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ARTICLE INFO ABSTRACT

Keywords: Traditional power flow optimization fails to account for the coupling between network loss and the cost of
Bi-level coordinated optimization Adaptive converters, and overlooks both transmission loss and distribution equipment loss. This paper proposes a bi-level
recombination

coordinated optimization framework that integrates an improved artificial fish swarm algorithm (AFSA) and a
hardware cost model to resolve this conflict. This framework has developed a two-layer model consisting of an X-
Y layer optimal power model and a Z-layer optimal reconstruction model, which explicitly combines hardware
costs and inverter losses, effectively resolving the conflict between minimizing control actions and reducing
system losses. Furthermore, an enhanced AFSA featuring adaptive recombination behavior significantly im-
proves resource utilization efficiency and reduces computation time. The results verified on the experimental
distribution network platform show that, compared with traditional methods, the proposed approach reduces the
total economic cost by 7.97 %, enhances the wind power consumption capacity by 12.42 %, and increases the
average minimum voltage by 6.81 %, while maintaining a comparable level of transmission loss.

Fitness value

Hard device utilization cost

Improved artificial fish swarm algorithm
Power flow losses

capacities. In (Chew et al., 2019; Yang et al., 2021; Li et al., 2025), the
optimal power flow method was primarily employed to optimize the
distribution network (Chew et al., 2019). proposed a binary integer load
distribution model in order to optimize distribution losses and system
voltage imbalance. A binary load allocation model was utilized to

1. Introduction

With the widespread penetration of distributed generation with in-
verters and power electronic devices in distribution network, the losses
of equipment are gradually dominated by the losses of transformers and simplify the multi-objective problem and enhance voltage stability
energy storage devices (Rahman et al., 2020; Zhao et al., 2022; Miao while reducing system losses (Yang et al., 2021). proposed an enhanced
et al., 2018; Chen et al., 2023; Bayat et al., 2025). The losses in tradi- DistFlow model that replaced active and reactive power with their ratios
to voltage magnitudes as state variables. This modification reduces the
errors introduced by the traditional branch flow linearization method,
which completely ignores the transmission loss term. As a result, the

tional distribution network mainly originate from transmission loss and
losses in distribution equipment.The utilization frequency of trans-
formers and energy storage has been enhanced to some extent through
optimal power flow and distribution network reconfiguration, further accuracy of power flow optimization is improved (Li et al.,, 2025).
increasing the proportion of losses in distribution equipment (Mahdavi developed a two-level coordinated optimization model for transmission
et al., 2024a, 2024b; Song et al., 2022; Huang et al., 2023; Lejeune and and distribution networks. By applying second-order cone relaxation to
Dehghanian, 2020; Fan et al., 2022).This implies that, in order to reduce transform quadratic inequalities into standard conic form, the original
problem was converted into a convex optimization problem that can be
nomic feasibility, it is necessary to consider the coordinated optimiza- efficiently solved. This approach minimized load shedding and

tion of distribution equipment and transmission losses (Gao et al., 2022; enhanced grid stability under extreme contingencies (Tavalaei et al.,
An et al., 2022; Liu et al., 2019; Zheng et al., 2021). 2024; Al-Ismail, 2020; Huang et al., 2021). employed distribution

network reconstruction to reduce network losses (Tavalaei et al., 2024).
introduced an efficient mathematical optimization model integrating

losses in the distribution network and enhance its efficiency and eco-

Previous studies have mainly focused on the optimization of trans-
mission loss and the selection of distribution equipment locations and
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Nomenclature

Variable Change in active power of node j

AP; Change in active power of node j

U; Voltage amplitude of node i

Pjo Active input of node j at rated voltage

Qjo Reactive power input at node j under rated voltage

fset Set reference frequency

Uj Node J voltage amplitude

Gii Conductivity between node j and node i

Bji The electronegativity between node j and node i

0ji Voltage phase angle difference between node j and node i

APJA Changes in active power injected into port A

pf Active power injected into port A

gh Conductivity of Port A

0; Voltage current phase angle difference at node j

bl Electromagnetic properties of H port

Floss system losses

P}j Active power of the line from node i to node j at time t

itj Reactive power of the line from node i to node j at time t

I Impedance of the line from node i to node j at time t

uf Voltage at node i at time t

Psik Switching Loss

Pol k Conduction loss

8re Unit reconstruction loss cost coefficient

ess k Energy storage configuration power at node k

Efssk Energy storage configuration capacity at node k

floss Transformer loss

floss Network loss

fpo Power quality

ac,be Converter switch loss coefficient

il.rms Effective current value of the node 1

Pwinaiae Peak output active power of the wind farm at node i during
time period At

Pwindiat The actual active power output of the wind farm at node i
during the time period At

vy Node voltage at point B of the grid connection point

Unp The Nth harmonic of the voltage at point B of the grid
connection

vi Node voltage at port 1 at time t

v~ Node voltage at port 1 at time t-1

Fys Voltage offset at the connection point of the power grid

Frup Voltage quality at the connection point of the power grid

Fyr Voltage fluctuations at the connection points of the power
grid

P; The total active power consumption of the inverter and the
load connected to node i

Qi The total reactive power consumption of the inverter and
the load connected to node i

Preras  Peak active power at point b near time t

ppin,.  The valley active power at point b near the point of grid
connection at time t

Desscrar  Corresponding energy storage operating power of pyty ,,

Desscrac  Corresponding energy storage operating power of it .,

Xi The current position of the artificial fish

X; New location randomly selected by artificial fish

Xnext New position of artificial fish after movement

Y. Food concentration at the center position

Y; The food concentration at the current artificial fish
location

Y; Food concentration at the optimal partner location

8
nf
K;

Kimax

P
Xk1k2,k3

Xipm
Yipm
ffc

Crowding concentration factor

Number of visible partners within the domain
Variation overlap index of artificial fish i

The largest mutation overlap indicator in the current
population

Recombination probability

Three different individuals in the mutant fish population
that meet the recombination criteria

Mutation candidate solution

Xipm’s food concentration

food concentration

Parameters Constant impedance load coefficient

(L1
Bi
Yi
KPa

——

Constant impedance load coefficient

Constant current load factor

Constant power load factor

Frequency regulation coefficient

Frequency

Load frequency coefficient

Physical node

virtual node

Power regulation coefficient

Equivalent connectivity matrix between node j and node i
Equivalent interconnection matrix between node j and
node i

time interval

Life loss coefficient

service factor

maintenance factor

Loss coefficient of node k switch

Conductivity loss coefficient of node k
Accumulated usage times

Maximum available times

Equivalent annual depreciation coefficient for energy
storage

Energy storage operating cost coefficient

Energy storage maintenance cost coefficient
Transformer usage cost

Energy storage usage cost

Unit power cost of energy storage

Unit capacity cost of energy storage

Hardware usage cost

Energy storage utilization coefficient of node K
Cost saving coefficient of node g inverter

Inverter node set

Collection of energy storage nodes

Maximum wind power consumption capacity
Normalized weight factor

Abandoned wind power price per unit of electricity
Optimize time set

A set of branch nodes with node i as the head end node
Rated voltage value

Upper limit of injected current at port 1

Lower limit of injected current at port 1

Upper limit of node voltage

Lower limit of node voltage

Upper limit of active power of node 1

Lower limit of active power of node 1

The upper limit of reactive power of node 1

Lower limit of reactive power of node 1

Maximum switch loss at node k

The minimum value of switch loss at node k
The maximum value of conduction loss at node k

Minimum value of conduction loss at node k
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Step Artificial fish movement step size
R A random number uniformly distributed within the
interval [-1,1]
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Visualperceived distance coefficient of variation
A coefficient of variation
Cipm Cross probability threshold

network reconfiguration and disjunctive convex hull relaxation. By
combining the strengths of generalized disjunctive programming and
disjunctive convex hull relaxation, this approach optimizes distribution
network reconfiguration, reducing computational burden while
achieving minimized energy loss and enhanced grid stability.In
(Al-Ismail, 2020), a novel voltage fluctuation index and optimization
algorithm were proposed to regulate bus voltages by switching capacitor
banks and optimizing network reconfiguration, reducing system trans-
mission loss.In (Huang et al., 2021), leveraged deep learning to learn the
relationship between network topology and short-term voltage stability
from historical data, improving short-term voltage stability in
conjunction with loss optimization. Previous studies incorporated con-
siderations for energy storage locations and transformer capacities (Xiao
et al., 2022; Macedo et al., 2015; Chennaif et al., 2022; Mahdavi et al.,
2025). In (Xiao et al., 2022), the impact of energy storage integration
was considered on a multi-objective model for network losses and
voltage imbalance. The model was transformed into a convex quadratic
programming problem, striking a balance between optimality and effi-
ciency. In (Macedo et al., 2015), optimization of total loss in the dis-
tribution network was performed by controlling the reactive and active
power, the number of switchable capacitor units, the tap positions of
voltage regulators and on-load tap changers, and the operational status
of energy storage devices (Chennaif et al., 2022). proposed an improved
electric system cascade extended analysis (ESCEA) method, which takes
into account the optimization objectives of power supply loss proba-
bility, life cycle cost, and levelized cost of energy, thus striking a balance
between optimizing the new energy system and minimizing losses
(Mahdavi et al., 2025). established a mixed integer convex optimization
model accounting for time-varying load fluctuations. This approach
enables simultaneous configuration of distributed generation (DG) units
and capacitor banks, delivering enhanced accuracy in minimizing en-
ergy losses and operational costs. However, existing methods failed to
simultaneously optimize both line losses and equipment losses.
Furthermore, frequent control actions for energy storage and trans-
formers during optimization often incurred high overall economic costs.

To reduce distribution equipment losses while optimizing trans-
mission losses, it is necessary to incorporate operational constraints on
each device into the optimization objectives (Zheng et al., 2016; Chen
et al., 2022; Gao et al., 2019), In (Zheng et al., 2016; Chen et al., 2022),
the operational constraints on compensation devices were introduced
into the model, along with limitations on the utilization of various
channels and distributed energy sources. This approach effectively
restricted the maintenance costs associated with individual devices to
some extent. In (Gao et al., 2019), the impact of changes in distribution

system operating efficiency on transformer losses was considered in the
optimization process, and a multi-objective approach was employed to
minimize operating costs and total power losses using a genetic algo-
rithm to obtain Pareto optimal solutions, resulting in a certain degree of
cost reduction in the optimization process. While the above methods
partially considered the losses of distribution equipment and imposed
certain limitations, they did not account for the coupling relationship
between distribution equipment losses and the optimization control
actions. As the optimization process advanced, the magnitude of sub-
sequent reduction in transmission losses becomes limited, while the
adjustment frequency of devices such as transformers increased, exac-
erbating their losses. Therefore, an optimization method is required to
address energy optimization comprehensively. It should also resolve the
conflicting relationship between transmission loss optimization
behavior and the hardware cost of distributed units.

Bi-level coordinated optimization method integrating improved
artificial fish swarm algorithm and hardware cost model is proposed in
this paper to address the previously mentioned issues. The method in-
volves the incorporation of the optimization control behavior of trans-
mission loss and hardware cost of distributed units into the bi-level
optimization model. Moreover, the enhanced self-adaptation differential
evolution based artificial fish swarm algorithm (SDAFSA) is proposed,
which addresses the issue of the algorithm getting stuck in local optima
by introducing self-adaptive recombination behavior during the fish
swarm’s mutation process.The main contributions of this paper are as
follows:

e The proposed bi-level coordinated optimization method, which
incorporates a converter loss model in the X-Y layer optimal power
strategy and a hardware cost model in the Z layer optimal reconstruction
strategy, can achieve the coordinated optimization between trans-
mission losses and hardware utilization costs of distributed units.
Therefore the economic efficiency of the system can be enhanced.

e The proposed improved artificial fish swarm algorithm, through
the incorporation of an adaptive recombination behavior model in the
variation process, enables an increase in the global optimization capa-
bility of the optimization parameters and a reduction in computation
time and resource usage.

e Compared to the conventional artificial fish swarm algorithm based
on differential evolution (DEAFSA), the designed self-adaptive recom-
bination strategy in this study reduces the probability of repeated se-
lection in the mutation process. This achievement allows for low
memory usage and high optimization accuracy without affecting the
computational time.

The remaining sections of this paper are organized as follows.

Distribution network

=

svc BC
fem s sies s \ £
@- | AC
|
! Generator unit : CB3
‘ E i
s |
v
! i | 30 Y
' Power grid ! L
”””” CB1 13

Energy storage
Distributed generation units

Energy storage|

Converter
utilization cost

Energy storage
utilization cost

Hardware usage costs of

distributed units

Fig. 1. Hardware cost analysis for distributed units in a distribution network.
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Table 1
Analysis of the Impact of Key Nonlinear Parameter Fluctuations on System Cost Fluctuations.

S1:(%) Soc(%) Sme(%) kae(%) Koc(%) kmc(%) fhoe(%)
0.99234438 0.98478440 0.93977834 0.86685580 0.84256282 0.97888142 0.96033910
0.83760700 0.94149655 0.85001048 0.92321067 0.83593701 0.95154889 0.97767119
0.89283558 0.96635571 0.86306491 0.97037001 0.90777741 0.85800149 0.99203857
0.9187035 0.88464562 0.96703928 0.92904706 0.83972180 0.98673472 0.96455701
0.9647549 0.9010810 0.9875736 0.8752930 0.8032160 0.92804701 0.95442321
0.88644344 0.96489699 0.80246830 0.90247281 0.86606449 0.90630873 0.99552230
0.96693395 0.93139751 0.85843779 0.92691412 0.95860111 0.86823248 0.99919729
0.90531141 0.84957093 0.84444330 0.84695962 0.90686940 0.85194974 0.97544664

Section 2 introduces the concept of distributed generation units, pre-
sents the model for evaluating the equipment utilization costs of
distributed units, and analyzes the coupling relationship between the
optimization behavior of transmission loss and the equipment utilization
costs of distributed units. Based on this analysis, a bi-level coordinated
optimization model is proposed. In Section 3, the SDAFSA algorithm is
introduced, including the principle of self-adaptation recombination and
the algorithm’s optimization process. A comparative analysis of the
computational cost of the algorithm is also provided. Section 4 presents
experimental results and comparisons to validate the proposed
approach. Lastly, Section 5 concludes the paper by summarizing the
main findings.

2. The Bi-level coordinated optimization strategy
2.1. Analysis of modeling hardware costs for distributed units

The distributed generation units in the distribution network are
shown in Fig. 1. In this unit, energy storage units are connected in
parallel to the DC bus of the converter. For the purpose of modeling
analysis and simplification,the virtual equivalent node method is
introduced to equivalently represent the AC-DC nodes (Wu et al., 2021).
The flow equation for network node injection is as follows:

APy = [(aU? + ;Ui + 7:)Pjo] (1 + Ka(f — foer) T]

N+K (€))
—U]' Z Ui(Gji Cos 9]'1‘ + Bﬁ sin 0]'1‘) =0

icl
AQ; = [(aU7 + BU; +7,) Qo] (1 + Kaa(f — free) T]

N+K 2)
~U; ) Ui(Gji cos 0y + By sin 6;) =0

i€l

The flow equation for port injection is as follows:

N+K > 2 Nk N+K

AP _PjA—giA<ZFijUj +ZFgleZHi,~Uj-
=1 j=1 j=1
N+K N+K
{giA cos |:Z (Fij — Hij)gj } + ZFUU]-' 3)
j=1 =1
N+K N+K
ZHijUj{biH sin {Z (Fy — Hi-)e,} } =0
=1

j=1

From Fig. 1, it can be observed that each distributed generation unit
is a major component of the distribution network, and its usage cost
accounts for a significant proportion of the overall system economic
cost, considering both the transmission losses and the equipment costs.

Transmission losses mainly result from the energy losses in trans-
mission and distribution lines (Azizi et al., 2023) and are expressed by
(4). The usage cost of hard devices refers to the cost associated with the
primary hardware components used in the distribution network,
including the cost of energy storage and the cost of converters. The
following introduces the modeling and analysis of energy storage usage
costs and converter usage costs.

4

N
Floss:ZZ

2 2
(P})” + (Qy)"ry-At
i1 jev(i) (u

2
)

The usage cost of converters mipy x mainly includes the lifetime loss
caused by reconstructions, routine operation, and maintenance of the
equipment, as well as the switching and conduction losses under normal
operating conditions. Considering that during the reconstruction pro-
cess, the thermal stress generated by over current and over voltage due
to structural changes is much greater than the switching losses under
normal operating conditions, the lifetime loss coefficient is primarily
determined by the number of reconstructions.This can be expressed by

(5)-(6):

Miny k = slc(l + Soc + Smc) (Splpsl‘k + Sp2pol.k> (5)
Sie = gre'Nre/N‘;Ie]aX (6)

max : :
where Si¢, Soc; Smes Spls Sp2> Pslks Polks 8re> Nre; Nre .~ are the lifetime loss

coefficient, operation coefficient, maintenance co-efficient, switching
loss coefficient, conduction loss coefficient, switching, and conduction
losses at node k,cumulative usage count, and maximum available count,
respectively.

In practical applications, the over current voltage generated during
reconstruction is often mitigated through energy storage to reduce
transformer losses and lifetime degradation, leading to the introduction
of the energy storage utilization cost function.

The energy storage utilization cost ces) primarily focuses on
equipment operation costs and maintenance costs, which are converted
into annual equivalent costs (Abomazid et al., 2022). Operation costs
refer to the expenses incurred during the normal operation of the
equipment, including energy consumption costs, maintenance costs,
labor costs, etc. Maintenance costs, on the other hand, include regular
maintenance costs and preventive maintenance costs required during
normal operation. Considering that energy storage is used for over
voltage and over current compensation in the transformer’s DC bus
during the reconstruction process, it can be expressed as shown in (7).

Cessk = kde (]- + koc + kmc)(cppgﬁ,k + CeEgss,k) (7)

where KkdeKoc, Kme,Cps CePessioand Eegsi are the annual equivalent
depreciation coefficient of energy storage, the cost coefficient of an
energy storage operation and maintenance, the cost per unit power and
per unit capacity of energy storage, and the power and capacity of en-
ergy storage allocation at node k, respectively. Here, 1= 1,2,...... k.

The total equipment utilization costs of distributed units, denoted as
fhoe, is the sum of the usage costs of all energy storage and converter
nodes. The energy storage utilization coefficient vk is introduced to
indicate the usage status of energy storage at a particular node, which
takes a value of one when energy storage is connected and zero other-
wise. When energy storage is connected, the usage cost of the converter
decreases with the reduction of losses. Therefore, the cost-saving coef-
ficient of the converter node, denoted as vinv,g, is expressed as follows:
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Optimization direction

Optimization direction of
comprehensive economic cost

Fig. 2. Conflict between Transmission Loss and Hardware Cost.
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Fig. 3. Bi-level coordinated optimization model.
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fhoc = Z Vess kCess k +Vinv,gminv,g (8)
kEQess
84y

where Vess k, Viny,g, Qess; and Qjny are the energy storage utilization co-
efficient at node k, the cost-saving coefficient of the inverter node g, the
set of inverter nodes, and the set of energy storage nodes, respectively.
The value of Viny,g€(0,1).

In order to evaluate the variability of cost correlation coefficients
between converters and pure energy utilization, parameter robustness
tests were conducted within the model. The fy,. changes caused by +
20 % random fluctuations in key nonlinear parameters such as Slc, Soc,
Smc, Kde, Koc, and Kmc were tested. From the 10 sets of random test
data in Table 1, it can be observed that the equipment utilization costs
change by less than 5 %, indicating that the model still maintains strong
stability and robustness under parameter uncertainty.

The conflicting relationship between equipment utilization costs of
distributed units and transmission loss optimization behavior can be
illustrated in Fig. 2, as derived from the comprehensive model. Without

considering the optimization of hardware costs for distributed units, as
transmission loss continues to be optimized, the system’s economic cost
improves. However, when transmission loss optimization exceeds the
boundary, its projection no longer falls within the red region of optimal
economic cost but enters the blue region of suboptimal economic cost.
Nevertheless, through coordinated optimization of hardware costs for
distributed units and transmission loss, the projection can be brought
back within the optimal range of the system’s economic cost.

2.2. The Bi-level optimization model

The bi-level coordinated optimization model is proposed in this
section based on the coupling relationship between transmission loss
optimization behavior and equipment utilization costs of distributed
units, aiming to elucidate the coupling relationships among system
variables and provide a foundation for control, as shown in Fig. 3. The
model consists of the X-Y layers and the Z layer. In the Z layer, the
reconstruction strategy is formed by combining basic reconstruction
strategies according to the optimization objectives, and it changes with
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the actual connection mode of the transformers.

2.2.1. X-Y layer optimization mode

Establish a comprehensive optimal power model at the X-Y layer,
with wind power consumption fying, converter loss £i%, network loss
net, and power quality fpg as optimization objectives. Construct an
optimization objective function through weighted linear combination as
shown in Eq. 9, and constrain the sum of weight factors to 1 to achieve

multi-objective normalization.

min F = min(d; ffffvs + dafiwina + dgflnu‘:f +dafpq) 9

dif fﬁsf + dafivind + dsfif;f +difpg =1 (10)

Among them, d1, d2, d3, and d4 are the corresponding weight factors
for each function.
The loss equation of the converter is as follows:

k
Fim =3 (@t} g + et ms) an
=1

Among them, a., b, ijrm represent the switch loss coefficient and
node effective current value, respectively.

The expression for the output of unconsolidated distributed power
sources is as follows:

fwind = chind (P;Vni:)évut - Pwind.i.At) (12)

Ateg

Among them, Cwind, Pwind,i, At> Pwind,i, At F€Spectively represent the
abandoned wind power price per unit of electricity, the peak output
active power and actual output active power of the wind farm at node i
during the time periodAt, and ¢ are the optimized time set.

The system network loss equation is as follows:

AR}
—Q)*’ rirdt (13)

-y 5
i=1 jev(i)
Among them, P}j, Qi[j, Representing the active and reactive power of
the line from node i to node j at time t, r;; represents the impedance of the
line from node i to node j at time t, u} is the voltage at node i at time t,
and v(i) is the set of branch end nodes starting from node i.
The expressions for voltage offset Fys, voltage quality Fryp, and
voltage fluctuation Fyr at the grid connection point are as follows:

frq = Fvs +Frup + Fyp 14)

Fys = |(V3* — V) /| (15)

(16)

Fyr =/ (V) = (W' 1)? a7)

Among them, v, Vn, UN,B,Vf, i respectively represent the node
voltage at grid point b and the rated voltage value, the Nth harmonic of
the voltage at grid point b, and the node voltage at port I at time t and t-
1. Among them, node i is the set of branch end nodes of the head end
node.

The constraints of the X-Y layer include power flow equation con-
straints, net load constraints, current constraints, voltage constraints,
active power constraints, and reactive power constraints.

The power flow equation can be expressed as:

Pi = UIZIJJ(GU Cos gl] + Bij sin 91})
Jei .

. i1=1,2,-m (18)

Qi = U;) _Uj(Gy sin 6 — By cos 0y)

jei

Energy Reports 15 (2026) 108887

Among them, P;, Q; are the total active and reactive power values
consumed by the converter and load connected to node i. Uj. Uj. Gij.
Bjj. 6;j represent the voltage amplitude of nodes i and j, the conductance
and susceptance between nodes i and j, and the phase angle difference
between nodes i and j. jei represents all nodes connected to node i.

The constraints on the fluctuation range of net load at the grid
connection point are as follows:

P;:in < Pﬂu = |(Pb.tiAtmax - - (Pb.tiAtmm _Pess.tmt)! < Pf[?uax (19)

ess,tiAt)

Among them,PE . Pﬁﬁm respectively represent the peak active
power at node b near time t, and the valley power at node b near time t.
Pess,trats Pessirat are the energy storage operating power corresponding
to the peak and valley active power at node b.

Current and voltage constraints are shown in Eqgs. 20-21:

il. max < il < il, min (20)

vt < || < Ve 21
Among them, i} max, i1, min, Vi VP are the upper and lower limits of
the injected current at port 1, and the upper and lower limits of the
voltage at node i, respectively.

The constraints on active and reactive power of nodes are as shown
in Egs. 22-23:

Pi.max<Pi<Pi,mimi€N (22)

Qi, max < Qi < Q1 minai S N (23)

Among them, Pi max, Pi.min, Q" Min are the upper and lower limits

of voltage and reactive power at node i, respectively.

2.2.2. Z layer optimization model

The establishment of a comprehensive optimal reconstruction model
for equipment utilization costs of distributed units fhoc in the Z layer. Its
mathematical expression is as follows:

fhoc = Z Vess kCess k +Vinv,gminv,g (24)

kEQess
8€Qiny
The constraints in the Z layer include power constraints on the
converters and SOC(State of Charge) constraints. Its mathematical
expression is as follows:

Py < Pyy < PR (25)
PO < Pax <Pyi.keN (26)

where p‘;fj?, Psiks pgifﬂ, and pgi§ are the maximum and minimum values
of switch and conduction losses at node k, respectively.

The fundamental control principle of the proposed model is depicted
in Fig. 3. When solving the X-layer model, the optimal active power
expectation is determined to achieve the optimal wind power integra-
tion while minimizing converter losses, subject to constraints on netload
fluctuations and currents at the grid connection point. The obtained
active power expectation is then transferred to the Y-layer to update the
reactive power constraints.In solving the Y-layer model, under voltage
constraints,the expected reactive power that minimizes system trans-
mission losses and maximizes power quality is computed. Simulta-
neously,the objective function value of the Y-layer, representing the
expected reactive power, is fed back to the X-layer to adjust the con-
straints on active power generation. This process aims to refine the
optimization results of the X-layer. Iterative steps are repeated to obtain
the expected power values that minimize converter losses, minimize
system transmission losses,and optimize wind power integration in the
current network.Please note that the above translation is lengthy con-
tent and minor adjustments may be required to ensure accuracy and
professionalism based on specific context and journal requirements. The
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The fish swarm probabilistically distributes
until there are only three non-overlapping
fish within the circle.

Fig. 4. Illustration of adaptive recombination.

X-Y layer’s active and reactive power expectations are propagated to the
Z lay- er. In the Z layer model,under constraints on active and reactive
power, the expected currents,voltages,and conductive branches are
computed to minimize converter and energy storage costs. Subse-
quently,the objective function values (Expected currents,Voltages,and
Conductive branches) are returned to the X-Y layer current,voltage,and
power flow equation constraints. By iteratively alternating between the
top and bottom layers, the final reconstructed strategy is obtained,which
achieves the minimum hard- ware usage costs of distributed units
(including the converter and energy storage usage cost), the lowest
system transmission loss, and the optimal wind power accommodation.
Moreover, the expected power values under this reconstructed network
are provided.

It can be observed from the previous context that the aforementioned
constraints involve quadratic and integer terms. The solution of this
model belongs to a nonlinear programming problem, which requires a
considerable amount of computation time. The accuracy of traditional
linear programming or nonlinear programming methods (Arnstrom
etal., 2022; Sun and Sun, 2021) is difficult to guarantee,and they are not
yet mature in handling inequality constraints.The DEAFSA has been
gradually applied to distribution network optimization problems,
exhibiting advantages such as low sensitivity to initial values and
parameter (Sotiroudis et al., 2013; Bazi et al., 2014; Huang et al., 2015).

3. Adaptive recombination-based artificial fish swarm algorithm

In response to the issue of low optimization efficiency in the later
stages of the algorithm caused by the blind mutation process of DEAFSA,
this section proposes the SDAFSA to optimize the utilization of branch
energy storage, the reconstruction of corresponding branches, as well as
the voltage and current parameters of the transformers and energy
storage nodes. The objective is to further enhance the coordination
optimization performance of transmission losses and equipment utili-
zation costs of distributed units. The specific details are presented as
follows.

3.1. Traditional artificial fish swarm algorithm

The artificial fish swarm algorithm (AFSA), proposed by Li Xiaolei
et al. in 2002, is a swarm intelligence optimization algorithm based on
the behavior of autonomous animal communities. The control approach
originated from the four fundamental behaviors observed in fish when
they forage in water bodies. The traditional AFSA is commonly
employed for single-layer optimization in distribution networks, such as
reactive power optimization (Li et al., 2021; Zhu and Gao, 2020). It
exhibits good performance and has advantages in terms of weak sensi-
tivity to initial values and parameter selection, fast convergence speed,
and robustness. However, in the later iterations of the AFSA, fish near
the extremum point tend to repel each other, resulting in increased blind
exploration of the fish swarm, slower speed, and lower optimization
accuracy.

The mathematical description of the four behaviors of artificial fish is
as follows:

(1) Foraging behavior

For the current state X; of an artificial fish, a new state X; is randomly
selected within its perceptual range. If the food concentration at X; ex-
ceeds that at the current position, the fish executes a movement oper-
ation toward X; -

X - Xi

Xinext = X; + rand()-Step~m
joT AL

27)

Otherwise, reselect X; and re-evaluate the advancement condition. If
no superior state is found within the maximum number of attempts, the
fish moves randomly by one step:

Xinext = Xi +rand()-Step (28)

where rand denotes a random number uniformly distributed in the in-
terval [0,1].

(2) Group behavior

Assuming the current state of the artificial fish is Xj, there are a
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number of ng partners in its visible domain (dj; < Vjsua1), and the center
positions X; and concentrations Yj of these partners can be obtained. In
order to further optimize the exploration efficiency of fish schools, it is
necessary to compare the concentration at the current location with the
concentration at the center position Y; of partners in the visible domain
and the concentration at the current position under the crowding degree
3. This comparison process can be calculated using Eq. 29:

Y. /ny > 8-Y; (29)

If it is determined that the conditions are met, indicating that the
partner’s center position is rich in food and relatively less crowded, then
the artificial fish will move forward one step towards that position; On
the contrary, artificial fish perform foraging behavior.

(3) Rear end collision behavior

Assuming the current artificial fish is in the X; state, the next decision
is made by exploring the number of partners n¢ and the partner X; (dj; <
Visual) With the highest food concentration in its visible domain.
Compare the concentration Yj near its partner’s location with the current
concentration Yj under congestion §., as shown in the equation:

Y;/ng > 8Y; (30)

If the criteria are met, it indicates that there is more food available at
partner Yj’s location and it is not too crowded, then move forward one
step towards the partner’s location; Otherwise, artificial fish will
perform foraging behavior.

(4) Random behavior

Random behavior is actually a default behavior of foraging behavior,
that is, the artificial fish randomly chooses a direction to move in the
field of view, and the next position Xjnex; is represented as:

Xinext = X; + r-visual (31)

Where r is a random number in the range of [-1,1], and visual is the
perceived distance.

In the artificial fish swarm algorithm, the initialization of the arti-
ficial fish is first performed, followed by clustering and rear end
behavior, exploring feasible positions and selecting the optimal position
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for movement within a certain number of times. During this process, a
bulletin board was set up to record the optimal positions of all fish and
their corresponding food concentrations after each position update.
After completing the predetermined number of iterations, the algorithm
stops.

3.2. The enhanced artificial fish swarm algorithm

In this paper, an improved algorithm called the SDAFSA is proposed
based on the differential evolution (DE) algorithm. The SDAFSA in-
troduces an adoptive recombination process, which effectively enhances
mutation efficiency when encountering local optima.

After being trapped in local optima, the fish swarm undergoes
adaptive recombination by utilizing a stagnation plate count to deter-
mine the entry into variation, as shown in Fig. 4. The fish from the
previous iteration are marked as overlapping fish, and a probability,
denoted as P, is set as the selection range for the variation fish. P is
adaptively reduced as the number of overlapping fish increases. After
each reduction, the fish positions are shuffled and updated, leading to a
repetitive recombination process until the selection of mutated fish is
completed. The selection of mutated fish includes mutation, crossover,
and selection stages.

For each artificial fish, a mutation overlap indicator, K;, and a
recombination indicator, Kjmax, are assigned. Additionally, a recombi-
nation probability P is defined. Random numbers denoted as rand are
generated for all artificial fish, and each fish is associated with a cor-
responding random number,r;. If r; is less than P, three distinct in-
dividuals are selected from this subset for mutation using the differential
evolution approach. After one iteration of differential evolution, the
mutation overlap indicators are updated.

e Part 1-The adaptive recombination function

Kimax = {KlyKZ---yKi}i € (17nf) (32

P=1—K;mau/ny (33)

IConﬁ gure parametersK;, Kiyq., P |

Initialize fish swarm within a given range

X0, Xa, o0, X}

[K=K+1 and =K, [ K]|K]
[

Kimruzmax{KIa KZ, °tt Kl}

|
=1

Xi aggregation behavior yields LX; pursuit behavior yields
{Xnext1, Ynext1} {Xuexzzs Ynex2}

|

I

I

|

|
Recombine fish swarm |
I

I

I

K., K>, K3) €i and r<P I
I

| |

|S topstep=Stopmax+1

|Y1(1+1)=Yi(t)I I Cipv=Yipu I |CiDM:Yi II
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Fig. 5. The optimization process of the SDAFSA.



Z. Peng et al.

SDAFSA

Distribution network system and its objective function
P,O,UILN

Energy Reports 15 (2026) 108887

Implement the power

Initialize the artificial

flow controller
l Provide a given signal

Distribution network structure

fish swarm
Y

Update the
optimal value

K

AC

DC

5

DC

DC

DC

Perform
artificial fish
optimization

L

£

AC

DC AC

DC

J

Objective Output signal
function value |

Control signal

Fitness function

Fig. 6. Illustration of the optimization process of the SDAFSA.

e Part 2-Mutation

Xi2 — Xk3

Xiow = Xia +&-rand()~5tep~m
2 — Xk3

(34)

Three distinct individuals, kq,kp,and ks, are selected from the
artificial fish population that satisfies rand < P for mutation, ac-
cording to the following (29), kj,ko,and ks represent the indices of
randomly selected fish, and A denotes the mutation coefficient.

Part 3-Crossover

c YoM nd(0,1) <
oM = rand(0,1) <
iDM Y, R 35)

otherwise

Individual Xjpy is discretely crossed with the current population
individual X; according to (30),resulting in the differential individual
fitness value Cipy;, where Y; represents the current individual’s food
concentration, Yipy represents the target individual’s food concen-
tration after mutation, and CR denotes the crossover probability
threshold.

e Part 4-Selection

The new individual Cipy(t + 1) is compared with the corresponding
fitness value of the current individual X;(t). If it is superior, the current
individual is replaced.

3.3. Fitness function

The fitness function is the sole indicator for evaluating the optimi-
zation performance of the SDAFSA algorithm,with a higher fitness value
indicating better optimization results.Since the coordination of trans-
mission losses and hardware costs of distributed units aims to further
reduce system economic costs, the bi-level coordinated optimization
model can be defined as the fitness function, with the following
expression:

1

e eo

fre

where fg. is the food concentration function. As the coordinated opti-
mization progresses,the food concentration function also increases.

However,its actual value needs to be evaluated considering the practical
application scenarios and hardware conditions.

The following is a detailed optimization process using the fitness
function, as well as an explanation of its optimization in the distribution
network.

3.4. Algorithm optimization process

The optimization process and schematic diagram of the SDAFSA al-
gorithm are shown in Fig. 5 and Fig. 6,respectively.In Fig. 5,the
recombination probability P is compared with the corresponding r; value
of each artificial fish,enabling the recombination of the fish population
and the select- ion of mutated fish.The updated fitness value Y;j(t + 1) of
the new individuals is achieved through the process of crossover
selection.

The key steps of the SDAFSA for optimization are as follows:

Step 1- The fish swarm is initialized. Throughout the entire process,
the position Xjnext and food concentration Y; of artificial fish is
updated based on the traditional artificial fish swarm position and
food concentration function.

Step 2- The artificial fish are encoded. The initial fitness value of the
fish swarm is calculated,and the fittest individual is searched for and
recorded on the bulletin board.The bulletin board is set to a stagnant
state with Stopstep= 0, and the iteration count is gen= 1.

Step 3- Behavior selection.Simulate four types of behaviors: clus-
tering, following, foraging, and random behavior. After each itera-
tion of an individual artificial fish, its own state is compared with the
records on the bulletin board.If it is superior to the bulletin board
records,the bulletin board is updated and the bulletin board’s stag-
nation step is set to Stopstep= 0.

Step 4- Stagnation evaluation. Evaluate if Stopstep>Stopmax
(maximum stagnation steps). If this condition is satisfied, perform
adaptive recombination and differential evolution on the entire
population of artificial fish. Otherwise, proceed to Step 5.

Step 5- Iteration limit evaluation. Evaluate if gen>MAXGEN, indi-
cating the maximum number of iterations has been reached. If this
condition is satisfied, output the optimal solution. If not, update the
stagnation step of the bulletin board and proceed to Step 3.

The key steps of adaptive recombination are as follows:
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Table 2 Table 4
Computational time cost. Grid connection parameters.
AFSA SDAFSA DEAFSA Node Type Parameters Quantity
Algorithm execution time 8 Wind power 150KW 1
ts X 7.49352 s X 26 CB1 150KVA 5
tq X 3.50592 s 7.71336 s 18 CB2 150KVA 5
ta 147.7932's 156.38263 s 154.61752's 30 CB3 150KVA 5
20 svC 0-500KVA 1
25 Energy storage 1MW 1
25 Impulsive load 0-800KW 1
Table 3
Resource utilization cost (memory usage).
AFSA SDAFSA DEAFSA Table 5
Algorithm execution time Basic reactive power compensation strategies.
Algorithm execution time X X 6K
Di?ferential Evolution X 40 K 24K Node Type Parameters
Differential Evolution 25120 K 25144 K 25138 K 26 CB1 0-5
18 CB2 0-5
30 CB3 0-5
e Step 1- Configuration Parameters: The configuration parameters 20 svC 0-500KVA

include the mutation overlap indicator K;, recombination indicator
Kimax, recombination probability P, and random number r; corre-
sponding to the artificial fish. The values of Kiyax and P are updated
using (27)-(28) respectively. The mutation position Xjpy and muta-
tion fitness value Yipy are updated using (29)-(30) respectively.
Step 2- Adaptive Recombination: The process involves evaluating the
indices of the mutated fish and the indices of the previously mutated
fish to determine the overlap indicator, K;. The extreme value is
recorded as Kjmax and an artificial fish with a random number r; less
than the recombination probability P is selected as the mutated fish.
e Step 3- Mutation Operation: Select artificial fish that meet the given
criteria and subject them to the mutation process to obtain individual

XipM-

e Step 4- Crossover Operation: The individual Xjpy is subjected to
discrete crossover with the current individual Xi in the population.
By comparing the cross-over rate Cg with a random number rand
(0,1),the fitness value Cipy of the differential individual is updated.

e Step 5- Selection Operation: The new individual Cijpm(t + 1) is
compared with the fitness value of the current individual X;(t). If it is
superior, the current individual is replaced.

As shown in Fig. 6, the input signals of the fitness function are
composed of the output signals from each converter, as well as the load
output signals and the power flow control signals of the system. The
fitness value is obtained through the fitness function. The improved
Artificial Fish Swarm Algorithm searches for the optimal parameters P,
Q, V, Land N by evaluating the fitness function value at each iteration
until the end of the iteration.

3.5. Cost comparison calculation

Compared to DEAFSA, SDAFSA incorporates an additional step of
adaptive recombination, which requires consideration of the computa-
tional cost associated with this step. The cost calculation mainly includes
resource utilization and computational time,with the total computa-
tional time denoted as t,.

Adaptive Recombination: The computational time t; can be divided
into two components: the time for adaptive narrowing of the fish se-
lection range,ts;, and the time for random updating of fish positions, ts.
Differential Evolution: The computational time tq can be divided into
three components: the time for mutation td1, the time for crossover tgs,
and the time for selection tgs.

For the simulation hardware,a 64-bit PC with a Windows 7 operating
system is utilized. The CPU is an i5-11300H with a clock frequency of
3.0 GHz. The system has 16 GB of RAM and a hard disk capacity of
500 GB.

As shown in Tables 2 and 3,in the SDAFSA algorithm,the
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computational time for the mutation step after adaptive recombination,
denoted as ty, is reduced by approximately 54.55 % compared to the
computational time for the mutation step in the DEAFSA,denoted as tg.
Additionally, resource utilization is reduced by 40 %. The combined
resource utilization of adaptive recombination and differential evolu-
tion is reduced by 25 %. This indicates that adaptive recombination
improves the effectiveness of repetitive mutation.

The total computation time ta of SDAFSA differs by 5.812 % and
1.142 %compared to AFSA and DEAFSA, respectively. The difference in
total resources is below 1 % for both cases and slightly lower than the
total resource usage of DEAFSA. It can be observed that the inclusion of
adaptive recombination has no significant impact on the computational
speed and provides some optimization in terms of resource utilization
compared to DEAFSA.

4. Experimental comparative verification

To validate the superior optimization performance of SDAFSA and
the bi-level coordinated optimization method compared to the tradi-
tional method under load impact, a simulation model was established
for conducting experimental analysis. The simulation model consists of
two parts: the distribution network structure and the transformer
structure.

The application scenario for the distribution network is set as a port
distribution network, and the distribution network model selected is the
IEEE 33-node model. The IEEE 33 node system is a recognized bench-
mark testing system in distribution network research, and its topology
and load characteristics are representative, which can fully verify the
effectiveness and generalization ability of the method proposed in this
paper. The load section is set as the port load, and actual parameters of
port impact load, distributed energy sources, SVC, energy storage, etc.,
are incorporated into the model. The transformer connection is imple-
mented using an energy router structure (Liu et al., 2021; Wang et al.,
2022), connecting nodes 22, 33, 18,and 25, which provides flexibility
and enables basic reconstruction strategies.The input parameters are
obtained from the partial model parameters of the IEEE 33-node system
and the operational parameters of the actual port shore power project
over a 24-hour period. The input parameters are shown in Table 4, and
the basic strategies for reactive power compensation are shown in
Table 5. CB1, CB2, and CB3 represent reactive power compensators.

4.1. Performance experiment comparison
The parameter settings of SDAFSA algorithm are as follows: visu-

al=1, step= 0.1, A= 0.86. By comparing the computation time spent
iterating to the optimal solution under different parameters in Table 6,
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Table 6
SDAFSA computation time under different parameters.
group 1 2 3 4 5 6 7 8 9 10
visual 0.4 0.67 0.78 0.88 0.94 0.98 1 1.1 1.2 1.5
step 0.8 0.56 0.32 0.18 0.14 0.12 0.1 0.08 0.06 0.03
A 2 1.6 1.2 1 0.95 0.9 0.86 0.84 0.82 0.74
Time(s) 249.9021 233.8633 213.1426 192.2057 179.5354 170.6098 167.3821 181.7582 224.0994 257.4234
o1 corresponding convergence characteristic curves are shown in Figs. 7
and 8. The fitness and other indicators are shown in Table 7. The pa-
L 23 rameters of the energy storage part of the algorithm are shown in
3 e ° Table 6.
® 4 @ Compared with traditional AFSA, PSO, GA, and GWO algorithms,
5@ PSO has the fastest convergence speed but a lower fitness value, while
GA algorithm has the highest fitness value but a slower convergence
28 @ @ © ® 6 06 06 06 0 06 0 0 O . 5
27 26 6 7 8 910 11 12 13 14 speed, while AFSA balances both convergence speed and fitness value.
® 29 @ The following table shows the maximum, minimum, and average
150 @24 fitness values of the objective function for twenty independent runs of
30 o AFSA, DEAFSA, PSO, GA, GWO, and SDAFSA algorithms. The
Py 3] © @ 334 . 18 g 16 maximum, minimum, mean, and standard deviation of SDAFSA are all
32 Energy Routing greater than those of traditional AFSA, PSO, GA, GWO, and DEAFSA
< System b algorithms. Therefore, the SDAFSA algorithm is superior to traditional
22 25 AFSA, PSO, GA, GWO, and DEAFSA algorithms. Compared to traditional

Fig. 7. 33-node distribution network diagram.

this parameter is determined to be the optimal parameter. The artificial
fish numbers for the three fish swarm algorithms are all 12, while the
particle swarm algorithm (PSO) has 12 particles, inertia weight w= 0.7,
cognitive factor c1 = 1.5, social factor c2 = 1.5. The genetic algorithm
(GA) has a population size of 12, crossover probability Pc= 0.8, muta-
tion probability Pm= 0.02, and elite retention ratio of 0.1.The grey wolf
optimization (GWO) algorithm involves 12 wolves. The convergence
factor a decreases linearly from 2 to 0 as the number of iterations in-
creases, and the moduli of the coefficient vectors r1 and r2 are randomly
selected from the interval [0,1] (Mirjalili et al., 2014). The maximum
number of iterations is set to 20, and the number of attempts is set to 10.
The performance of six algorithms was compared, and the

T—=— A
—&— PSO
|—a— GWo
—w— DEAFSA
—&— AFSA
|—<€— SDAFSA

1. 60E-3

1. 55E-3

1. 50E-3

1. 45E-3

1. 40E-3

1. 35E-3

Fitness function value

1. 30E-3

AFSA, PSO, GA, GWO, and DEAFSA, it exhibits outstanding global
search capabilities.

According to Fig. 8, DEASFA and AFSA fell into local optima in the
5th and 14th iterations, PSO, GA, and GWO fell into local optima in the

Table 7
Algorithm optimization comparison.

Algorithm Maximum Fitness Average Fitness Average Fitness
SDAFSA 1.58161 1.55181 1.52139
AFSA 1.47324 1.45175 1.39704
DEAFSA 1.53419 1.51286 1.48315
PSO 1.45832 1.41323 1.36672
GA 1.48661 1.46892 1.44774
GWO 1.46326 1.43717 1.38331

1. 25E-3 T g T

T = T 5 T .

10 15 20

Number of iterations

Fig. 8. Algorithm convergence characteristics comparison chart.
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Table 8
Modes.
Conditions ~ Conditions =~ Maximum rate of change of shore ~ Number of
power accesses
1 800KW 0.975 1
2 200KW 0.51
Table 9

Grid connection parameters.

Power Voltage Converter Energy storage
loss mean utilization cost utilization cost
(MW) (per unit (in million (in million
value) RMB) RMB)
mode 1
Conventional 0.131 0.88 542.11 66.23
methods
Bi-level 0.140 0.93 519.53 58.74
coordinated
optimization
(DEAFSA)
Bi-level 0.134 0.94 507.04 52.73
coordinated
optimization
(SDAFSA)
mode 2
Conventional 0.123 0.89 531.05 64.41
methods
Bi-level 0.132 0.95 498.53 56.89
coordinated
optimization
(DEAFSA)
Bi-level 0.125 0.97 486.42 49.06
coordinated
optimization
(SDAFSA)

5th, 18th, and 12th iterations, respectively. SDAFSA (an improved
artificial fish swarm algorithm based on adaptive recombination) found
the optimal fitness value in the 14th iteration after falling into local
optima in the 7th iteration. As evidenced by Table 7 across 20 inde-
pendent trials, the optimal fitness values demonstrate the hierarchy:
SDAFSA > DEAFSA > GA > AFSA > GWO > PSO. The proposed im-
provements yield a 6.89 % increase in optimal fitness performance.
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4.2. Experimental comparison of optimization methods

A comparative experiment evaluates the proposed bi-level coordi-
nated optimization method against a traditional optimal power flow
method (minimizing transmission loss) under two distinct shore power
load variation scenarios. Both scenarios share the same total connected
shore power capacity but differ in the rate of change and capacities of
individual units. The experiment aims to validate the superior optimi-
zation performance of the proposed method under both high-impact and
lower-impact load conditions. The proposed method employs both
SDAFSA and DEAFSA algorithms, with results averaged over twenty
iterations. Key metrics include branch currents, voltage fluctuations,
dynamic transmission losses, the equipment utilization costs of distrib-
uted units, and overall economic loss. The modes are presented in
Table 8 and the specific optimization indicators before and after
improvement for the bi-level coordinated optimization method are
provided in Table 9.

Under the proposed coordinated optimization, the port’s integrated
power supply system dynamically executes combinations of six basic
reconfiguration strategies across 24 time intervals (Fig. 11 and Fig. 12).
Energy storage operates within an SOC range of (0.1, 0.9), with charge
strategies depicted in Fig. 13 and Fig. 14. The most frequently utilized
grid operating diagrams from the reconfiguration strategies are pre-
sented in Fig. 9 and Fig. 10. Dynamic transmission losses, voltage fluc-
tuations, branch power flows, and wind power integration are compared
against the traditional method in Figs. 11-15.

Mode 1:With the variation of shore power load, the maximum rate of
change within a 2-3 h period reaches 0.975.From Table 8 and Fig. 15(a)
and Fig. 16(a), it can be observed that compared to the traditional
method, the bi-level coordinated optimization method using the
DEAFSA and SDAFSA algorithms increases the total transmission losses
by approximately 6.81 % and 2.29 % respectively.

The average minimum voltage at each time interval is increased by
approximately 5.68 % and 6.81 % respectively. The branch power flow
losses are increased by approximately 4.09 % and 1.63 % respectively.
The wind power integration is improved by approximately 8.61 % and
12.42 % respectively.Under high-impact loads, the system’s economic
performance is significantly improved with a minor impact on trans-
mission losses. The overall economic losses are reduced by approxi-
mately 4.93 % and 7.97 % respectively.

Mode 2: With the variation of shore power load, the maximum rate of
change reaches 0.51 during hours 8-9.According to Table 8, Mode 2,
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Fig. 9. Typical operating node diagram under bi-level coordinated optimization(DEAFSA).
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Fig. 10. Typical operating node diagram under Bi-level coordinated optimization(SDAFSA).
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Fig. 11. Transient load and routing strategy (DEAFSA).

and Fig. 15(b) and Fig. 16(b), it can be observed that compared to the
traditional method, the bi-level coordinated optimization method using
the DEAFSA and SDAFSA algorithms increases the total transmission
losses by approximately 7.31 % and 1.63 %, respectively.

The average voltage at each time interval is increased by approxi-
mately 6.74 % and 8.98 %, respectively. The branch power flow losses
are increased by approximately 6.09 % and 2.81 %, respectively.The
wind power integration is improved by approximately 2.95 % and
2.80 %, respectively. The overall economic losses are reduced by
approximately 6.71 % and 9.98 %, respectively.

These findings demonstrate that the method exhibits favorable eco-
nomic performance and control effectiveness under high-impact loads.
In conclusion, the proposed bi-level coordinated optimization method
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outperforms the traditional optimization method under both Modes.
Additionally, when comparing the SDAFSA algorithm to the DEAFSA
algorithm, it shows good optimization effects for dynamic transmission
losses, voltage fluctuations, branch power flows, wind power integra-
tion,and overall economic costs.

5. Conclusion

A dual layer coordinated optimization method integrating improved
artificial fish swarm algorithm and hardware cost model is proposed.
The proposed dual layer coordinated optimization method incorporates
the converter loss model and hardware cost model into the dual layer
optimization framework, and adopts an improved artificial fish swarm
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algorithm based on adaptive recombination behavior. This leads to effectively reducing the overall economic cost of the system.
higher accuracy in optimizing the transmission loss and hardware cost Comparative experiments on optimization methods show that the
parameters of distributed units, while reducing computational costs, proposed method achieves a 7.97 % —9.98 % reduction in economic
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costs by coordinating network losses and hardware costs, while main-
taining a slight increase in network losses. Under the same total capacity
of shore power, SDAFSA improves voltage stability by 1.11 % —2.22 %
compared to DEAFSA, reduces branch flow losses by about 3.1 %
—3.7 %, and increases wind power consumption by about 6.91 %
—8.81 % before and after improvement. The introduction of the hard-
ware cost model has indeed achieved the coordinated optimization of
distributed unit network loss and hardware cost. Cost comparison cal-
culations and algorithm performance experiments show that the adap-
tive recombination behavior adopted by this method improves
optimization accuracy without significantly increasing resource con-
sumption. As a result, the optimization performance of the double-layer
coordinated optimization method in terms of transmission loss, power
quality, and hardware usage cost has been further improved.

The method proposed in this paper has been validated on a medium-
scale IEEE 33-node system. Future work will focus on extending the
approach to larger-scale systems such as the IEEE 118-node network or
practical urban distribution grids with multiple interconnected micro-
grids. Further efforts will also be dedicated to developing simplified
models and distributed computing strategies, as well as introducing
reinforcement learning-based parameter auto-tuning mechanisms.
These enhancements are expected to strengthen the applicability of the
method in smart grids and electric vehicle integrated energy systems,
supporting more dynamic and high-dimensional operational scenarios.
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