
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3763334
.

.

RESEARCH-ARTICLE

Environment-aware Motion Matching

JOSE LUIS PONTON, Polytechnic University of Catalonia, Barcelona, Barcelona, Spain
.

SHELDON ANDREWS, School of Higher Technology, Montreal, QC, Canada
.

CARLOS ANDÚJAR, Polytechnic University of Catalonia, Barcelona, Barcelona, Spain
.

NURIA PELECHANO, Polytechnic University of Catalonia, Barcelona, Barcelona, Spain
.

.

.

Open Access Support provided by:
.

Polytechnic University of Catalonia
.

School of Higher Technology
.

PDF Download
3763334.pdf
10 January 2026
Total Citations: 0
Total Downloads: 377
.

.

Published: 01 December 2025
Accepted: 09 August 2025
Received: 23 May 2025
.

.

Citation in BibTeX format
.

.

ACM Transactions on Graphics (TOG), Volume 44, Issue 6 (December 2025)
hps://doi.org/10.1145/3763334

EISSN: 1557-7368

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3763334
https://dl.acm.org/doi/10.1145/3763334
https://dl.acm.org/doi/10.1145/contrib-99661001135
https://dl.acm.org/doi/10.1145/institution-60007592
https://dl.acm.org/doi/10.1145/contrib-81339488754
https://dl.acm.org/doi/10.1145/institution-60026786
https://dl.acm.org/doi/10.1145/contrib-81100454238
https://dl.acm.org/doi/10.1145/institution-60007592
https://dl.acm.org/doi/10.1145/contrib-81335496190
https://dl.acm.org/doi/10.1145/institution-60007592
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60007592
https://dl.acm.org/doi/10.1145/institution-60026786
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3763334&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763334&domain=pdf&date_stamp=2025-12-04

Environment-aware Motion Matching
JOSE LUIS PONTON, Universitat Politècnica de Catalunya, Spain
SHELDON ANDREWS, École de technologie supérieure (ÉTS), Canada
CARLOS ANDUJAR, Universitat Politècnica de Catalunya, Spain
NURIA PELECHANO, Universitat Politècnica de Catalunya, Spain

Fig. 1. Environment-aware Motion Matching. Our real-time system enables characters to dynamically adapt their full-body pose and trajectory to navigate
complex environments and interact with obstacles and other agents, seamlessly blending motion capture data with environmental constraints.

Interactive applications demand believable characters that respond naturally
to dynamic environments. Traditional character animation techniques often
struggle to handle arbitrary situations, leading to a growing trend of dynam-
ically selecting motion-captured animations based on predefined features.
While Motion Matching has proven effective for locomotion by aligning to
target trajectories, animating environment interactions and crowd behaviors
remains challenging due to the need to consider surrounding elements. Exist-
ing approaches often involve manual setup or lack the naturalism of motion
capture. Furthermore, in crowd animation, body animation is frequently
treated as a separate process from trajectory planning, leading to inconsis-
tencies between body pose and root motion. To address these limitations,
we present Environment-aware Motion Matching, a novel real-time system
for full-body character animation that dynamically adapts to obstacles and
other agents, emphasizing the bidirectional relationship between pose and
trajectory. In a preprocessing step, we extract shape, pose, and trajectory
features from a motion capture database. At runtime, we perform an efficient
search that matches user input and current pose while penalizing collisions
with a dynamic environment. Our method allows characters to naturally
adjust their pose and trajectory to navigate crowded scenes.

CCS Concepts: • Computing methodologies → Animation; Motion
processing.

Additional Key Words and Phrases: Character Animation, Motion Matching,
Crowd Animation

Authors’ Contact Information: Jose Luis Ponton, Universitat Politècnica de Catalunya,
Barcelona, Spain, jose.luis.ponton@upc.edu; Sheldon Andrews, École de technologie
supérieure (ÉTS), Montreal, Canada, sheldon.andrews@gmail.com; Carlos Andujar,
Universitat Politècnica de Catalunya, Barcelona, Spain, andujar@cs.upc.edu; Nuria
Pelechano, Universitat Politècnica de Catalunya, Barcelona, Spain, npelechano@cs.upc.
edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 1557-7368/2025/12-ART232
https://doi.org/10.1145/3763334

ACM Reference Format:
Jose Luis Ponton, Sheldon Andrews, Carlos Andujar, and Nuria Pelechano.
2025. Environment-aware Motion Matching. ACM Trans. Graph. 44, 6, Arti-
cle 232 (December 2025), 18 pages. https://doi.org/10.1145/3763334

1 Introduction
Real-time interactive applications, such as video games, XR experi-
ences, and virtual environments, increasingly demand dynamic and
realistic character behavior in a wide range of different situations.
The growing number of potential scenarios results in traditional
animation, such as state-graph machines, being impractical. Conse-
quently, leveraging motion-captured (mocap) animations to select
poses based on contextual information [Holden 2018] has gained
significant attention.

A prevalent technique for animating character locomotion is Mo-
tion Matching [Büttner and Clavet 2015; Clavet 2016]. This method
searches extensive mocap databases for sequences of poses that
align with a desired trajectory while ensuring smooth transitions
from the current pose.

However, modeling interactions with the environment, between
characters, or within crowds presents significant challenges. The
number of relevant features to match expands rapidly, as it becomes
necessary to consider environmental features in addition to the
target trajectory and the current pose. Common approaches for en-
vironment interaction involve manually predefining markers within
the scene that trigger specific animation clips [Allen 2021; Har-
rower 2018] depending on the character’s location. This method
necessitates character pre-alignment and offers limited flexibility
and control during motion execution. Furthermore, the manual cre-
ation of these trigger points is a labor-intensive process. Alternative
methods employing procedural animations, often relying on inverse

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

https://orcid.org/0000-0001-6576-4528
https://orcid.org/0000-0001-9776-117X
https://orcid.org/0000-0002-8480-4713
https://orcid.org/0000-0002-1437-245X
https://orcid.org/0000-0001-6576-4528
https://orcid.org/0000-0001-9776-117X
https://orcid.org/0000-0002-8480-4713
https://orcid.org/0000-0002-1437-245X
https://orcid.org/0000-0002-1437-245X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763334
https://doi.org/10.1145/3763334

232:2 • Ponton et al.

kinematics [Alvarado et al. 2022], frequently produce results that
lack the naturalism inherent in mocap data.

Similar challenges arise when animatingmulti-character or crowd
interactions. Notably, much of the existing research on crowd simu-
lation treats body animation as an isolated process, separated from
trajectory planning and collision avoidance [Ferreira et al. 2024;
Hoyet et al. 2016; Itatani and Pelechano 2024]. This decoupling
often results in animations in which the body motion does not con-
sistently align with the character’s root movement, leading to foot
sliding among other artifacts. In contrast, human interaction is typ-
ically a bidirectional process: the body pose influences the choice
of trajectory, and conversely, the environment and constraints of a
potential trajectory can dictate our body posture (e.g., choosing to
sidestep in a narrow corridor).

In this paper, we introduce Environment-aware Motion Matching,
a real-time system designed to dynamically animate the full-body
pose of a character in response to its surroundings, taking into
account nearby dynamic obstacles and other agents. Unlike tradi-
tional methods that often decouple planning from animation, our
system utilizes motion capture data to simultaneously compute both
the pose and the trajectory of the agent, inherently incorporating
collision avoidance. Our characters exhibit a natural adaptation to
environmental elements by concurrently adjusting body pose and
trajectory as needed.
During a preprocessing stage, we approximate the character’s

shape using 2D ellipses. This simple yet effective collision proxy
ensures an accurate projection of the character’s pose onto the floor,
which is crucial for identifying optimal pose sequences to navigate
narrow spaces or crowded areas.
At runtime, we periodically perform a two-step search within a

motion capture database. This process retrieves motion that adheres
to the user’s input while dynamically adapting to the environment.
The integration of a simple collision proxy directly within the Mo-
tion Matching algorithm allows for natural mode changes to react
to proximity constraints—both static and dynamic—imposed by
the environment, enabling a flexible and context-aware character
behavior.
The main contributions of our paper can be summarized as fol-

lows:

• We introduce Environment-aware Motion Matching, a
novel real-time framework that integrates a simple collision
proxy directly into the Motion Matching algorithm. This en-
ables natural, coupled reactions to static and dynamic en-
vironmental constraints, generating perfectly aligned body
poses and root motion. This fundamentally addresses the
prevalent issue of decoupled local steering and animation
in crowd simulations, allowing for complex behaviors from
simple user inputs.

• Our system is designed for straightforward integration into
existing Motion Matching pipelines and supported by ex-
tensive optimizations ensuring real-time performance with
minimal overhead. It simplifies data acquisition by requiring
only a single-actor animation database, eliminating the need
for multi-character captures or object labeling.

• We propose a flexible and extensible abstraction using novel
environment features and obstacle penalizations. Unlike stan-
dard Motion Matching’s direct query matching, our environ-
ment features are used to dynamically compute penalization
factors, allowing for context-aware pose selection. This de-
sign facilitates easy extendability, enabling straightforward
incorporation of diverse interaction types (e.g., height fea-
tures).

2 Related Work
In this section, we review the literature most relevant to our work.
We begin by covering Motion Matching, then discuss existing crowd
simulation methods that integrate body motion with local steering
algorithms, and finally, compare our approach to reinforcement
learning-based environment-aware methods.

2.1 Motion Matching
Motion Matching, initially introduced by Büttner and Clavet [2015]
as a greedy approximation to Motion Fields [Lee et al. 2010], was
significantly advanced for Ubisoft’s For Honor [Clavet 2016]. This
technique emerged to address the limitations of traditional motion
graphs [Arikan and Forsyth 2002; Chen and Steed 2011; Kovar et al.
2002; Lee et al. 2002; Safonova and Hodgins 2007], which often suf-
fered from complex, rigid construction and maintenance. In contrast,
Motion Matching’s strength lies in its elegant simplicity: it relies
on a large, unstructured motion capture dataset, a well-designed
feature set, and an efficient nearest-neighbor search. This allows for
real-time, flexible pose transitions and facilitates rapid iteration in
animation style.
Despite the recent prominence of deep learning-based methods

[Holden et al. 2017; Ling et al. 2020; Starke et al. 2022; Zhang et al.
2018], MotionMatching remains an essential animation tool inmany
AAA game productions. Its fast iteration times and high animation
quality often outweigh the challenges deep learning methods face,
such as the averaging effect where high-frequency details are lost
due to input signal ambiguity.
Recent research has expanded Motion Matching into various

domains. Holden et al. [2020] explored learning compact neural
controllers from extensive animation data. Ponton et al. [2022] ap-
plied Motion Matching to animate virtual reality avatars driven by
head-mounted displays. Beyond locomotion, Motion Matching has
been used for controllable gesture synthesis from speech [Habibie
et al. 2022] and for locomotion authoring based on footstep and
gait cycle matching [Kim et al. 2024]. Generative motion synthesis
methods based on Motion Matching have also been proposed [Li
et al. 2023].
While Motion Matching has diversified in applications, most

existing work primarily focuses on modifying query features or
refining the standard nearest-neighbor search. Our approach, how-
ever, introduces novel environment features and a distinct two-stage
search process. This is critical for adapting to dynamically chang-
ing environments and avoiding the necessity of prohibitively large,
pre-annotated datasets.

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

Environment-aware Motion Matching • 232:3

2.2 Crowd Simulation
We demonstrate our approach in a crowd simulation setting, where
methods tend to focus on solving the local steering of characters
to move within nearby points while avoiding collisions with ob-
stacles and other agents [Helbing et al. 2000; Pelechano et al. 2007;
Reynolds 1999; Snape et al. 2011]. For agents to move across large
environments, a global pathfinding algorithm typically computes
a sequence of waypoints, treating the environment as if empty.
These waypoints then serve as attractors for local steering, which
handles collision avoidance with other moving agents. Finally, an
independent animation layer is subsequently added to synthesize
locomotion sequences that follow the input trajectory. For exam-
ple, Sung [2007] employs a high-level path planning algorithm for
global trajectories, with a motion graph then filling in animation
sequences to match this global path. Similarly, Yao et al. [2022] uti-
lizes pathfinding and a social forces system for crowd simulation,
animating characters via state machines for fixed interactions and
PFNN [Holden et al. 2017] for locomotion. However, their agents
lack the ability to adapt animations based on other agents’ proximity
or to adjust trajectories in response to current body animation.
Some methods propose long-term planning strategies to find

smooth, collision-free trajectories with correctly aligned animations.
This includes searching small animation databases for complete
solutions from start to goal positions [Lau and Kuffner 2005]. The
navigation problem can also be decomposed into multi-domain
problems [Kapadia et al. 2013], where paths are first found on a
navigation mesh and then refined in more complex domains that
account for time and animations. Global planning for collision-free
trajectories can also be formulated as a non-linear optimization
problem in 3D space-time, solving for agents as rods via a quasi-
Newton interior point solver [Modi et al. 2023].

Managing inter-agent collisions in high-density crowds is a criti-
cal challenge, leading to the exploration of more accurate body rep-
resentations. Hoyet et al. [2016] evaluated the importance of torso
rotation in a simulated crowd to perceptually hide existing collisions.
To better model body shape and allow for motions like sidestep-
ping, Best et al. [2016] and Stüvel et al. [2017] employ 2D ellipses
and 2D capsules, respectively, with RVO models, and more recently,
Ferreira et al. [2024] utilizes deformable 2D ellipses within social
forces frameworks. For dense crowd collision resolution, Gomez-
Nogales et al. [2024] models the problem as an energy minimization
for the entire crowd, focusing on correcting collisions for agents
in place, but does not support adapting trajectories based on the
environment. Crucially, while these methods enhance collision han-
dling and body representation, they typically maintain a separation
between local avoidance mechanisms and the animation synthesis
process, contrasting with our integrated approach.

2.3 Reinforcement learning approaches
Reinforcement learning (RL) has been successfully applied to char-
acter animation (see [Kwiatkowski et al. 2022; Li et al. 2021] for
recent surveys). Trained agents are capable of taking complex mo-
tor actions that are oriented toward accomplishing some (potentially
high-level, long-horizon) task or achieving a goal based on a speci-
fied reward function. A distinguishing advantage of RL approaches

is that motion skills, which encompass both skeletal animation
and motion planning, are learned through experimentation. Strictly
speaking, RL does not require training data; however, recent ap-
proaches do use motion capture data, either in the form of motion
clips for kinematic motion synthesis [Lee and Lee 2004; Lee et al.
2010] or as reference data of natural human motion for physics-
based approaches [Peng et al. 2018, 2022, 2021]. Although recent
deep RL models provide plausible motion synthesis [Deng et al.
2024; Dou et al. 2023; Peng et al. 2022; Xu et al. 2025], training
physics-based controllers to reproduce complex physical interac-
tions remains an obstacle, requiring hours or days [Kwiatkowski
et al. 2022]. Even methods for efficient policy adaptation require
significant resources and fine-tuning [Xu et al. 2023], and challenges
like catastrophic forgetting and mode collapse remain significant
hurdles. Furthermore, approaches based on generative adversarial
imitation learning [Peng et al. 2022, 2021] struggle to reproduce
exact animations from the reference dataset, which is an advan-
tage of motion matching. There are also practical challenges, since
physics-based character controllers are highly dependent on the
design of the character model, e.g., joint and torque limits.
These limitations contrast with the fast improve-and-test iter-

ations supported by our approach, which is designed for precise
control over trajectories and style, allowing animators to use the
exact motions they capture. This is a key reason for its widespread
adoption in AAA games, in addition to the facility of integrating
it into game engines and crowd simulators. To our knowledge, no
established RL-based method specifically targets navigation in tight,
constrained spaces for a direct baseline. These fundamental differ-
ences in goals and technical approaches highlight why our method
offers a faster, more controllable, and more artist-friendly workflow,
complementing RL in the broader field of character animation.

3 Preliminaries: animation database, real-time user input,
and environment constraints

Our animation database consists of an ordered sequence of 𝑇 poses
(𝒚 (𝑖))𝑇𝑖=1. These poses are defined based on a humanoid skeleton
with 𝐽 = 24 joints. The orientation of each joint is described relative
to the local frame of its parent joint. Although the root joint is
typically located at the hip, we introduce an additional bone to
define the character reference frame. This is achieved by projecting
the hip joint onto the ground plane and making the hip joint the
child of this newly created root. The position of the newly added
joint can be smoothed to minimize sudden changes. We refer to the
2D position of this projected hip joint on the ground plane as the
character position. Additionally, we store the 3D local position of
the hip joint within the character’s local space. Consequently, the
resulting pose vector is 𝒚 (𝑖) ∈ R4𝐽 +3+2. Orientations are defined as
quaternions. With this representation, we can accurately reproduce
any part of the original animation by sequentially accessing poses
(𝒚 (𝑖) 𝒚 (𝑖+1) 𝒚 (𝑖+2) . . .) given an initial pose vector.
The target trajectory 𝒙 ∈ R12 is defined similarly to several Mo-

tion Matching implementations [Clavet 2016; Holden et al. 2020],
where 𝒙 = (𝒙𝒑 𝒙𝒅). Here, 𝒙𝒑 ∈ R6 and 𝒙𝒅 ∈ R6, represent the pre-
dicted 2D character positions and directions at 20, 40 and 60 frames
in the future (assuming the application runs at 60Hz). As we shall

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

232:4 • Ponton et al.

Preprocess Real-time
Features

(z(i))i=1

Animation
Files

Feature Extraction

Pose & Future PosesPose y(i) + Future Poses (y(i+20) y(i+40) y(i+60))

Pose Features zv zf
Trajectory Features zp zd

Environment Features ze

Current Pose y

User Input

Query Vector zq

Target Trajectory x

For each pose

Feature Search

Features
(z(i))i=1

For each
feature

vector z(i)

Feature Vector z(i)

Query Features zq

Distance

Obstacles (o(j))j=1

Environment Features ze

Obstacle Penalization

Get best
index i*
(minimum
distance +

penalization)

Poses
(y(i))i=1

Pose y(i*) + Future Poses (y(i*+20) y(i*+40) y(i*+60))

Extract pose
features zv zf

Best
index

Poses
(y(i))i=1

T

Pose y(i)

T

O

Feature Vector z(i)

ᐱ

T

T

i*

Fig. 2. Overview of our Environment-aware Motion Matching pipeline. The system operates in two distinct stages: a preprocessing phase (Section 4.1) and a
real-time controller (Section 5). The real-time controller utilizes user input and the current character pose to construct a query vector, which is then compared
against the query features. Simultaneously, environment features guide the search by computing dynamic obstacle penalizations.

see, these lookahead positions allow our characters to better adapt
their animation to potential obstacles, thus minimizing the risk of
collision. This input formulation provides sufficient flexibility to
accommodate various input modalities for driving our system. For
example, we can get target velocities from keyboard or game con-
troller input and extrapolate future positions and directions using
linear or more advanced methods, e.g., spring-based models. Alter-
natively, we can generate target trajectories from predefined paths
or utilize scripted target velocities as produced by crowd simulation
frameworks.

The environmental constraints are defined as a list of𝑂 obstacles
(𝒐 (𝑗))𝑂𝑗=1, where each obstacle 𝒐 (𝑗) ∈ R𝑑 has a dimensionality 𝑑

that depends on the obstacle type. Our framework is designed to
accommodate various obstacle representations; however, in this
work, we primarily focus on disks and ellipses. A disk (𝑑 = 3) is
defined by its 2D projected global center position and its radius. An
ellipse (𝑑 = 5) is defined by the 2D position of its center, the 2D
semi-major axis vector, and the magnitude of the semi-minor axis
(its direction can be determined by finding a vector perpendicular to
the semi-major axis). The semi-major axis vector is aligned with the
character’s movement direction. When the character is stationary,
we orient it using the character’s forward vector.

Our objective is to periodically select poses 𝒚 (𝑖) from the anima-
tion database for sequential playback, ensuring that the resulting
motion adheres to both the user’s input control and the environ-
mental constraints.

4 Environment-aware Motion Matching
Our method comprises two distinct stages, as illustrated in Figure 2:
a preprocessing phase (Section 4.1), and a real-time controller (Sec-
tion 5). The real-time controller uses the features extracted during
the preprocessing stage to identify the most suitable pose based on

the target trajectory, the character’s current pose, and the surround-
ing environment.

4.1 Feature Representation and Extraction
This section describes the preprocessing stage, focusing on the
motion features and their extraction from the animation database
(𝒚 (𝑖))𝑇𝑖=1.
From each pose 𝒚 (𝑖) , we extract three categories of features: pose

features, trajectory features, and environment features. Pose and
trajectory features are defined similarly to those used in existing Mo-
tionMatching implementations [Clavet 2016; Holden et al. 2020].We
introduce environment features that enable an environment-aware
pose search. We collectively refer to pose and trajectory features
as query features, as they will be compared against a similarly de-
fined query vector that encapsulates our target feature values. In
contrast, environment features are not directly compared to a prede-
fined query vector. Instead, they are used to compute penalization
factors based on a dynamic analysis of the surrounding scene. We
believe that this distinction between query and environment fea-
tures offers a valuable abstraction for the system’s implementation,
facilitating the addition or removal of features as required, as will
be demonstrated later with the environment features.

4.1.1 Query Features. Query features are composed of pose and
trajectory features. Pose features are employed to minimize pose
discontinuities during non-sequential transitions, i.e., when choos-
ing the next pose from a different segment of the mocap database.
We use the 3D linear velocities of the feet and hip joints, denoted as
𝒛𝒗 ∈ R9, and the 3D positions of the feet joints, 𝒛𝒇 ∈ R6. We selec-
tively match these key joints to maintain a low-dimensional feature
vector, thereby facilitating the search given the diverse nature of
the features. Furthermore, excessively constraining the search space
could significantly limit the number of viable transitions between

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

Environment-aware Motion Matching • 232:5

poses. Trajectory features are used to drive the motion according
to the user’s input. If only pose features were considered, our sys-
tem would simply play back the animation database sequentially.
Trajectory features enable the selection of poses that align with
the movement intended by the user. Consistent with the target
trajectory definition in Section 3, we use the 2D character posi-
tions 𝒛𝒑 ∈ R6 and directions 𝒛𝒅 ∈ R6 at 20, 40 and 60 frames into
the future. All features are expressed in character space and stan-
dardized to account for the varying magnitudes across different
feature types. The complete vector of query features is defined as:
𝒛𝒒 = (𝒛𝒗 𝒛𝒇 𝒛𝒑 𝒛𝒅) ∈ R27.

4.1.2 Environment Features. Environment features serve to dynam-
ically evaluate the suitability of a given pose within a specific en-
vironmental context. In our work, we aim to define features that
describe the character’s overall body shape, enabling the automatic
identification of pose sequences that can traverse a variety of obsta-
cle configurations. For example, in a narrow corridor, a slight torso
rotation might be necessary to pass another agent moving in the
opposite direction.
We opted for a body representation that could be compactly in-

tegrated into the feature vector, thereby minimizing memory over-
head, while simultaneously capturing different body orientations
and shapes to readily distinguish motions such as sidestepping from
forward walking. Although our framework can accommodate vari-
ous types of representations depending on the specific requirements,
we discarded disks due to their inability to differentiate between
the aforementioned scenarios. More complex representations, such
as convex hulls, were deemed unsuitable due to the increase in
memory consumption and computational complexity. We selected
ellipses to represent the 2D footprint of the body shape. Although
the most compact representation, disks, can be described by a sin-
gle real number (radius), ellipses require only two additional real
numbers to describe the semi-major axis vector and the magnitude
of the semi-minor axis, as detailed in Section 3. Similarly to the
trajectory features, we define an ellipse for 20, 40, and 60 frames
into the future. Consequently, we utilize the future 2D character
positions stored in the trajectory feature 𝒛𝒑 to position these ellipses.
Thus, our principal environment features are defined as 𝒛𝒆 ∈ R9 (we
experiment with additional environment features in Section 6.1.4).

Ellipses are computed for each pose in the animation database by
first determining the unit semi-major axis vector. This is achieved
by normalizing the 2D displacement vector between the current
character position and the subsequent one. The semi-minor axis
vector is then computed by finding a perpendicular vector to the
semi-major axis (by swapping its components and negating the first
one). Finally, to determine the magnitude of both axes, all joints in
the skeleton are projected onto these two vectors, and the maximum
projected distance is used. The resulting ellipse is stored in character
space.
It is important to note that while we utilize ellipses to represent

the body shape, our environment features framework is designed
for a wide variety of body representations. This offers the flexibility
to use more complex representations if higher accuracy is needed,
as the system’s core abstraction of computing penalizations remains
the same. For instance, as discussed in Section 6.1.4, we employ

height features to determine whether a character should jump or
crouch to avoid vertical obstacles. This would involve adding two
real numbers per ellipse, representing the minimum and maximum
vertical components in character space.

4.1.3 Feature Vector and Feature Database. The final complete fea-
ture vector 𝒛 is the concatenation of the query features 𝒛𝒒 and the
environment features 𝒛𝒆 :

𝒛 =
(
𝒛𝒒 𝒛𝒆

)
∈ R36 . (1)

Thus, the feature database (𝒛 (𝑖))𝑇𝑖=1 has a corresponding entry 𝒛 (𝑖)

for each pose 𝒚 (𝑖) in the animation database (𝒚 (𝑖))𝑇𝑖=1.

4.2 Feature Search
Having constructed the feature database (𝒛 (𝑖))𝑇𝑖=1 and the corre-
sponding animation database (𝒚 (𝑖))𝑇𝑖=1, our objective, given the
character’s current pose 𝒚 and the target trajectory 𝒙 (as defined in
Section 3), is to identify the optimal matching pose 𝒚 (𝑖∗) . The subse-
quent poses in the animation sequence (𝒚 (𝑖∗+20) 𝒚 (𝑖∗+40) 𝒚 (𝑖∗+60)),
should align with the current pose and target trajectory while avoid-
ing collisions with environmental obstacles (𝒐 (𝑗))𝑂𝑗=1.

The feature search process is conceptually divided into two main
steps. First, we construct a query vector 𝒛̂𝒒 containing the target
values for our query features. Second, the environment features, for
which direct targets are not defined, are used to compute penaliza-
tion factors that influence the selection process.

We begin by creating the query vector 𝒛̂𝒒 that contains the target
query features. The pose features 𝒛𝒗 and 𝒛𝒇 are directly derived
from the current character pose 𝒚. The trajectory features 𝒛𝒑 and
𝒛𝒅 are constructed based on the provided input 𝒙 , as detailed in
Section 3.

Subsequently, we initiate the search by iterating through all fea-
ture vectors 𝒛 (𝑖) in the feature database (𝒛 (𝑖))𝑇𝑖=1. For each feature
vector, we perform the following steps sequentially (optimizations
of these steps are discussed in Section 5.4):

(1) Query features distance. We compute the Euclidean distance
between the query vector 𝒛̂𝒒 and the query features 𝒛𝒒 . Since all
query features are standardized, we employ weights (𝜆𝑣 𝜆𝑓 𝜆𝑝 𝜆𝑑)
to control the relative importance of each feature type. Typically,
these weights are set to 1.

(2) Obstacle penalizations. For each of the three future ellipses
associated with the environment features 𝒛𝒆 , we determine their
global position based on the future 2D character positions 𝒛𝒑 and
then iterate through all nearby obstacles to calculate the minimum
distance between the ellipse and each obstacle.

(3) Log-barrier function. Each computed distance 𝑑 is then eval-
uated using a log-barrier function (illustrated in Figure 3), which
imposes an exponentially increasing penalty as the distance ap-
proaches zero, such that

𝑓 (𝑑) =
{
−(𝑡 − 𝑑)𝑝 log

(
𝑑
𝑡

)
if 𝑑 < 𝑡

0 otherwise
(2)

where 𝑡 represents the obstacle distance threshold, defining the
range within which penalization begins, and 𝑝 controls the rate

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

232:6 • Ponton et al.

0.0 0.2 0.4 0.6 0.8 1.0
d

0.0

0.2

0.4

0.6

0.8

1.0

f(d
)

t = 0.4, p = 4
t = 0.4, p = 2
t = 0.6, p = 4
t = 0.6, p = 2
t = 1.0, p = 4
t = 1.0, p = 2

Fig. 3. The log-barrier function used for obstacle penalization. This plot

illustrates the penalty 𝑓 (𝑑) = −(𝑡 − 𝑑)𝑝 log
(
𝑑
𝑡

)
as a function of the

distance 𝑑 to an obstacle. The penalty is zero when 𝑑 ≥ 𝑡 (the obstacle
distance threshold), and increases exponentially as 𝑑 approaches zero. The
parameter 𝑝 controls the steepness of this exponential growth, ensuring a
strong repulsion as the character gets close to an obstacle.

at which the penalty increases as the distance decreases. The log-
barrier function yields near-zero penalization around 𝑡 and grows
exponentially as 𝑑 approaches zero. This barrier is inspired by the
Incremental Potential Contact method [Li et al. 2020].

(4) Weighted penalizations. To further modulate the influence of
the penalization terms, we introduce two levels of weights. First,
a general environment weight 𝜆𝑒 is applied to all penalizations.
Second, we employ additional weights 𝜆40 and 𝜆60 to adjust the
significance of the penalizations arising from the second (40 frames)
and third (60 frames) future ellipses, respectively. Ideally, we aim to
identify a trajectory that satisfies all obstacle constraints. However,
given the limited size of the animation database, achieving this may
not always be feasible. In such scenarios, prioritizing the avoidance
of immediate future collisions is often acceptable (𝜆40 = 0.4 and
𝜆60 = 0.1).

(5) Final score. Finally, theweighted query distance and all weighted
penalization values are summed to obtain a final score for the fea-
ture vector 𝒛 (𝑖) . We get the index 𝑖∗ corresponding to the feature
vector with the lowest overall score. The corresponding pose 𝒚 (𝑖∗)

is then retrieved from the animation database for playback.

5 Real-time Environment-aware Character Controller
Our real-time environment-aware character controller uses the fea-
tures and search mechanism detailed in Section 4. This section
elaborates on how these concepts are integrated into our real-time
control framework.

5.1 Overview
The real-time controller operates through two tasks executed at
different frequencies:

Fig. 4. Purple arrows indicate the target trajectory derived from user in-
put. Our method, while being aware of the cone obstacle, dynamically
adjusts the character’s path, causing it to step right to avoid collision. This
demonstrates how the system integrates environmental constraints into
root motion, ultimately enabling the character to reach the target trajectory
while naturally avoiding obstacles.

Every 𝑛 frames. The controller first gathers nearby obstacles.
Subsequently, as described in Section 4.2, it constructs the query
vector 𝒛̂𝒒 and performs a feature search to identify the optimal
matching pose𝒚 (𝑖∗) . The character’s position and orientation in this
best-matching pose define the animation space, while the current
character’s position and orientation define the character space. A
transformation is then computed to enable the playback of the new
pose within the current character space. Immediately following this
search, the index 𝑖∗ is incremented by one, as detailed in the next
step. In our experiments, we set 𝑛 = 10 for a 60Hz application.

Every frame. The system advances the current best-matching
pose by one frame in the animation database. Formally, let 𝑐 rep-
resent the number of frames elapsed since the last search. The
character is animated with the pose 𝒚 (𝑖∗+𝑐+1) . This assumes that
the animation database was captured at the same frame rate as
the application. In practice, all counters are time-based rather than
frame-based, allowing for smooth animation playback even with
variable frame rates. Any post-processing steps are also executed
during this per-frame process. For example, we employ inertializa-
tion [Bollo 2017] after each new search, thus every 𝑛 frames, to
blend seamlessly between changes in pose.
Collision avoidance implies that the character’s final trajectory

might not match the trajectory extracted from the provided input,
since it has to be adjusted to the environment (see Figure 4). Since
our search algorithm handles the extraction of the most appropriate
motion for each situation, the character’s motion is entirely driven
by the root motion embedded within the animation database, rather
than the trajectory derived from the provided input. Consequently,
when generating a new target trajectory based on the provided input,
the starting point is always considered to be the character’s current
position. For applications requiring more immediate responsiveness
to input, it would be feasible to maintain a separate target position
derived directly from the given input and subtly guide the character
towards this target. However, this approach might introduce some
visual artifacts, such as foot sliding, necessitating additional post-
processing techniques like foot locking.

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

Environment-aware Motion Matching • 232:7

5.2 Capture of the Animation Database
A high-quality animation database is crucial for realistic and re-
sponsive control. Despite addressing environment interactions, our
method only requires a single actor, without needing to track or tag
obstacles during capture.
We first captured diverse locomotion data (similar to Motion

Matching) for obstacle-free scenarios. Furthermore, we designed
and captured various scenarios that involve both static and dynamic
obstacles with a single actor.We aimed for broad animation coverage
and iteratively added new situations whenever our character con-
troller did not exhibit the desired behavior. Our capture diagrams,
detailing the actor’s instructions, are included in the supplemental
material to facilitate reproducibility.

While comprehensive animation coverage is key, redundant clips
of the same motion are avoided to prevent constant transitions
during loops. To achieve this, our search process incorporates a
slight reduction in the final score if the character continues the
currently playing animation clip instead of transitioning to a new
one.

Although a carefully curated animation database (high diversity
and minimal redundancy) yields the best performance, we achieved
high-quality results with minimal manual effort. For instance, in this
work, we utilize raw animations captured using an Xsens Awinda
mocap suit. By instructing the actor to follow our pre-designed
navigation tasks, we can generate new, fully functional animation
databases in approximately two hours (including preparation, cap-
ture, file exporting, and application import). This rapid iteration
enables the easy capture of different movement styles, and simply
by swapping the animation database, entirely different styles can
be obtained (see accompanying video).

5.3 Feature Weights
Through our experiments, we have found that setting the query
feature weights (𝜆𝑣0 𝜆

𝑓

0 𝜆
𝑝

0 𝜆
𝑑
0) to one (subscript 0 indicates the default

value) and the environment weights to 𝜆𝑒0 = 5, 𝜆400 = 0.4, 𝜆600 = 0.1
generally yields good results.We also defined two parameters for the
log-barrier function: the exponent 𝑝 is set to 4 for all experiments,
while the threshold 𝑡 is set to 0.4 for navigating highly constrained
environments and 0.6 for more general usage.

Furthermore, we define and provide reference values for two com-
monly used high-level controls inMotionMatching (Responsiveness
and Continuity), along with two novel high-level controls (Evasion
and Anticipation) which offer intuitive ways to adjust the behavior
of the character controller without needing to directly manipulate
the individual low-level feature weights:

Responsiveness 𝜔𝑟 ∈ R>0. Default 𝜔𝑟 = 0.1. Modifies the tra-
jectory feature weights to adjust the degree to which the system
adheres to the target trajectory. Higher values will result in the
character more closely following the intended trajectory:

𝜆𝑝 = 𝜆
𝑝

0 𝜔𝑟 𝜆𝑑 = 𝜆𝑑0 𝜔𝑟 (3)

Continuity 𝜔𝑐 ∈ R>0. Default 𝜔𝑐 = 0.1. Modifies the pose feature
weights to control the emphasis on minimizing pose discontinuities.
Increasing this weight can reduce the number of potential transitions
within the animation database. Still, it may be beneficial in scenarios

where maintaining continuity is critical (e.g., during airborne phases
of a jump):

𝜆𝑣 = 𝜆𝑣0 𝜔𝑐 𝜆𝑓 = 𝜆
𝑓

0 𝜔𝑐 (4)

Evasion𝜔𝑒 ∈ [0, 1]. Default𝜔𝑒 = 0.01. Defines the minimum scal-
ing factor applied to the direction weight when obstacles are nearby.
Typically, when the user inputs a desired movement direction, we
want the character’s body orientation to adapt optimally to the
surrounding obstacles based on our animation database. Therefore,
we have found it beneficial to reduce the direction weight 𝜆𝑑 when
the character is close to obstacles. Let 𝒐 be the nearest obstacle and
𝒑 the current position of the character. We linearly interpolate the
direction weight towards a target weight defined as:

𝜆𝑑 =

{
𝜆𝑑0 max

(
𝜔𝑒 ,

| |𝒐−𝒑 | |
𝑡

)
if | |𝒐 − 𝒑 | | < 𝑡

𝜆𝑑0 otherwise
(5)

Note that in scenarios where precise target directions are provided
manually and high control is required, this parameter can be set
to 1, effectively disabling its influence.

Anticipation 𝜔𝑎 ∈ R>0. Default 𝜔𝑎 = 2.0. Scales the environment
features weight 𝜆𝑒 based on the character’s target speed ¤𝑣 . Trajec-
tory feature weights 𝜆𝑝 become more influential at higher speeds
due to the greater distances in the generated trajectories. This in-
creased influence can sometimes lead the character to disregard
obstacles during fast movements like running. To counteract this,
we modulate the environment weight as follows:

𝜆𝑒 =max
(
𝜆𝑒0 · ¤𝑣 · 𝜔𝑎, 𝜆

𝑒
0
)

(6)

The higher the anticipation, the earlier the character will avoid
obstacles without having to slow down. Nevertheless, we always
keep a minimum base weight to avoid completely ignoring environ-
ment features when idle (essential to evade dynamic obstacles, see
Section 6.1.2).
The high-level parameters Evasion and Anticipation allow for

fine-tuning the collision avoidance strategy that has been incorpo-
rated into the motion matching approach through the environment
features.

5.4 Optimizations
A key consideration when integrating environment features is their
potential performance impact on the search. Search operations in-
volving only query features (i.e., ignoring obstacles) can benefit
from accelerating data structures such as Bounding Volume Hierar-
chy (BVH), scaling logarithmically with the size of the animation
database. However, environment features, which depend on the
dynamic elements within the scene, require a linear traversal of the
database, scaling with the number of poses and obstacles. Obstacle
penalization is also more computationally demanding than simple
vector distance checks. To achieve real-time performance, we next
describe some critical optimizations that we implemented. A de-
tailed evaluation and performance analysis of these optimization
strategies is presented in Section 6.3.

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

232:8 • Ponton et al.

5.4.1 Base optimizations. We first implemented a set of core opti-
mizations that do not modify the algorithm’s behavior and should
always be employed to significantly accelerate the feature search.
A crucial optimization is the early rejection of feature vectors

whose cumulative score exceeds that of the current best candidate
(as our objective is to find the minimum score). The entire feature
search is structured around this principle: we calculate the query
feature distance first and proceed to obstacle penalization only if it
is lower than the current best score. During penalization, for each
obstacle, we early reject the feature vector as soon as the score
is higher than the current best candidate. We evaluate obstacles
sequentially for the three future ellipses (first, second, then third),
leveraging the lower weights of the later ellipses (𝜆40 = 0.4 and
𝜆60 = 0.1) for faster rejection based on the first ellipse’s penalties.
Within each ellipse, simpler obstacles (disks) are processed before
more complex ones (ellipses).
To further enhance the efficiency of early feature vector rejec-

tion, we experimented with pre-processing trajectories based on
their clearance, intending to prioritize the checking of less restricted
trajectories. However, this approach did not yield significant perfor-
mance improvements.

We also optimize the search by computing obstacle penalizations
only for potential intersections. Before the feature search, we pre-
select relevant obstacles if their center is within 𝑟𝑜𝑏𝑠+𝑡+𝑟𝑒𝑙𝑙𝑖𝑝𝑠𝑒 of the
character’s future trajectory positions 𝒛𝒑 , where 𝑟𝑜𝑏𝑠 is the obstacle’s
longest radius, 𝑡 is the distance threshold, and 𝑟𝑒𝑙𝑙𝑖𝑝𝑠𝑒 = 0.9m (about
half the arm span). If there are no potential obstacles for any ellipse,
we execute a BVH-accelerated search using only query features.

Finally, our method naturally supports a data-oriented design.
Contiguous memory storage of feature vectors and sequential ac-
cess optimize the CPU cache and simplify SIMD integration for
substantial performance improvements.

5.4.2 Temporal coherence. While our base optimizations achieve
real-time performance, further minimizing the animation engine’s
impact on the frame budget is desirable to match traditional Motion
Matching speeds (0.22 ± 0.05ms, Table 1).
Exhaustively checking every feature vector for obstacle penal-

ization is too costly (see Section 6.3). We devise an optimization
strategy that aligns with Motion Matching’s principles: operating
on large, unstructured animation arrays without complex graph
structures and without limiting pose transitions (a prior issue with
Motion Graphs [Arikan and Forsyth 2002; Kovar et al. 2002; Yin
et al. 2005]).

We exploit temporal and local coherence. Typically,MotionMatch-
ing databases contain long, unstructured sequences with local pose
similarity and continuity. We also observe that many poses within
these databases represent less distinctive motion. For instance, idle
sequences between actions, which are common in Motion Matching
to streamline transitions, often contain prolonged periods of very
similar poses. These can be effectively condensed by identifying key
poses that adequately represent the entire segment, thereby reduc-
ing the number of feature vectors that need to be explicitly checked
during the search. This consolidation allows for more efficient early
skipping during the search process.

To take advantage of local coherence, we first introduce a min-
imum search stride (we use a stride 𝑘 of 8 frames, or 133 ms at
60 Hz). To accelerate searches through extended periods of similar
poses, such as idle states, we also employ an adaptive threshold. In a
preprocessing step, we identify and store indices of feature vectors
that are at least 𝑘 frames apart and exhibit a minimum difference
of 5 % (relative to each feature’s range). This creates a sparse array
of representative feature vectors. During the search, we initially
iterate through these representative indices. If a representative in-
dex yields a score better than the current best, we then perform a
more exhaustive search by examining all feature vectors between
the halfway points of the preceding and succeeding representative
indices. This approach resembles a two-level hierarchical search.

During the coarse search through representative feature vectors,
we dynamically adjust the stride based on the dissimilarity between
the current representative 𝒛 (𝑖) and the current best feature vector
𝒛 (𝑖

∗) (with a total score of 𝑠∗). The dissimilarity is quantified by the
Euclidean distance 𝑠 = | |𝒛 (𝑖) − 𝒛 (𝑖

∗) | |. This distance is then used to
compute the stride 𝑘 ′ for the representative vector search using the
following formula:

𝑘 ′ =max
(
1, 𝑣

⌊√︂
𝑠

𝑠∗

⌋)
(7)

where the parameter 𝑣 controls the search aggressiveness; smaller
values lead to more conservative searches with smaller strides, while
larger values encourage larger strides, potentially skipping more
representative vectors.

The underlying intuition is that early in the search, when a good
initial best score 𝑠∗ has not yet been established, the stride 𝑘 ′ will
tend towards 1, ensuring that the most representative vectors are
examined. As the search progresses and 𝑠∗ decreases, if the current
representative 𝒛 (𝑖∗) is significantly different from the current best
𝒛 (𝑖

∗) (i.e., 𝑠 is large relative to 𝑠∗), the resulting 𝑘 ′ will be greater than
1, allowing the algorithm to skip over less promising representative
vectors. Conversely, when the current representative is very similar
to the best one (𝑠 ≈ 𝑠∗), the stride 𝑘 ′ will become 1, therefore, having
a more careful examination of the neighboring feature vectors.
Finally, we begin the search from a representative feature vec-

tor similar to the one previously selected. Since motion tends to
be cyclic, this helps quickly establish a good initial best score 𝑠∗
and facilitates the early rejection mechanism. More precisely, our
feature search begins approximately 1 % (relative to the length of
the representative feature vector array) before the best-matched
index from the previous frame.

6 Evaluation
In this section, we provide an in-depth evaluation of Environment-
aware Motion Matching across a variety of scenarios and configura-
tions. Subsequently, we present an ablation analysis and compar-
ative studies to justify our design choices, including comparisons
with standard Motion Matching, an examination of our optimization
strategies, and a discussion on disk-based versus ellipse-based body
representations.
We implemented Environment-aware Motion Matching within

the Unity game engine, utilizing data-oriented programming prin-
ciples and the Burst compiler to optimize the search process. The

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

Environment-aware Motion Matching • 232:9

Fig. 5. Comparison of our Environment-aware Motion Matching (top row)
with standard Motion Matching (bottom row) in an obstacle-filled scene.
The black line indicates the target path, and purple points denote future
target positions. Blue points illustrate the system’s selected future character
positions. Our method (top) dynamically detours to avoid the central obsta-
cle, showcasing its environment awareness and the coupled pose-trajectory
selection. In contrast, standard Motion Matching (bottom) disregards the
obstacle, leading to collisions. This highlights our system’s bidirectional
control, in contrast to typical decoupled animation pipelines.

systemwas evaluated on a PC equipped with an Intel Core i7-12700k
CPU, 32GB of RAM, and an NVIDIA GeForce RTX 3090 GPU (used
solely for rendering).

6.1 Results and Experiments
In this section, we demonstrate the versatility of our method across
a variety of scenarios and configurations. Each experiment is accom-
panied by an illustrative image and a segment of the accompanying
video.

6.1.1 Constrained Environment. We designed a virtual scene incor-
porating a variety of obstacles to evaluate our method’s ability to
naturally adapt to diverse situations.

First, we created a corridor that progressively narrows, eventually
reaching a width of only 0.35 meters. Figure 12 shows the character’s
behavior: it initially runs unconstrained in the widest section. As
the corridor narrows, the character reduces its velocity and then
begins to turn its body, ultimately traversing the narrowest section
by sidestepping. Once the corridor widens again, the character
naturally resumes running.
Second, we designed a corridor containing cone obstacles ar-

ranged in a zigzag pattern. Figure 13 demonstrates how the char-
acter navigates this setup. Initially it zigzags to avoid the cones
while maintaining velocity. At a certain point, it opts to sidestep
until reaching a nearly closed door (note that the cones are not per-
fectly evenly distributed). The character then traverses this partially
obstructed doorway by sidestepping. It is crucial to highlight that
throughout the duration of this corridor traversal, the only input
received by the system is a continuous forward command
(e.g., pressing the up arrow key). Despite this simple linear target

trajectory, our system generates rich and complex motions, such as
zigzagging and carefully passing through the narrow opening.

Finally, Figure 6 showcases our method in a high-density crowd
scenario, where other characters are treated as static obstacles. The
main character carefully navigates by slowly moving between them,
demonstrating its ability to find paths and adapt its body in ex-
tremely tight spaces.

6.1.2 Dynamic Obstacles. A key advantage of our environment fea-
tures is their capability to compute real-time penalizations without
making assumptions about the environment. This means that our
system can quickly adapt to dynamic obstacles. We approximate
obstacles using simple proxy primitives, such as disks, with their
positions aligned with the rendered objects. For dynamic objects,
we also include additional proxies placed according to the obstacle’s
expected future position (ideally matching the time horizon of our
agent’s trajectory and environment features).

Figure 14 shows a scenario in which two moving cubes approach
a stationary character. Without any user input, our system auto-
matically causes the character to take a few steps forward to avoid
collision as the cubes approach.
Figure 15 shows a car moving towards the character, while the

user simultaneously provides input to make the character
walk towards the car (e.g., pressing the down arrow key). Initially,
the character approaches the car. However, just as the character is
about to collide, the animation naturally transitions to a jogging
backwards motion to avoid the vehicle. Crucially, not only is the
pose altered, but the character’s root motion is also adapted to move
backward, even though the user’s target trajectory remains directed
towards the car.

6.1.3 Multi-character Interaction. Multi-character interaction dis-
tinguishes itself from the previous experiments as each character is
independently animated by our Environment-aware Motion Match-
ing system.
For real-time interaction, each character computes obstacle pe-

nalizations by considering the expected future ellipses of other
characters. Specifically, for each of its own three future ellipses (e.g.,
at 20, 40, and 60 frames ahead), a character only considers the corre-
sponding future ellipse from other agents (e.g., the 20-frame ellipse
with another agent’s 20-frame ellipse). This ensures consistent time
horizons for the predicted interactions.
In addition, we include some subtle upper-torso motions in the

animation dataset to resemble more natural interactions between
agents.

Figure 16 displays two characters walking towards each other in
three corridors of varyingwidths: (1) the blue corridor (1.55mwidth)
provides ample space, allowing both characters to walk naturally
with minimal torso movement; (2) the green corridor (1.20m width)
requires both characters to turn their bodies while walking to fit
past each other; (3) the red corridor (0.95m width) is considerably
narrower, requiring characters to carefully avoid one another. We
provide two examples for the red corridor to show the diversity of
generated poses in such constrained situations.

Figure 17 illustrates two interaction scenarios. The first row shows
a character (red t-shirt) running towards a walking character. A
considerable torso rotation is observed to avoid collision, yet velocity

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

232:10 • Ponton et al.

is maintained due to sufficient available space. In the second row,
both characters are walking, and the torso rotation for avoidance is
more subtle, reflecting the lower speed and the less urgent need for
drastic adjustments.

6.1.4 Adding Additional Environment Features. Our framework is
designed with the generalization of the environment features in
mind. Fundamentally, these features are used to compute penal-
izations that guide the search process based on the dynamically
changing environment. Thus, we are not limited to encoding 2D
ellipses. For instance, we extend the environment features by in-
corporating height information to determine whether a character
should jump or crouch to avoid vertical obstacles. This involves
adding two real numbers per ellipse, representing the minimum
and maximum vertical components in character space. During the
search, large penalties are applied when there is an overlap between
the vertical segment defined by the character and that of the obsta-
cles(computed automatically from the bounding box), effectively
discarding incompatible trajectories.

Figure 18 illustrates a character jumping over a fence to reach its
destination. This action is chosen because it better approximates
the target trajectory compared to taking a detour. Figure 19 shows
a character progressively crouching to walk under a transparent
red ceiling. When encountering a second ceiling at a considerably
lower height, the character naturally lies down to pass underneath.

6.1.5 Crowd Simulation Integration. A primary objective of this
work is to bridge the gap in current crowd simulation techniques,
where animations are typically layered onto a predefined root mo-
tion. This common approach often leads to inconsistencies between
the character’s root motion and its full-body pose. Our method of-
fers a straightforward integration into crowd simulation algorithms:
these algorithms can generate global target trajectories, and our
system then produces root motion that locally avoids obstacles,
perfectly synchronized with realistic poses.
We demonstrate this integration with a basic rule-based crowd

simulation algorithm. In this setup, each agent employs a cone of
vision and computes forces perpendicular to the direction towards
the nearest character. This steering force is then applied to the target
trajectory to avoid collisions. This basic strategy, when combined
with our method, is effective for typical crowd scenarios, such as
two groups of characters walking toward each other (see Figure 8).

We also present another common scenario utilized in crowd sim-
ulation research. Figure 9 displays two doors: a green one with an
opening of 1.85m and a red one with an opening of 0.9m. Agents
can be observed walking through the wider green door with min-
imal torso rotation. In contrast, traversing the narrower red door
requires sidestepping in certain instances. The upper row of Figure 9
shows examples in which agents prioritize crossing quickly (high
Responsiveness). In contrast, the bottom row illustrates characters
that are not in a rush (low Responsiveness), consequently attempting
to maintain greater distance from other characters. Our method not
only finds a natural coupled solution between animation and trajec-
tory, but also produces waiting behaviors since the method provides
natural idle animations when the agent encounters a bottleneck.

6.1.6 Animation Style. A significant advantage of our method is
its rapid iteration time, allowing for quick integration of diverse
animation styles and precise control over the final visual result.
Changing animation styles is as simple as capturing new motion
capture data and plugging it directly into the system to see it in
action immediately. In this experiment, we explore three distinct
styles.

Figure 20 shows a character holding a prop weapon and adapting
its body to walk between columns. The character lowers the prop
when getting close to the columns to pass through. Similarly, in
Figure 21, the character is carrying a large box and is required to
raise it above its head to fit between columns. Finally, in Figure 22, a
character that typically prefers to occupy more space by raising its
elbows while walking, adopts a more quiet pose when navigating
near other agents to fit through tight spaces.
All three styles require no changes to the algorithm; only the

animation data needs to be swapped to adapt the target style. For
instance, in the large box example, the ellipse representing the body
shape is larger when the character carries the box at its side and
smaller when held overhead. This naturally forces the character to
carry the box over its head when walking in tight spaces.

6.2 Comparison vs Standard Motion Matching
We quantitatively (see Section 6.3) and qualitatively compare our
Environment-aware Motion Matching system against standard Mo-
tion Matching to highlight the benefits of integrating environmental
features. As discussed, traditional Motion Matching operates by
searching an animation database for pose sequences that align with
a target trajectory and maintain continuity with the current pose.
However, this approach inherently disregards the character’s sur-
roundings and any multi-agent interactions. While it is theoretically
possible to include additional environment-specific features (e.g.,
local object positions) within a Motion Matching database, such
data would require laborious pre-labeling and pairing, severely lim-
iting the database’s practicality and generalizability. In contrast, our
environment features do not make assumptions about the obstacles,
which facilitates reusing a single sequence of poses for multiple
situations.
The impact of this fundamental difference is clearly visible in

real-time scenarios. Figure 7 (bottom row) visually demonstrates
how a standard Motion Matching character, lacking environmental
awareness, directly collides with another agent, completely ignoring
its presence.
In Figure 5, our character alters its path to navigate around a

large obstacle, seamlessly integrating avoidance into its movement.
Standard Motion Matching, without our environmental features,
would attempt to maintain the original target trajectory, inevitably
leading to a collision with such an obstacle.

6.3 Performance and Ablation Analysis
One of the primary challenges in integrating environment features
with dynamic obstacles is the linear scaling of the database tra-
versal with the number of obstacles and poses. In Section 5.4, we
detailed various optimizations to achieve real-time performance,
categorizing them into base optimizations and temporal coherence

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

Environment-aware Motion Matching • 232:11

Fig. 6. Character navigating a high-density crowd. The ligth blue t-shirt
character walks slowly and carefully between other stationary characters,
demonstrating the system’s ability to find and adapt to paths within ex-
tremely confined, high-density environments.

Fig. 7. Comparison of body representations and environmental awareness.
The top row illustrates our method using ellipses, where characters adapt
their poses (e.g., sidestepping) to navigate past each other. The middle row
shows our method using disks, demonstrating how characters become stuck
due to the limited expressive power of disk approximation. The bottom row
presents standard Motion Matching, where characters completely ignore
each other and collide, highlighting its lack of environmental awareness.

optimizations. We do not provide a separate evaluation for the base
optimizations, as they consistently enhance performance without
altering the method’s core behavior. This section focuses on evalu-
ating the temporal coherence optimizations, which often involve a
trade-off between execution speed and accuracy.

Experimental setup. We designed an experimental environment
densely populated with obstacles, as depicted in Figure 10, and
tasked the character controller with following a predefined path
for approximately 1 minute and 30 seconds. This setup represents a
stress scenario for our system, as the constant and dense obstacle
environment necessitates intensive use of environment features.

Metrics. Table 1 summarizes our performance and ablation anal-
ysis. We report the average performance of each feature search,
which is executed every 10 frames at an application frame rate of

60Hz. It is important to note that our search algorithm runs on the
CPU within a single thread. Additionally, we report: the diversity,
quantified as the number of distinct poses utilized; the error, rep-
resenting the average deviation of the character position from the
target path per frame in meters; and collision time, expressed as
the average duration of each obstacle intersection.

Results. Next, we introduce and discuss each experiment. Our
non-environment-aware baseline is the standard Motion Match-
ing, which achieves the highest performance (0.22 ± 0.05) due to
its BVH-accelerated search. However, it does not adapt to the en-
vironment, therefore yielding a low diversity count (1997), and a
significant time per collision (0.88 ± 0.64). In particular, this base-
line spends approximately 30% of its time intersecting obstacles,
compared to only 2% for our complete approach. In addition to the
increased collision duration, a visual inspection of the resulting
animation (see accompanying videos) shows that baseline motion
matching leads to arbitrary penetrations, with the character passing
directly through the obstacle. In contrast, our environment-aware
method significantly reduces both the duration and the extent of
such penetrations.
Upon incorporating our environment-aware framework, the di-

versity significantly increases (3305), and the average time per colli-
sion drastically decreases (0.05 ± 0.04). This is demonstrated by the
non-optimized experiment, Linear Search, which simply traverses
the feature database with only base optimizations. However, this
comes at a high performance cost (9.50 ± 4.16).

The subsequent experiment, One Obstacle, is designed to motivate
the need to skip feature vectors during the search, rather than solely
relying on further improvements to the early rejection mechanism.
In this experiment, only the intersection of the first ellipse with
the first obstacle is checked. This effectively represents an ideal
scenario where the early rejection mechanism functions optimally
for all feature vectors. Nevertheless, we observe a performance of
5.83± 0.12ms, which underscores the need for a mechanism to skip
feature vectors.

Next, we demonstrate the importance of the temporal coherence-
based optimizations. The No Adaptive experiment removes both
the minimum search stride and the adaptive threshold, with the
stride adjusted solely based on the dissimilarity between the current
feature vector and the best one. Conversely, the No Dissimilarity ex-
periment utilizes the minimum search stride and adaptive threshold
while omitting the dissimilarity-based stride adjustment. Finally, the
Start 0 experiment consistently begins the feature search from the
first index, rather than from the previously best-matched index. In
all three of these cases, performance is negatively impacted, while
the trajectory error and collision metrics yield similar results.
In contrast to the No Dissimilarity experiment, the Large v ex-

periment uses a large search aggressiveness parameter (𝑣 = 10,
compared to 𝑣 = 5 in other experiments), which exaggerates the
effect of the dissimilarity-based stride. As a result, performance is
slightly reduced, likely because the aggressive search skips good
candidates early on (as indicated by the higher standard deviation).
The trajectory error is also considerably impacted, as the system

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

232:12 • Ponton et al.

Fig. 8. Our method can be trivially integrated with crowd simulation systems, allowing characters to adapt their poses and motion to the other characters.
The images shows three snapshots (100 frames apart) from a simulation using a basic rule-based crowd steering. See accompanying video.

Fig. 9. Crowd agents navigating doors of different widths and responsive-
ness settings. The green corridor (1.85mwide) shows characters passing with
little torso rotation. The red corridor (0.9m wide) often requires sidestep-
ping. Top row: Agents prioritize crossing quickly (high Responsiveness),
demonstrating more direct, yet still adaptive, paths. Bottom row: Agents
are less rushed (low Responsiveness), leading to more pronounced avoidance
behaviors and larger clearance.

fails to find the most appropriate poses. This highlights the impor-
tance of balancing the v parameter to achieve both performance
and accuracy.
Only when our final approach, incorporating all optimizations

and denoted as Ours, is employed, do we achieve the highest perfor-
mance (0.80± 0.16). The trajectory error is slightly higher compared
to the Motion Matching baseline (0.14 ± 0.07), which is an expected
trade-off as the system prioritizes obstacle avoidance, sometimes at
the expense of minor detours from the target trajectory.

Interestingly, our full approach exhibits the highest pose diversity
(4378), even surpassing other environment-aware experiments. We
attribute this to the coarse-grained search strategy. In an exhaustive
traversal of the database, the system might frequently settle on
sequences that offer a perfect match to the virtual environment. By
introducing a coarse-grained search that occasionally skips these
exact matches, themethod is encouraged to explore alternative, near-
optimal sequences, thereby significantly increasing the observed
pose diversity.
Finally, it should be noted that our method achieves the same

performance results as the base Motion Matching (0.22±0.05) when
no obstacles are present. However, for this specific experiment, we

Table 1. Performance and ablation analysis of our Environment-aware Mo-
tion Matching system. We report the average performance of the feature
search (in milliseconds, executed every 10 frames), diversity (number of
distinct poses used), trajectory error (average deviation from target path
in meters), and collision time (average time of obstacle intersection in
seconds). Arrows indicate whether a lower (↓) or higher (↑) value is better.
Results demonstrate that our approach achieves near real-time performance
with high pose diversity and minimal collisions compared to the Motion
Matching baseline and various optimization configurations, especially in a
worst-case dense obstacle environment (Figure 10).

Ablation Performance ↓ Diversity ↑ Error ↓ Collision time ↓
(ms) (count) (m) (s)

Motion Matching 0.22 ±0.05 1997 0.09 ±0.04 0.88 ±0.64
Linear Search 9.50 ±4.16 3305 0.12 ±0.06 0.05 ±0.04
One Obstacle 5.83 ±0.12 2103 0.09 ±0.04 0.79 ±0.67
Disk 0.90 ±0.22 3838 0.29 ±0.17 0.37 ±0.29
No Adaptive 2.40 ±0.70 3729 0.13 ±0.07 0.08 ±0.08
No Dissimilarity 1.62 ±0.17 3608 0.13 ±0.08 0.12 ±0.10
Start 0 1.02 ±0.20 3807 0.16 ±0.10 0.06 ±0.12
Large 𝑣 0.88 ±0.35 4389 0.37 ±0.34 0.12 ±0.10
Ours 0.80 ±0.16 4378 0.14 ±0.07 0.08 ±0.05

Fig. 10. A part of the test environment employed for the performance and
ablation analyses presented in Table 1. Our Environment-aware system
enables characters to navigate through dense arrangements of cones, dy-
namically adjusting their body pose to fit between tight spaces.

deliberately focused on evaluating performance within a worst-case
scenario.

6.4 Animation Database Scalability Analysis
In this section, we analyze the impact of the animation database
size on the performance, following the experimental setup detailed

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

Environment-aware Motion Matching • 232:13

Fig. 11. Animation Database Scalability Analysis. The graph displays the
mean performance (in milliseconds) and standard deviation as a function
of the animation database size, where the original database used in Table 1
represents 100%. The expected linear scaling reference (from x=100%) is
included to illustrate how the increase in performance cost with database
size has a significantly reduced linear slope.

previously. Figure 11 presents the mean performance and standard
deviation for various dataset sizes.We use the database in Section 6.3
as our 100 % reference point (containing 101,026 poses). We then gen-
erated datasets of different relative sizes by trimming or expanding
this original database: 25 % (26,455 poses), 50 % (48,575 poses), 75 %
(75,341 poses), 150 % (154,214 poses), 200 % (209,152 poses), 300 %
(301,794 poses), and 400 % (411,280 poses).

As shown in Figure 11, our method demonstrates considerable
scalability with increasing animation database size. The red dashed
line indicates the expected linear growth, referenced from the 100 %
database size. In other words, if we duplicate the number of poses
in the database, we would expect the feature search to take twice
the time. Our method consistently shows a performance increase
with a significantly reduced linear slope as the dataset grows. Con-
versely, when the database size is reduced, performance remains
relatively constant. This latter effect is primarily due to constant
costs associated with base optimizations, such as the initial search
for nearby obstacles, which constitute a significant portion of the
performance overhead when the dataset is small.
We attribute the reduced linear slope growth to two primary

factors: First, the early rejection mechanism effectively discards a
large portion of the database once a sufficiently good candidate
feature vector is identified. Second, while the animation database
size can grow linearly, the number of relevant obstacles for an agent
remains bounded by its immediate surroundings. Nonetheless, the
standard deviation of performance increases proportionally with
the animation database size, which could complicate maintaining a
constant frame rate. This challenge could potentially be addressed by
implementing a budget-based search, where the search is terminated
once a predefined maximum frame time is reached.
Finally, regarding multi-agent environments, we do not provide

a specific scalability analysis since the reported performance scales
linearly with the number of agents. However, note that each feature
search is performed every 10 frames (for a 60 Hz application). This

allows for distributing the computational load of searches across
multiple frames, thereby accommodating a larger number of agents.

6.5 Disk-based vs Ellipse-based Body Representation
A critical aspect of our real-time environment-aware character con-
troller is the selection of environment features used to approximate
the character’s shape. In this work, we chose 2D ellipses due to
their compact representation (requiring only 3 real numbers per
ellipse) and their ability to differentiate various motions, such as
torso rotation and sidestepping. To evaluate the necessity of ellipses,
we compare our framework using ellipses against a configuration
encoding disks as environment features.

A main limitation of disks is their inability to distinguish between
different types of motion. Figure 7 illustrates the difference between
our method using ellipses (first row) and using disks (second row).
When two characters walk towards each other in a narrow passage,
our ellipse-based method naturally finds a sequence of poses (e.g.,
sidestepping) that allows them to fit within the corridor and avoid
collision. This is not possible with disks, causing the characters to
get stuck, as no motion other than an idle pose can proceed without
collisions.
We also quantitatively evaluate these observations in Table 1,

specifically in the row labeled Disk. When using disks, we observe
the highest trajectory error. This occurs because the character is
frequently unable to navigate between obstacles and remains stuck
until the target destination is sufficiently far to overcome the obsta-
cle penalizations. When such movement does occur, the character
inevitably intersects with obstacles, as evidenced by the large aver-
age time per collision.

7 Limitations and Future Work
In this work, we have presented a framework for enabling environment-
aware motion matching by incorporating a specialized type of fea-
ture that seamlessly integrates with existing query features, allow-
ing for greater flexibility in analyzing the character’s surroundings.
While we demonstrate its efficacy by approximating the character’s
projected body shape using 2D ellipses, certain aspects could be
further refined. Our current representation only considers the skele-
ton and does not account for the character’s actual mesh or skin.
For applications demanding higher geometric accuracy, this could
be easily addressed during the preprocessing stage by projecting
all vertices of the character mesh onto the feature representation.
Furthermore, other body shape representations, such as convex
hulls or even full 3D representations, could be employed to better fit
complex character geometries. Similarly, our method cannot strictly
guarantee collision-free motion, as the poses for trajectory and en-
vironment features are sampled at discrete intervals (333ms apart),
which might allow for fleeting penetrations between samples.

Another important consideration when integrating environment-
aware techniques is the responsiveness to user input. Applications
requiring very high control over character movement, such as fast-
paced video games, often prioritize direct control over animation
root motion to enable fine-grained character manipulation. While
the Responsiveness control allows for adjusting this trade-off, our

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

232:14 • Ponton et al.

methodwill inherently generate poses that may deviate from the pre-
cise target trajectories to accommodate environmental constraints.
A comprehensive and diverse animation database is crucial for min-
imizing these deviations and ensuring natural-looking adaptations.

8 Conclusions
In this paper, we have presented a data-driven method that enables
the animation of characters that react naturally to environmental
conditions, including dynamic obstacles and other characters. We
have introduced a framework that clearly separates query features,
which are matched against the user input, from environment fea-
tures, which facilitate collision-free locomotion. The required input
(essentially the intended short-term trajectory) is flexible enough
to be derived from a variety of modalities, ranging from simple
keyboard control to a crowd steering engine.
A major benefit of our approach is that it captures the natural

relationship between human poses and trajectory, a relationship
largely absent in crowd simulations and often responsible for visibly
inconsistent motion. This capability allows our animated charac-
ters to respond naturally to a dynamic environment, transitioning
between different animations. These responses range from subtle
pose adjustments, such as torso rotation, to more significant lo-
comotion changes, such as sidestepping, crouching, or jumping.
In addition to automatically selecting the appropriate locomotion
modality, our method also adjusts the trajectory based on environ-
mental constraints. This significantly simplifies user input, as our
search strategy handles the selection of the most appropriate mo-
tion. This includes generating detours to avoid collisions and even
transitioning from an idle state to an escape locomotion when an
obstacle approaches the character, also in the absence of user input.

We have shown that a naive implementation of an environment-
awaremotion search introduces substantial computational overhead.
To address this, we have developed a comprehensive set of optimiza-
tions that achieve a tenfold speed-up over a linear search. Further-
more, the search aggressiveness parameter 𝑣 enables the fine-tuning
of the quality-performance trade-off per character, paving the way
for level-of-detail strategies, such as using faster searches for distant
characters. This adaptability makes our approach particularly suit-
able for crowd simulation. In addition, the memory requirements
of our approach are highly competitive, requiring approximately
50 MB (uncompressed) for our motion capture database, including
both the pose data and the extracted features.
Unlike reinforcement learning approaches, our method guaran-

tees natural motion regardless of user input or environmental con-
ditions. Moreover, since our approach requires no training, adding
support for new locomotion modalities (such as jogging, sprinting,
hopping, crouching, crawling, or sliding) and styles (such as injured,
exhausted, staggering, or sneaking) is as simple as extending or
changing the animation database. Because our method does not
require labeling of mocap data, it enables rapid iteration cycles for
fine-tuning the animations to meet specific needs.

Code and data
The source code, animation databases (184,553 poses ∼ 50min), and
supplementary material used in this paper can be found at:
https://upc-virvig.github.io/Environment-aware-Motion-Matching

Acknowledgments
This work has received funding from MCIN/AEI/10.13039/50110001
1033/FEDER, UE (Spain) in the framework of the project PID2021-
122136OB-C21, and with the support of the Department of Research
and Universities of the Government of Catalonia (2021 SGR 01035).
Jose Luis Ponton was funded by the Spanish Ministry of Universities
(FPU21/01927). We thank the 2025 Bellairs Workshop on Computer
Animation, where the initial ideas for this research took shape.

References
Henry Allen. 2021. Environmental and Motion Matched Interactions; ’Madden’,

’FIFA’ and Beyond! https://www.gdcvault.com/play/1027465/Animation-Summit-
Environmental-and-Motion

Eduardo Alvarado, Damien Rohmer, and Marie-Paule Cani. 2022. Generating Upper-
BodyMotion for Real-Time CharactersMaking theirWay throughDynamic Environ-
ments. Computer Graphics Forum 41, 8 (Dec. 2022), 169–181. doi:10.1111/cgf.14633

Okan Arikan and David A. Forsyth. 2002. Interactive Motion Generation from Examples.
ACM Transactions on Graphics 21, 3 (2002), 483–490. doi:10.1145/566654.566606

Andrew Best, Sahil Narang, and Dinesh Manocha. 2016. Real-time reciprocal collision
avoidance with elliptical agents. In 2016 IEEE International Conference on Robotics
and Automation (ICRA) (Stockholm, Sweden). IEEE Press, 298–305. doi:10.1109/
ICRA.2016.7487148

David Bollo. 2017. High performance animation in Gears of War 4. In ACM SIGGRAPH
2017 Talks (Los Angeles, California) (SIGGRAPH ’17). Association for Computing
Machinery, New York, NY, USA, Article 22, 2 pages. doi:10.1145/3084363.3085069

Michael Büttner and Simon Clavet. 2015. Motion matching-the road to next gen
animation. 2 pages. https://www.youtube.com/watch?v=z_wpgHFSWss

Je-Ren Chen and Anthony Steed. 2011. Planning Plausible Human Animation with
Environment-Aware Motion Sampling. In Motion in Games, Vol. 7060. Springer
Berlin Heidelberg, 51–62. doi:10.1007/978-3-642-25090-3_5

Simon Clavet. 2016. Motion Matching and The Road to Next-Gen Animation. https:
//www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road

Yanbin Deng, Zheng Li, Ning Xie, andWei Zhang. 2024. PIMT: Physics-Based Interactive
Motion Transition for Hybrid Character Animation. In Proceedings of the 32nd
ACM International Conference on Multimedia (Melbourne VIC, Australia) (MM ’24).
Association for Computing Machinery, New York, NY, USA, 10497–10505. doi:10.
1145/3664647.3681582

Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, and Wenping Wang. 2023.
C·ASE: Learning Conditional Adversarial Skill Embeddings for Physics-based Char-
acters. In SIGGRAPH Asia 2023 Conference Papers (Sydney, NSW, Australia) (SA ’23).
Association for Computing Machinery, New York, NY, USA, Article 2, 11 pages.
doi:10.1145/3610548.3618205

Dominic Ferreira, Liam Shatzel, and Brandon Haworth. 2024. Deformable Elliptical
Particles for Predictive Mesh-Adaptive Crowds. In Proceedings of the 17th ACM
SIGGRAPH Conference on Motion, Interaction, and Games (Arlington, VA, USA) (MIG
’24). Association for Computing Machinery, New York, NY, USA, Article 1, 11 pages.
doi:10.1145/3677388.3696329

Gonzalo Gomez-Nogales, Melania Prieto-Martin, Cristian Romero, Marc Comino-
Trinidad, Pablo Ramon-Prieto, Anne-Hélène Olivier, Ludovic Hoyet, Miguel Otaduy,
Julien Pettre, and Dan Casas. 2024. Resolving Collisions in Dense 3D Crowd Anima-
tions. ACMTrans. Graph. 43, 5, Article 163 (Sept. 2024), 14 pages. doi:10.1145/3687266

Ikhsanul Habibie, Mohamed Elgharib, Kripasindhu Sarkar, Ahsan Abdullah, Simbarashe
Nyatsanga, Michael Neff, and Christian Theobalt. 2022. A Motion Matching-based
Framework for Controllable Gesture Synthesis from Speech. In ACM SIGGRAPH
2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH ’22). Association
for Computing Machinery, New York, NY, USA, Article 46, 9 pages. doi:10.1145/
3528233.3530750

Geoff Harrower. 2018. Real Player Motion Tech in ’EA Sports UFC 3’. https://gdcvault.
com/play/1025228/Real-Player-Motion-Tech-in

Dirk Helbing, Illés Farkas, and Tamás Vicsek. 2000. Simulating dynamical features of
escape panic. Nature 407, 6803 (2000), 487–490. doi:10.1038/35035023

Daniel Holden. 2018. Character control with neural networks and machine learning.
2 pages. https://www.gdcvault.com/play/1025389/Character-Controlwith-Neural-
Networks

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

https://upc-virvig.github.io/Environment-aware-Motion-Matching
https://www.gdcvault.com/play/1027465/Animation-Summit-Environmental-and-Motion
https://www.gdcvault.com/play/1027465/Animation-Summit-Environmental-and-Motion
https://doi.org/10.1111/cgf.14633
https://doi.org/10.1145/566654.566606
https://doi.org/10.1109/ICRA.2016.7487148
https://doi.org/10.1109/ICRA.2016.7487148
https://doi.org/10.1145/3084363.3085069
https://www.youtube.com/watch?v=z_wpgHFSWss
https://doi.org/10.1007/978-3-642-25090-3_5
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road
https://www.gdcvault.com/play/1023280/Motion-Matching-and-The-Road
https://doi.org/10.1145/3664647.3681582
https://doi.org/10.1145/3664647.3681582
https://doi.org/10.1145/3610548.3618205
https://doi.org/10.1145/3677388.3696329
https://doi.org/10.1145/3687266
https://doi.org/10.1145/3528233.3530750
https://doi.org/10.1145/3528233.3530750
https://gdcvault.com/play/1025228/Real-Player-Motion-Tech-in
https://gdcvault.com/play/1025228/Real-Player-Motion-Tech-in
https://doi.org/10.1038/35035023
https://www.gdcvault.com/play/1025389/Character-Controlwith-Neural-Networks
https://www.gdcvault.com/play/1025389/Character-Controlwith-Neural-Networks

Environment-aware Motion Matching • 232:15

Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020. Learned
Motion Matching. ACM Transactions on Graphics 39, 4 (July 2020). doi:10.1145/
3386569.3392440

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Trans. Graph. 36, 4, Article 42 (July 2017), 13 pages.
doi:10.1145/3072959.3073663

Ludovic Hoyet, Anne-Helene Olivier, Richard Kulpa, and Julien Pettré. 2016. Perceptual
effect of shoulder motions on crowd animations. ACM Trans. Graph. 35, 4, Article
53 (July 2016), 10 pages. doi:10.1145/2897824.2925931

Reiya Itatani and Nuria Pelechano. 2024. Social Crowd Simulation: Improving Re-
alism with Social Rules and Gaze Behavior. In Proceedings of the 17th ACM SIG-
GRAPH Conference on Motion, Interaction, and Games (Arlington, VA, USA) (MIG
’24). Association for Computing Machinery, New York, NY, USA, Article 3, 11 pages.
doi:10.1145/3677388.3696337

Mubbasir Kapadia, Alejandro Beacco, Francisco Garcia, Vivek Reddy, Nuria Pelechano,
and Norman I. Badler. 2013. Multi-domain real-time planning in dynamic envi-
ronments. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Anaheim, California) (SCA ’13). Association for Computing
Machinery, New York, NY, USA, 115–124. doi:10.1145/2485895.2485909

Chaelin Kim, Haekwang Eom, Jung Eun Yoo, Soojin Choi, and Junyong Noh. 2024.
Interactive Locomotion Style Control for a Human Character based on Gait Cycle
Features. Computer Graphics Forum 43, 1 (Feb. 2024), e14988. doi:10.1111/cgf.14988

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion Graphs. ACM
Transactions on Graphics 21, 3 (2002), 473–482. doi:10.1145/566654.566605

Ariel Kwiatkowski, Eduardo Alvarado, Vicky Kalogeiton, C. Karen Liu, Julien Pettré,
Michiel van de Panne, and Marie-Paule Cani. 2022. A Survey on Reinforcement
Learning Methods in Character Animation. Computer Graphics Forum 41, 2 (2022),
613–639. doi:10.1111/cgf.14504

Manfred Lau and James J. Kuffner. 2005. Behavior planning for character animation. In
Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (Los Angeles, California) (SCA ’05). Association for Computing Machinery,
New York, NY, USA, 271–280. doi:10.1145/1073368.1073408

Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard.
2002. Interactive control of avatars animated with human motion data. ACM Trans.
Graph. 21, 3 (July 2002), 491–500. doi:10.1145/566654.566607

Jehee Lee and Kang Hoon Lee. 2004. Precomputing avatar behavior from human
motion data. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (Grenoble, France) (SCA ’04). Eurographics Association, Goslar,
DEU, 79–87. doi:10.1145/1028523.1028535

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010. Motion fields for interactive character locomotion. In ACM SIGGRAPH Asia
2010 Papers (Seoul, South Korea) (SIGGRAPH ASIA ’10). Association for Computing
Machinery, New York, NY, USA, Article 138, 8 pages. doi:10.1145/1866158.1866160

Cheng Li, Levi Fussell, and Taku Komura. 2021. Multi-agent reinforcement learning
for character control. The Visual Computer 37, 12 (01 Dec 2021), 3115–3123. doi:10.
1007/s00371-021-02269-1

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental potential
contact: intersection-and inversion-free, large-deformation dynamics. ACM Trans.
Graph. 39, 4, Article 49 (Aug. 2020), 20 pages. doi:10.1145/3386569.3392425

Weiyu Li, Xuelin Chen, Peizhuo Li, Olga Sorkine-Hornung, and Baoquan Chen. 2023.
Example-based Motion Synthesis via Generative Motion Matching. ACM Trans.
Graph. 42, 4, Article 94 (July 2023), 12 pages. doi:10.1145/3592395

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. 2020. Character
controllers using motion VAEs. ACM Trans. Graph. 39, 4, Article 40 (Aug. 2020),
12 pages. doi:10.1145/3386569.3392422

V.Modi, Y. Chen, A.Madan, S. Sueda, and D. I.W. Levin. 2023. Multi-agent Path Planning
with Heterogenous Interactions in Tight Spaces. Computer Graphics Forum 42, 6
(Sept. 2023), e14737. doi:10.1111/cgf.14737

N. Pelechano, J. M. Allbeck, and N. I. Badler. 2007. Controlling individual agents in high-
density crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (San Diego, California) (SCA ’07). Eurographics
Association, Goslar, DEU, 99–108.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. DeepMimic:
example-guided deep reinforcement learning of physics-based character skills. 37,
4, Article 143 (July 2018), 14 pages. doi:10.1145/3197517.3201311

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. ASE:
large-scale reusable adversarial skill embeddings for physically simulated characters.
ACM Trans. Graph. 41, 4, Article 94 (July 2022), 17 pages. doi:10.1145/3528223.
3530110

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021. AMP:
Adversarial Motion Priors for Stylized Physics-Based Character Control. ACM Trans.
Graph. 40, 4, Article 1 (July 2021), 15 pages. doi:10.1145/3450626.3459670

Jose Luis Ponton, Haoran Yun, Carlos Andujar, and Nuria Pelechano. 2022. Combining
Motion Matching and Orientation Prediction to Animate Avatars for Consumer-
Grade VR Devices. Computer Graphics Forum 41, 8 (Sept. 2022), 107–118. doi:10.

1111/cgf.14628
Craig Reynolds. 1999. Steering Behaviors For Autonomous Characters. In Game devel-

opers conference. 763–782.
Alla Safonova and Jessica K. Hodgins. 2007. Construction and optimal search of

interpolated motion graphs. ACM Trans. Graph. 26, 3 (July 2007), 106–es. doi:10.
1145/1276377.1276510

Jamie Snape, Jur van den Berg, Stephen J. Guy, and Dinesh Manocha. 2011. The Hybrid
Reciprocal Velocity Obstacle. IEEE Transactions on Robotics 27, 4 (2011), 696–706.
doi:10.1109/TRO.2011.2120810

Sebastian Starke, IanMason, and Taku Komura. 2022. DeepPhase: periodic autoencoders
for learning motion phase manifolds. ACM Trans. Graph. 41, 4, Article 136 (July
2022), 13 pages. doi:10.1145/3528223.3530178

Sybren A. Stüvel, Nadia Magnenat-Thalmann, Daniel Thalmann, A. Frank van der
Stappen, and Arjan Egges. 2017. Torso Crowds. IEEE Transactions on Visualization
and Computer Graphics 23, 7 (2017), 1823–1837. doi:10.1109/TVCG.2016.2545670

Mankyu Sung. 2007. Continuous motion graph for crowd simulation. In Technologies for
E-Learning and Digital Entertainment: Second International Conference, Edutainment
2007, Hong Kong, China, June 11-13, 2007. Proceedings 2. Springer, 202–213.

Michael Xu, Yi Shi, KangKang Yin, and Xue Bin Peng. 2025. PARC: Physics-based Aug-
mentation with Reinforcement Learning for Character Controllers. In Proceedings of
the Special Interest Group on Computer Graphics and Interactive Techniques Conference
Conference Papers (SIGGRAPH Conference Papers ’25). Association for Computing
Machinery, New York, NY, USA, Article 131, 11 pages. doi:10.1145/3721238.3730616

Pei Xu, Kaixiang Xie, Sheldon Andrews, Paul G Kry, Michael Neff, Morgan McGuire,
Ioannis Karamouzas, and Victor Zordan. 2023. AdaptNet: Policy Adaptation for
Physics-Based Character Control. ACM Transactions on Graphics 42, 6 (2023). doi:10.
1145/3618375

Xinran Yao, Shuning Wang, Wenxin Sun, He Wang, Yangjun Wang, and Xiaogang Jin.
2022. Crowd Simulation with Detailed Body Motion and Interaction. In Advances in
Computer Graphics. Springer Nature Switzerland, Cham, 227–238.

KangKang Yin, Dinesh K Pai, and Michiel van de Panne. 2005. Data-Driven Interactive
Balancing Behaviors. (2005), 9.

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Trans. Graph. 37, 4, Article 145 (July
2018), 11 pages. doi:10.1145/3197517.3201366

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3386569.3392440
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/2897824.2925931
https://doi.org/10.1145/3677388.3696337
https://doi.org/10.1145/2485895.2485909
https://doi.org/10.1111/cgf.14988
https://doi.org/10.1145/566654.566605
https://doi.org/10.1111/cgf.14504
https://doi.org/10.1145/1073368.1073408
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/1028523.1028535
https://doi.org/10.1145/1866158.1866160
https://doi.org/10.1007/s00371-021-02269-1
https://doi.org/10.1007/s00371-021-02269-1
https://doi.org/10.1145/3386569.3392425
https://doi.org/10.1145/3592395
https://doi.org/10.1145/3386569.3392422
https://doi.org/10.1111/cgf.14737
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3528223.3530110
https://doi.org/10.1145/3528223.3530110
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1111/cgf.14628
https://doi.org/10.1111/cgf.14628
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1109/TRO.2011.2120810
https://doi.org/10.1145/3528223.3530178
https://doi.org/10.1109/TVCG.2016.2545670
https://doi.org/10.1145/3721238.3730616
https://doi.org/10.1145/3618375
https://doi.org/10.1145/3618375
https://doi.org/10.1145/3197517.3201366

232:16 • Ponton et al.

Fig. 12. Character navigating a progressively narrowing corridor. The top sequence shows the character running in the wider sections. As the corridor narrows
to 0.35 meters, the character reduces speed and transitions to side-stepping. When the corridor becomes wider again, the system switches back to a running
animation. This demonstrates the system’s ability to adapt body pose and speed to tight environmental constraints.

Fig. 13. Character traversing a corridor with zigzag cone obstacles. Despite receiving only a continuous forward input, our system enables the character to
dynamically zigzag, maintain velocity, and transition to side-stepping through narrower sections or partially closed doorways. This illustrates the generation
of complex trajectories from simple user commands due to environment awareness.

Fig. 14. Character adapting to two moving cubes with no user input. The character, initially stationary, automatically takes a few steps forward to avoid
colliding with the approaching cubes. This demonstrates the system’s real-time adaptation to dynamic obstacles without user intervention.

Fig. 15. Character avoiding a moving car despite conflicting user input. The user inputs a forward movement (towards the car). However, as the car moves
backward, the system makes the character naturally transition to a backward jogging animation, adapting pose and root motion to avoid collision.

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

Environment-aware Motion Matching • 232:17

Fig. 16. Multi-character interaction in corridors of varying widths. Top (blue corridor, 1.55 m width): Characters walk with minimal body adjustment.
Middle (green corridor, 1.20 m width): Characters exhibit body turns to pass each other while walking. Bottom (red corridor, 0.95 m width): Characters
carefully avoid each other. Two examples of the red corridor are provided to demonstrate the diversity of poses generated by our method.

Fig. 17. Interaction between agents with different speeds. Top row: A running character (red shirt) approaches a walking character, leading to a noticeable
torso rotation for avoidance. Bottom row: Both characters are walking, resulting in more subtle torso rotations for collision avoidance.

Fig. 18. Character interacting with vertical obstacles using height features. The character jumps over a fence to maintain its target trajectory, demonstrating
the system’s ability to select appropriate vertical movements to overcome obstacles.

Fig. 19. Character adapting to varying ceiling heights. The character progressively crouches to pass under a semitransparent red ceiling. When faced with a
significantly lower ceiling, the character naturally transitions to a lying-down pose to traverse the obstacle, showcasing vertical adaptation.

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

232:18 • Ponton et al.

Fig. 20. Character adapting pose while holding a prop weapon. The character lowers the weapon as it navigates between columns to successfully fit through
the narrow gaps.

Fig. 21. Character carrying a large box. The character raises the box above its head to pass between columns.

Fig. 22. Example of a different locomotion style. A character typically walking with elbows raised adopts a more compact quiet pose when near other agents
to fit through spaces, demonstrating adaptation to social or spatial constraints based on animation style.

ACM Trans. Graph., Vol. 44, No. 6, Article 232. Publication date: December 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Motion Matching
	2.2 Crowd Simulation
	2.3 Reinforcement learning approaches

	3 Preliminaries: animation database, real-time user input, and environment constraints
	4 Environment-aware Motion Matching
	4.1 Feature Representation and Extraction
	4.2 Feature Search

	5 Real-time Environment-aware Character Controller
	5.1 Overview
	5.2 Capture of the Animation Database
	5.3 Feature Weights
	5.4 Optimizations

	6 Evaluation
	6.1 Results and Experiments
	6.2 Comparison vs Standard Motion Matching
	6.3 Performance and Ablation Analysis
	6.4 Animation Database Scalability Analysis
	6.5 Disk-based vs Ellipse-based Body Representation

	7 Limitations and Future Work
	8 Conclusions
	Acknowledgments
	References

