthesized
texture quality is good, although expensive per-texture training is a
concern. None of these methods have so far been applied to animated
meshes, and temporal coherence and fidelity to the surface motion will
pose formidable obstacles to adopting methods based on deep neural
networks for texturing fluids.

Texturing Liquids. Currently, few methods can address texture synthe-
sis over the evolving surface of simulated liquids. The method of Neyret
[25] advects a texture, but is limited to 2D advection. In a similar way,
the methods of Lefebvre and Hoppe [6], Yu et al. [26], and JamriSka
et al. [13] support 2D advection, but they are not directly applicable
to the problem of texturing 3D fluids. Methods like those of Bargteil
et al. [27], Kwatra et al. [28], and Narain et al. [29] are able to
texture the free surface of fluids. However, they store colors per-vertex
directly on the mesh, interlinking the mesh and texture resolutions,
which is far from convenient. Since these three methods are extensions
of the texture optimization method of Kwatra et al. [9], they also suffer
from wash-out with some textures. Yet other methods [30-32] texture
liquids by performing a patch-based texture synthesis. These patch-
based methods present issues like stiff texture patterns [30], visible
color discontinuities between patches [32], and ghosting [31]. While
these methods [30-32] rely on a texture atlas like ours, rendering to
the atlas from the patches is a time-consuming process.

Appearance-space texture synthesis. Since our approach extends
the method of Lefebvre and Hoppe [6], we will describe that method
in more detail. Their method parameterizes 3D meshes to 2D atlases
where the output texture texels will be computed. Instead of working
with texture colors, the method uses 8D appearance-space vectors;
instead of storing such 8D vectors in the output texture directly, it
stores UV coordinates linking back to the compressed exemplar.
Lefebvre and Hoppe use texture pyramids for both the exemplar and
the output texture to apply a hierarchical synthesis. After initializing
the coordinates at the coarsest level of the output pyramid, the method
starts at the next finer level of the output pyramid by upsampling from
the coarser level. The upsampling step generates the intermediate UV
coordinates necessary to cover the same UV range as the coarser texel
did (and also accounting for an orientation field through its Jacobian;
see the paper [6] for additional details). After the upsampling step,
two successive passes of best-match search are performed to refine the
UV coordinates at the current resolution level. For each output texel,
the exemplar UV coordinates are used to retrieve their corresponding
8D appearance-space vectors. The best match is the one with least L,
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distance on the 8D appearance-space vectors. The UV coordinates of
the best match from the exemplar are then written to the output texel.
The method processes the other levels in the same fashion, proceeding
coarse to fine. After computing all best-match searches of all levels, the
output texture is populated by converting the UV coordinates to RGB
colors.

3. Texture synthesis on fluids

We aim to texture the deforming surface of a 3D fluid animation,
based on a 2D texture exemplar. The novel texture should be faithful
to the exemplar, despite synthesizing it on a curved 3D surface; this
implies reducing spatial discontinuities as well as spatial stretching and
compression of the patterns. Furthermore, the texture evolves tempo-
rally which often produces popping. To address these challenges, we
introduce a new adaptive, multiresolution texture synthesis approach.

The main inputs to our approach are the texture exemplar, the
animated fluid provided in the form of per-frame meshes and velocity
field (which are easy to obtain from typical fluid simulation software),
and a 3D orientation field for the first frame (used to orient the texture
features). The output of our approach consists of a set of per-frame 2D
textures, each parameterized to the corresponding per-frame mesh.

On the first frame, we synthesize a texture over the mesh with the
method of Lefebvre and Hoppe [6] which synthesizes UV coordinates
that index back to the exemplar. This initial texture closely resembles
the exemplar; no complications due to fluid motion have yet influenced
the texture appearance.

At each subsequent frame, we execute multiple steps to synthesize
that frame’s 2D texture. First, we advect both the texture and the orien-
tation field from the previous frame using the provided velocity field.
A multiresolution advection pyramid is populated by downsampling the
advected texture from fine to coarse (Section 3.3) up to the number of
levels in the exemplar, log,(w) where w is the exemplar width in texels.
As we typically synthesize at a resolution higher than the exemplar,
the advection pyramid is truncated at log,(w) levels. The advection
pyramid contains texture that can be used at the current frame, but
may contain deficiencies such as stretching, which the remainder of
our synthesis process strives to address.

We copy the coarsest level of the advection pyramid to the coarsest
level of a multiresolution synthesis pyramid. The synthesis pyramid, is
the same size and shape as the advection pyramid; once complete, it
contains the output texture in its finest-scale level. Following initial-
ization, we iterate over the synthesis pyramid, level by level, from
coarse to fine (Section 3.5). We detect stretched areas (see Section 3.4)
and wherever there is stretching, we use freshly synthesized data from
the coarser synthesis pyramid level (faithful to the exemplar, but with
weaker temporal coherence); in areas that are not stretched, we use
data from the same level of the advection pyramid (good temporal
consistency and good fidelity to the exemplar because stretching was
absent). Before iterating to the next level, we run a window-based
best-match method with the exemplar to improve texture quality.

After the synthesis pyramid is fully populated, we conduct an ad-
ditional step to prevent popping artifacts (Section 3.6), as follows. We
detect when a synthesized texel has a significantly different color from
the previous frame, and eliminate the potential popping by gradually
interpolating between the previous color and the synthesized color. Fig.
2 and algorithm 1 summarize the steps of our approach.

3.1. First frame synthesis

At the first frame, we synthesize the texture using an existing
appearance-space texture synthesis method [6]. This multiresolution
method synthesizes UV coordinates that index into the exemplar. We
later convert these coordinates to colors to get the final texture, and the
final animations will be rendered with typical off-the-shelf 3D software.
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Fig. 2. Pipeline of our approach. The synthesized UV coordinates are mapped to the red and green channels for depiction (boxes corresponding to advection and

synthesis).

Texture synthesis [6] for frame, in synthesis_pyramid(level,,);
// Pyramid levels: m is finest, O is coarsest
foreach frame;,i €2,...,n do
// advection pyramid
Advect synthesis_pyramid(level,,, frame,_,) texels to
advection_pyramid(level,,, frame;) foreach
level;,j € m,...,1 do // fine to coarse
| Downsample level; to level;_;;
// synthesis pyramid
Copy advection_pyramid(level,) to synthesis_pyramid(level,) ;
foreach level;,j € 1,....,m do // coarse to fine
foreach element € level; do

if there is stretching at element then
Set synthesis_pyramid(level;, element) by

upsampling from synthesis_pyramid(level;_;,
element) ;
else
Copy advection_pyramid(level;, element) to
synthesis_pyramid(level;, element);
Apply best-match search correction on
synthesis_pyramid(level j) ;
Convert UV coordinates from synthesis_pyramid(level ;) to
colors ;
Algorithm 1: Overview of our approach.

3.2. Surface parameterization

The objective of the surface parameterization is to obtain a 2D
space in which to conduct our appearance-space texture synthesis. For
every frame, we parameterize the 3D surface to a 2D atlas using the
method of Sheffer et al. [33]. The atlas is created independently at each
frame, i.e., there is no relationship between atlases at different frames.
While independent atlas creation simplifies atlas creation and imposes
no constraints on the simulation or meshes, it complicates tracking
texels between frames. We track texel positions by transforming 2D
atlas positions to 3D spatial positions; this is further discussed in the
next subsection.

3.3. Advection

For a given frame, we advect texture from the previous frame,
ultimately producing an animated texture following the fluid motion.
However, although the textures are stored in 2D atlases, the fluid ve-
locity field is given in 3D (at vertex positions, in our implementation).
We therefore need a process to transfer the 2D texture coordinate to

1- Uplift the
texel position
to 3D using
barycentric
coordinates

2- Backtrack
velocity of
frame i and
projection
on mesh i-1

4- Interpolate
values from
closest 4 texels

3- Corresponding
2D triangle

and barycentric
interpolation

Fig. 3. UV coordinates of a current frame i are computed by backtracking to
the previous frame based on the velocity field.

3D and back. The process is described in this section and illustrated in
Fig. 3.

For each texel, we first convert its 2D position to a 3D point p using
barycentric coordinates (w;, w,, w;) within the 2D triangle containing
the texel. We interpolate the velocity from the 3D triangle’s vertex
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Fig. 4. Advection of the orientation field by backtracking to the position on the previous frame.

velocities v;,v,,v; using barycentric interpolation:
V= w;V; + wyVy + W3Vs.

Next, we advect the 3D point p backwards with the time interval At
between two frames:

p=p-4r-v.

The backtracked point p’ is projected onto the closest triangle of the
previous 3D mesh. We then compute the barycentric coordinates of this
projected 3D point and apply them to the corresponding 2D triangle to
retrieve the texel position in the previous frame’s atlas.

The obtained position will usually not align exactly with the center
of a texel in the atlas. The advected texture value is therefore deter-
mined by interpolating from the texels around the position; details are
found in Section 3.7. After we are finished populating the finest level
of the pyramid through advection, we downsample to coarser levels.

Akin to the method of Lefebvre and Hoppe [6], our approach uses
an orientation field to control the direction of the texture features.
The user provides a 3D orientation field over the surface at the first
frame, with an orientation vector at each mesh vertex. Unlike Lefebvre
and Hoppe [6], we need to deal with the advection of that orientation
field throughout the animation. We use the method of Kwatra et al.
[28] to advect the orientation field from the past frame to the current
frame. Doing so means backtracking from each 3D vertex in the current
frame to a 3D position on the 3D mesh of the past frame, using the
inverse velocity of the current frame. From that position, we obtain
the orientation of the closest vertex.

Having obtained the past frame’s orientation, we are not finished:
the previous orientation also needs to be rotated by the velocity field.
We follow the strategy of Kwatra et al. [28], anchoring the orientation
vector to the current frame vertex, and separately advecting the head of
the orientation vector. The head is set at a distance d from the current
frame vertex in the direction of the past frame orientation, where d
is half the average length of the edges incident on the current frame
vertex. We use the closest position to the head on the current-frame
mesh to determine what velocity to apply to the head.

We do a barycentric interpolation of the velocity, advect the head
using that interpolated velocity, and project it to the closest position on
the current frame mesh. From the projected, advected head we compute
the new orientation vector, which is the displacement from the current
frame vertex to the newly computed head. The full advection process
is illustrated in Fig. 4.

As we aim to have an orientation field with as few discontinuities
as possible, we complete the orientation field update with a smooth-
ing step [28]. Smoothing is particularly important when there are
topological changes in the surface (e.g., splashes).

3.4. Stretching detection
When surfaces deform and experience significant topological

changes, advection can generate textures with visible artifacts. Texture
stretching, as depicted in Fig. 5, is a prominent and disturbing visual

Stretched Texture Synthesized Texture

Fig. 5. Advected texture after a single frame of animation compared to
the result after our synthesis approach. Left: Without synthesis, the texture
becomes severely stretched, even after a single frame. Right: Our approach
detects stretched regions and synthesizes new texture there.

artifact produced by advection. Unlike other minor defects, stretch-
ing cannot directly be repaired by best-match search correction; we
therefore propose a specific approach to addressing it. We detect local
stretching using two complementary criteria: the 3D displacement rela-
tive to neighboring texels in the previous frame, and the UV coordinate
distance to neighbors in the current frame.

The 3D stretching criterion is calculated for each texel at the finest
resolution. We first find the position of each texel in 3D space by
computing its barycentric coordinates within the corresponding tri-
angle of the surface mesh. We then backtrack this position to the
previous frame using the velocity field. For each texel, we evaluate
the Euclidean distances to its neighboring texels in 3D space at their
previous positions. The minimum of these distances is compared against
a threshold z;;. If this distance is below the threshold, the texel is
marked as stretching. A small distance in the previous frame indicates
positions that were close together in the previous frame which have
become far apart in the current frame, introducing stretching. We use
the minimum distance as stretching is often anisotropic.

The UV coordinate distance criterion is also computed per texel
at the finest resolution. Considering the UV coordinates stored in the
advection pyramid, we determine the distances between the stored UV
coordinates of a texel and the stored UV coordinates in its immediate
neighbors. Then, we select the smallest UV distance and compare it
against a threshold 7. Small UV distances mean that the details will
appear stretched, and here too we take the minimum as the stretching
can be anisotropic. Texels with distances below the threshold are
marked as stretching. Texels considered as either 3D or UV stretching
are considered as stretching during the synthesis step.
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3.5. Synthesis pyramid

The advection pyramid contains the advected texture at multiple
levels of resolution. We will now populate the synthesis pyramid from
coarse to fine, leading to the synthesized texture coordinates at its finest
level. Our goal is to get a good compromise between the advected
texture data from the advection pyramid (to promote temporal coher-
ence) and synthesizing coarse to fine without considering the advected
texture data (for better fidelity to the exemplar).

With an animated liquid, the variable surface area can cause the
texture features to become stretched and compressed. Compressed
features require no special treatment: a best-match search method
will automatically repair compressed areas, even working at a single
level of resolution, since the support of the search window is larger
than the size of the shrunken details. However, stretched features still
pose a problem. When the surface stretches, the support of the search
window is small compared to the texture feature size, and the best-
match process at the finest level cannot recover the missing larger-scale
features.

Conversely, we could conduct a synthesis solely from the coarsest
level of the advection pyramid. This would have a severe downside:
temporal continuity would be lost (see accompanying video) since
the coarsest level of a downsampled advected texture does not re-
tain enough of the advected features. This is nearly equivalent to
resynthesizing the texture independently at every frame.

We thus designed an adaptive multiresolution approach that de-
cides, for each texel of each level of the synthesis pyramid, whether
the texel should get its value from upsampling the partially synthesized
coarser level synthesis pyramid or from the corresponding texel in the
advection pyramid. We initialize the coarsest level of the synthesis
pyramid with the coarsest level of the advection pyramid, and conduct
two rounds of coherence best-match search. For the next levels from
coarse to fine, we decide, on a per-texel basis, if the synthesis gets
its value by upsampling from the coarser synthesis pyramid level or
from the same level advection pyramid. For each synthesis texel, if
all texels in the corresponding window at the finest resolution level
are marked as stretching, the texel coordinates are obtained through
upsampling from the coarser level of the synthesis pyramid. Otherwise,
the advection pyramid at the same level provides the coordinates,
favoring temporal continuity. After populating all texel values at a
given level, we conduct two rounds of texture correction with best-
match search through a coherence random walk best-match search [8]
based on PCA compressed exemplar features [6].

3.6. Popping reduction

Our synthesis process so far is effective, but when the liquid is
slowly deforming, occasional local popping artifacts can occur, where
there is a sudden and quite noticeable local change in color from one
frame to the next. Popping prevention is a balance between remaining
faithful to the exemplar and maintaining temporal continuity. Since the
surface deforms, it is inevitable that we will need to introduce new
patterns and it is not always possible to introduce them slowly while
remaining faithful to the exemplar.

In our approach, we compute the 3D velocity of each texel and
compare it to a user-specified velocity threshold (adjusted for a given
simulation scenario). Only texels with a velocity slower than the thresh-
old will be considered for our popping reduction. At faster velocity,
many changes typically need to happen, and they are hardly noticeable.
Furthermore, the popping reduction is restricted to the texels where
there is UV stretching. The rationale behind this is that the UV stretch-
ing is often linked to modifications in the texture to introduce new
patterns which will reduce the stretching. For exemplars with large
color differences, this can lead to the sudden color changes that we
want to avoid.
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We detect abrupt popping by measuring the distance between the
RGB color resulting from advection and the RGB color obtained from
the best match. If the distance exceeds a threshold 7,,,, we want
to transition between the advected color and the best-match color
over a number of frames (5 in our examples). For such texels, we
store advected and best-match colors. The detection could occur on an
already transitioning texels, in which case the stored colors are reset, as
well as the transition counter. Note that popping detection is computed
only at the finest resolution of the synthesis pyramid. For texels where
a color transition is active, we replace the best match coordinates of the
first round of correction with those of a transition color, computed by
linearly interpolating between the stored advection and the best-match
colors.

For a typical scenario, the size of the connected components of
neighboring texels undergoing the popping reduction transition is
small. For the more than 37k components detected on a frame-by-
frame basis over the 240 frames of a representative animation, only 30
were of size 100 texels or more. This means that the regions are small
and infrequent, making our approach immune to the ghosting artifacts
found in other methods. Furthermore, the identification of popping
occurs on a per-texel basis. This is another strength of the approach:
the affected regions change over time (e.g., can grow or shrink by a
few texels on a frame-by-frame basis), making them hard to identify
and follow and hence unlikely to be perceived as spurious structures.

Because we store UV coordinates in the synthesis pyramid, we need
to identify UV coordinates of an exemplar color close to the transition
color. We search among exemplar texels until we find UV coordinates
close to the transition color. In our implementation, for efficiency
considerations, we search until we find a color with a distance to the
transition color that is below a threshold 7y, Given this transition
color, we gradually bring the synthesized color closer to the stored best-
match color as we progress from frame to frame. When moving to the
next frame, the stored advection and best-match colors are advected
in a similar fashion to the UV advection (Section 3.3), but snapping to
the closest texel in the previous frame, to avoid having the transition
region grow every frame.

3.7. Implementation considerations

Surface parameterization. The area of the free surface of animated
fluids often significantly expands and contracts as waves and splashes
form and then reintegrate into the bulk of the liquid. Because we
conduct the synthesis in atlas space (Section 3.2), we need to account
for distortions in the fluid surface. We aim to ensure that the ratio of
surface area remains constant between 3D and 2D atlas space. Frame to
frame, we scale the 2D atlas surface to maintain the same 3D/2D ratio
throughout the animation.

Interpolating UV coordinates. Advection requires us to fetch the
UV coordinates from the past frame (Section 3.3). Simply snapping
from the position toward the closest atlas texel introduces severe alias-
ing, potentially manifesting as a discordant vibrating appearance when
the texture is animated. To minimize aliasing, we conduct interpola-
tion, but care must be taken since we are interpolating UV coordinates
instead of colors. Fig. 6 shows the variation of UV coordinates in a
typical atlas; U and V are respectively mapped to the red and green
channels. Note the patches with smooth variation of coordinates, and
also discontinuities at the boundaries of these patches. Interpolating
UV coordinates across patch discontinuities would lead to interpolated
coordinates spatially far away from each other in the exemplar, and
consequently unrelated. Accordingly, the straightforward bilinear in-
terpolation only makes sense in regions of smooth variation of UV
coordinates. At patch boundaries, a different strategy is required. Given
the four texels surrounding the position in the atlas, we select the
closest one and retain only those of the remaining three whose stored
UV distance to it is less than 5% of the UV extent. We are left with one,
two, three, or four texels, and depending on the number, we choose a
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Fig. 6. A typical atlas with what we refer to as charts (separate parts of the
mesh flattened to 2D) and patches (contiguous group of texels with smoothly
varying UV coordinates).

different interpolation strategy. When four texels remain, bilinear inter-
polation is used; when three texels remain, barycentric interpolation
is applied. If only one or two texels remain, we extrapolate the UV
coordinates of the closest texel based on the difference between the
position in the atlas and the center of the texel. This difference leads
to a vector which is then interpreted relative to the Jacobian of the
orientation field. We add the UV coordinate stored in the closest texel
to that vector to get the UV coordinate to copy to the current frame
texel.

Downsampling UV coordinates. A problem similar to UV inter-
polation is that of downsampling the stored UV coordinates in the
advection pyramid. Simply averaging the four UV values only works
if all texels are in the same patch. Instead of averaging, we pick the
top-left texel and add a UV vector corresponding to moving from the
top-left texel center to the central position of the four texels accounting
for the Jacobian of the orientation field. For patches that properly
account for the orientation field, this is equivalent to computing the
average of the UV values. Moreover, this strategy is robust to cases
where the four texels are not in the same patch.

Thresholds for stretching detection. The thresholds in Section 3.4
are computed from user-specified ratios. Threshold 75, is defined from
a user-specified ratio (varying within [0.8,0.95] in our experiments)
multiplied by the mean 3D distance to neighboring texels in the syn-
thesized first frame. Threshold 7, is defined from a user-specified
UV stretching ratio (varying within [0.3,0.5] in our experiments) mul-
tiplied by the mean exemplar UV coordinate distance between each
synthesized texel and its neighbors in the first frame.

Orientation in 2D. When doing the coherence random walk best-
match search [8] in Section 3.5, we need to convert the 3D surface
orientation into per texel 2D orientation, done as follows. For each
texel, we get its corresponding position in 3D, interpolate the orienta-
tion from the vertices of the corresponding triangle (by barycentric in-
terpolation) and convert the 3D orientation to 2D through the Jacobian
matrix corresponding to the surface parameterization.

Best match in atlas space. Some care must be taken when doing
the best-match search for a texel at the boundary of a chart (see Fig.
6) in the atlas. As the neighbor texels are in a different chart, it is
necessary to figure out where in the other chart to fetch the proper
UV coordinate. Knowing that an edge at the boundary of the 2D charts
corresponds to a 3D edge shared by two triangles, we identify the
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neighbor 3D and 2D triangle and the related neighbor chart in the atlas.
We index on the other side of the 2D edge (in the other chart) at the
corresponding location.

Popping prevention. The threshold 7, to detect abrupt changes
in color (Section 3.6) is defined through a user-defined ratio (varying
within [0.2,0.5]) converted to an RGB distance threshold by multiplying
it by the maximum distance between any RGB color in the exemplar.
The threshold jerp, used to determine whether we found an exemplar
color close enough to the interpolation color, is derived from a user-
defined ratio (varying within [0.02,0.1]) which is also converted to an
RGB distance by multiplying it by the maximum distance between any
two RGB colors in the exemplar.

4. Results

We tested our texture synthesis approach with different fluid simula-
tion scenarios and multiple texture exemplars. The test cases encompass
a range of behaviors, including both viscous and inviscid flows, with
and without splashes. Fig. 7 shows representative frames. In the first
scenario (sphere), a spherical volume of fluid falls into a non-viscous
liquid, creating significant splashes and rapid surface motion. This sce-
nario tests our approach’s ability to handle sudden topological changes
and large deformations. In the second scenario (double dam break),
we simulate a double dam break in which two blocks of fluid col-
lapse under gravity, producing complex surface flows and numerous
splashes. This test evaluates the temporal coherence and stability of
our approach under complex motion. In the third scenario (viscous
drop), a viscous fluid falls and deforms slowly on an object and the
ground, with no splashes. This test demonstrates the ability of our
approach to work under smooth and gradual deformation. Finally, for
the fourth scenario (viscous dam break), the flow evolves more slowly,
without abrupt changes or fragmentation, emphasizing temporal con-
sistency in more stable simulations. Our selection of exemplars includes
textures corresponding to real-world scenarios (lava, foam), textures
commonly used in texture synthesis (purple cells, green cells, hooks),
and structured textures (keyboard, bricks). In all cases, we can see that
our approach encourages results with texture patterns faithful to the
exemplar and promotes temporal coherence throughout the animation.
Full animations of these results can be seen in the accompanying video
and demonstrate good temporal continuity of the texture patterns.

4.1. Comparison with existing methods

We compared our approach against relevant previous methods:
those which generate textures on the free surface of dynamic fluids.
Fig. 8 and the accompanying video show the comparison between our
approach and the methods of Kwatra et al. [28] and Gagnon et al. [31].
We can see that our texture colors are more faithful to the exemplar
than those produced by the method of Kwatra et al. [28]. The method
of Gagnon et al. [31] produces artifacts such as ghosting and double
contours, which are not present in our results. Overall, our approach is
free from these issues and generates more coherent texture animations.

In addition, we evaluated our approach against the method of
Gagnon et al. [30], which synthesizes textures using patches. As shown
in Fig. 9, even when small patches are used, the contour of the patches
is quite perceptible and introduces sharp edges not found in the ex-
emplar. This issue becomes more pronounced when larger patches are
used, resulting in even more noticeable discontinuities. In contrast,
our approach performs per-texel synthesis and avoids such artifacts,
producing smoother and more coherent results.

We also compared our approach to the method of Gagnon et al.
[32], which uses deformable patches to synthesize textures on fluids.
Fig. 10 shows that our result is more faithful to its respective exemplar
compared to the result of Gagnon et al. 2021. Moreover, their method
often produces motion artifacts near patch boundaries due to its erosion
mechanism. As the patches shrink, parts of them are removed, revealing
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Fig. 7. Results from our approach. Scenario names, top to bottom: sphere, double dam break, viscous drop, viscous dam break. The exemplars are shown in the

leftmost column. Left to right: frames extracted from the animation.

portions of underlying patches and creating an illusion of motion. In
contrast, our approach performs synthesis per texel instead of relying
on patches. This avoids boundary artifacts and undesirable motion
artifacts. As shown in the accompanying video, the textures generated
by our approach preserve fine texture features and have good coherence
across the simulation frames.

Table 1 shows performance statistics for several test cases. The
reported times correspond to the average per-frame duration of each
stage of our approach. All experiments were conducted on an Intel(R)

Core(TM) i7-8700 CPU @ 3.20 GHz (6 cores) with 32 GB of RAM and
an NVIDIA RTX A2000 GPU.

4.2. Discussion

In Fig. 11 and the accompanying video, we compare smaller and
larger values of thresholds 73, 7y, and 7,45, modifying one threshold
at a time to demonstrate their respective influence on the texture

synthesis. With smaller values of 75, and 7y, our approach more often
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Fig. 8. Comparison of Kwatra et al. [28] and Gagnon et al. [31] vs. our
approach.

Fig. 9. Comparison of Gagnon et al. [30] vs. our approach.

Fig. 10. Comparison of Gagnon et al. [32] vs. our approach.

Table 1
Average per-frame computation times (in seconds) for various stages of our
approach.

Scenario Pyr. Output Atlas Adv. Stretch Synth Pop. Total
Levels Res. Texels Det. Red.

Sphere 6 1024> 185k  0.34 1.43 25.27 0.07 26.77

Double dam break 5 10242 115k  0.22 1.13 13.94 0.02 15.31

Viscous drop 5 20482 621k 0.96 4.83 63.26 2.02 71.07

Viscous dam break 5 1024> 205k  0.34 1.45 27.23 0.51 29.19

uses the advection texture information; consequently, the temporal
continuity is good, but larger stretched patterns appear and the overall
texture is less faithful to the exemplar. Conversely, larger values of
73p and 7y, result in stronger reliance on the freshly generated values
from the synthesis pyramid. In this scenario, the temporal continuity is
low, but the texture on static frames is more faithful to the exemplar.
The value of 73 is the most sensitive; slight increases can significantly
decrease the temporal continuity. When considering 7, lower values
result in good temporal continuity, but the multiple transitions make it
harder to preserve fidelity to the exemplar. With larger values of 7,
the transition is rarely used, resulting in increased popping artifacts. In
conclusion, the degrees of freedom provided by 73, 7y, and 7,4, help
the user to tune the results as wanted and the effects of each threshold
are predictable, making them easy to adjust.

Fig. 12 and the accompanying video illustrate the influence of the
atlas resolution (5122, 10242, and 20482) on the synthesized results. One
needs to keep in mind that the Jacobian scale needs to be adjusted to
keep the same feature size in the rendered images. Results tend to be
better when the scale of the Jacobian is one; lower-resolution atlases
tend to be blurrier, while higher-resolution ones sometimes result in
slight amounts of higher-frequency patterns. Overall, our approach
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produces similar results across all resolutions, with synthesized patterns
remaining visually consistent.

4.3. Ablation study

To better understand the contribution of the synthesis and advection
pyramids in our approach, we performed an ablation study comparing
three configurations. In the first, we used only the advection, propagat-
ing values from the previous frame only at the finest level and without
performing any synthesis. In the second, we advect and downsample
to get the advection pyramid, and then we perform synthesis for all
texels and at all levels in each frame, only considering the advected
data when copying the coarsest resolution of the advection pyramid
to the synthesis pyramid. As shown in Fig. 13 and the accompanying
video, the advection-only variant preserves temporal continuity but
quickly loses texture detail and fidelity, whereas the synthesis-only
variant preserves texture features well but lacks temporal coherence.
Our full approach combines the strengths of both, promoting results
which are faithful to the exemplar while encouraging temporal stability
throughout the animation.

4.4. Limitations

Our approach suffers from some limitations: lower-fidelity repro-
duction on some exemplars, lower-quality synthesis on non-stationary
textures, and reduced synthesis quality in later frames compared to
the first frame. The video and Fig. 14 show one exemplar for which
the random-walk of Busto et al. [8] does not recover compatible good
matches and introduces areas corresponding to a local minimum in
the best-match search. We thus lose the larger-scale features of that
exemplar. Using a strategy similar to that of Jamriska et al. [13],
limiting repeated selection of the same texel, would likely mitigate this
issue.

Our approach produces produces good results for a variety of tex-
tures, but is most effective for stationary textures. For instance, results
on the keyboard and brick textures are acceptable (see accompanying
video), but inferior to results for stationary textures.

At the first frame, the synthesis is computed without any temporal
continuity constraints and therefore the quality is slightly better than
at frames later in the animation. Doing a more thorough synthesis at
later frames is an avenue for potential improvement.

5. Conclusion

We presented an approach to conduct exemplar-based texture syn-
thesis on animated meshes from fluid simulations. An advantage of
our approach is that it is agnostic to the specific fluid simulation
method, as long as we can get animated 3D meshes and velocity
fields. After a full multiresolution synthesis at the first frame, our
approach advects the texture and orientation information from frame
to frame. A multiresolution texture pyramid is built by downsampling
the advected finest-resolution texture. We compute local stretch in 3D
by advecting a neighborhood of texels to the previous frame and in
2D by comparing the stored UV coordinates within a neighborhood
of texels. Where we identified stretching, we upsample the coarser
levels of the synthesis pyramid to improve coherence to the exemplar.
Conversely, where no stretching is detected, we use the advected data
to favor temporal coherence. This process is done in a multiresolution
fashion and together with best-match correction at every level of the
synthesis pyramid. We showed that our approach works on different
fluid simulation scenarios and texture exemplars.

Our approach opens avenues for further research. An advantage of
our approach is that it is agnostic to the simulation approach, making
it amenable to methods which increase the resolution from coarser
simulations [34,35]. Moreover, instead of using separate texture atlases
at every frame, it could be interesting to investigate the tracking of
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(default)

Pop threshold 0.01

Pop threshold 0.05

Pop threshold 0.25

Pop threshold 0.40 Pop threshold 0.75

(default)

Fig. 11. Comparison of texture synthesis results using different threshold values for 3D stretching, UV stretching, and popping detection. The middle column

(default) shows the value we selected as best for this simulation and texture.

512x512
Jacobian scale 4

1024x1024
Jacobian scale 2

2048x2048
Jacobian scale 1

512x512
Jacobian scale 2

1024x1024
Jacobian scale 1

2048x2048
Jacobian scale 0.5

Fig. 12. Synthesis results using atlases at different resolutions. The first and
third rows show the texture atlases, while the second and fourth rows show
the rendered fluid surfaces.

an explicit mesh throughout the animation [36]. Also, the 2D parame-
terization to an atlas and the frame-to-frame advection could be used
in conjunction with other synthesis models such as diffusion models.
The advection and multiresolution pyramid, together with the local

10

N
R
R

Advection only  Synthesis only

Full approach

Fig. 13. Ablation study results showing texture synthesis on fluid simulation
over time. Left: When only relying on advection we see significant stretching.
Middle: Only synthesis variant, showing good texture details but suffering
from temporal incoherence (see accompanying video). Right: Our adaptive
approach, which combines advection and synthesis to produce good fidelity
and temporal continuity. The figure shows selected frames from an animation,
in temporal order from top to bottom. Note that all variants begin from the
same first frame.
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Fig. 14. Random-walk best match loses features from the input exemplar.
Selected images from an animation.

stretching detection, could be used to control the diffusion process. Our
popping prevention mechanism could as well be used should the diffu-
sion model introduce abrupt changes. The problem of texture synthesis
over fluid surfaces remains a challenging one and we anticipate further
advances in the coming years.
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