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Abstract In this paper, we present a generalized accurate methodology to predict the

bit error rate performance for non-coherent chaos-based communication systems. The

Gaussian approximation approach, which is widely used to compute the performance

of such systems, leads to inaccurate results, especially with respect to low spreading

factors. Our new approach based on the chaos bit energy distribution gives accurate

results even for low spreading factors. The system is studied and simulated under an

additive white Gaussian noise, Rice and Rayleigh channels. Finally, we compare our

approach to the Gaussian approximation approach. Computer simulations shows a high

accuracy for our method, especially for small spreading factors.
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LACIME Laboratory, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal
(Quebec) H3C 1K3 Canada
Tel.: (514) 396-8997
Fax: (514) 396-8684
E-mail: georges.kaddoum@lacime.etsmtl.ca

F. Gagnon
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1 INTRODUCTION

Over the past decade, many different chaos-based communication systems have been

proposed, and interest in them can be attributed to the advantages provided by chaotic

signals, such as robustness in multipath environments, and resistance to jamming and

interception [7],[10]. Among the various digital chaos-based communication schemes,

coherent chaos-shift-keying (CSK) [10], chaos-based DS-CDMA [7], and non-coherent

Differential Chaos Shift Keying (DCSK) [9] have been widely studied and evaluated.

One of the drawbacks of coherent chaos-based communication systems such as the CSK

is that they involve synchronization. Since the chaos synchronization proposed by Pec-

ora and Carroll in [14] is still practically impossible to achieve in a noisy environment,

the coherent system cannot be used in realistic application. Furthermore, the DCSK

system represents a robust non-coherent scheme in which an exact knowledge of the

chaotic signal at the receiver side is not required. Because of its simple structure, the

DSCK system is one of the most promising chaos-based communication schemes in

terms of a feasible implementation, and both the theory and the implementation of the

system have indeed undergone significant research [8], [6],[13].

In the DCSK system, the bit duration is divided into two equal slots, the first

being is the chaotic reference signal. Depending on the bit to be sent, the reference

signal is either repeated if the bit to send is +1, or multiplied by a factor of −1 in the

second case and transmitted in the second slot. At the receiver, the signal is delayed

by a duration of half a bit and correlated with an undelayed signal to estimate the

transmitted bit information.

The advantage of the DCSK over the CSK is that with the DCSK, the threshold

level at the receiver is always set to zero, and is independent of the noise level [10].

However, the bit frequency can easily be determined from the transmitted signal. The

result however, is a reduction in the security of the system. To overcome this security

problem, Francis et al have proposed in [11] a method called the permutation-based

DCSK or P-DCSK, aimed at eliminating this similarity between the reference slot and

the carrier information slot.

The performance of single and multi-user DCSK systems over an additive white

Gaussian noise (AWGN) channel has been widely studied over the past decade [18],[15].

The performance of a frequency-modulated DCSK (FM-DCSK) communication system

over a multipath fading channel was simulated in [6],[17] The performance of a con-

ventional single-user DCSK system over a multipath fading channel was investigated

in [20] and later extended in [16] to a multipath fading channel with delay spread.

Many approaches have been considered for computing the BER performances of the

DCSK system, with the first widely used one being the Gaussian approximation (GA).

This approximation considers that the correlator output follows the normal distribu-

tion. Applied to the DCSK system over an AWGN or multipath channel in [15],[19],

this method provides rather good estimates of the BER for very large spreading fac-

tors, but when the spreading factor is small, the results produced by the Gaussian

approximation method are rather disappointing.

In [20], the computation methodology developed in [12],[18] extended to compute

the BER performance of the single-user DCSK over an m-distributed fading channel.

The Gaussian assumption is not used to derive the BER expression, and their approach

enables the dynamics properties of the chaotic sequence by integrating the BER expres-

sion for a given chaotic map over all possible chaotic sequences for a given spreading

factor. This latter method is compared to the BER computation under the Gaussian
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assumption in [20], and seems more realistic to match the exact BER. However, as

indicated in [20], the drawback of the proposed method is the high calculation diffi-

culty it poses. Note that all approaches proposed in the literature use the numerical

integration to compute the BER expression of the DCSK system over an m-distributed

fading channel.

Since approaches that have been previously presented so far are either not valid

for small spreading factors or involve highly complex computations, we we develop a

simple and accurate method in this paper for computing the exact BER performance

for a single-user DCSK system. The system is evaluated over an AWGN and over a

m-distributed fading channels. Our proposed method mainly proposes the computation

of the probability density function (PDF) of the chaotic bit energy and the integration

of the BER over all possible values of the PDF. The novelty of this paper lies in the

fact that it gives an exact BER expression without neglecting the dynamical properties

of chaotic sequences with low computing charges.

The paper is organized as follows. Section 2 explains the DCSK system . The

Gaussian approximation and our proposed methodology for computing the BER are

given in Section 3. Numerical results are presented in section 4, and the paper is

concluded in Section 5.

2 DCSK system

2.1 Chaotic generator

The proposed approach is valid for any type of chaotic sequence. In this paper, the

Chebyshev polynomial function (CPF) of order 2 has been chosen.

xk = 2x2k−1 − 1 (1)

2.2 Transmitter structure

The structure of the DCSK system is illustrated in Figure 1, and the modulation

process is shown in Figure 1(a), where each bit si = {+1,−1} is represented by two

sets of chaotic signal samples, the first set of which represents the reference, while

the second carries the data. Let 2β be the spreading factor, defined as the number of

chaotic samples sent for each bit, where β is an integer. The emitted DCSK signal is:

ek =

{
xk k = 1...β

sixk−β k = β + 1....2β
(2)

2.3 Communication channels

The channel model is given by:

α =
√

2K + a+ jb (3)
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Fig. 1 (a) Transmitter structure, (b) channel model, (c) Receiver structure

where K is a deterministic variable, known as the Rice factor, and a, b are two inde-

pendent Gaussian random variables with zero mean and variances equal to 1. K can be

seen as a shape parameter, since it fixes the nature of the channel. When K(m) = 0, it

is a Rayleigh channel (i.e. |α| is distributed according to a Rayleigh distribution); when

K tends to infinity, it is a Gaussian channel (i.e., |α| tends to a constant variable); for

intermediate values of K, it is a Rice channel (i.e., |α| is distributed according to a

Rice distribution). An additive complex circular white Gaussian noise nk is added at

the output of the channel, with a two-side power spectral density equal to N0. The

received signal is:

rk = αek + nk (4)

In this paper, the channel coefficient α is kept constant during the bit duration and

for an AWGN channel, the channel coefficient is constant α = 1.
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2.4 Receiver structure

The block diagram of the DCSK receiver is shown in Figure 1 (c). The received signal

rk passes by a correlator, where the reference samples and the corresponding data

samples are correlated. The decision variable at the output of the correlator for a given

bit i is then:

Di = <

(
β∑
k=1

rkr
∗
k+β

)

= <

(
β∑
k=1

(αixk + nk)(α∗i sixk + n∗k+β)

)
= A+B + C

(5)

A =

β∑
k=1

siα
2
i x

2
k,

B = <

 β∑
k=1

αxkn
∗
k+β + α∗sixknk

 ,

and

C = <

 β∑
k=1

nkn
∗
k+β


where R(.), and ∗ are the real and the complex conjugate operators, respectively.

The decoded bit is then related to the sign of the decision variable.

ŝi =

{
+1, if Di > 0

−1, if Di < 0

3 Performance of the DCSK system

3.1 BER expression under Gaussian approach

In this section, we briefly present the Gaussian approach, and later we will compare and

discuss the results of our proposed method. Based on the Gaussian approximation, the

correlator output Di follows a normal distribution. Thanks to the central limit theorem,

the statistics of the of decision variable are:

E[A] = βsi |αi|2E
[
x2k

]
E[B] = E[C] = 0

V ar[A] = β |αi|4 var[x2k]
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V ar[B] = βN0 |αi|2 var[xk]

V ar[C] = βN2
0 /4

and

cov[A,B] = cov[A,C] = cov[B,C] = 0

where E[.] and var[.] denote the mean and the variance operators, respectively, and

cov[L,M ] denotes the covariance of L and M .

Finally, we have:

E[Di] = βsi |αi|2E
[
x2k

]
(6)

var[Di] = β |αi|4 var[x2k] + βN0 |αi|2 var[xk] + βN2
0 /4 (7)

The decision variable at the output of the correlator is approximated by random a

Gaussian variable. Using equations (6), (7), the bit error probability is:

BER = 1
2 Pr (Di < 0| si = +1) + 1

2 Pr (Di > 0| si = −1)

= 1
2erfc

(
E[Di|si=+1]√
2var[Di|si=+1]

)
(8)

where erfc(x) is the complementary error function defined by:

erfc(x) ≡ 2√
π

∫ ∞
x

e−µ
2

dµ

Since the chaotic signal is non periodic, equation (8) is an approximated formula

of the BER which is not enough to match the exact performance of the DCSK system.

Only the low-order moment of the chaotic sequence has been considered. By considering

the mean of the decision variable, the term βE[x2k] is independent from the bit si.

Equation (9) can only be valid for a very large spreading factor.

E[x2i,1 + x2i,2 + ...+ x2i,β ] ≈ E[x2i+1,1+β + x2i,2+β + ...+ x2i,β+β ] ≈ βE[x2k] (9)

Otherwise, equation (9)can not be satisfied for a small spreading factor. In this case,

the Gaussian approximation leads to incarcerate results.

In this paper, the CPF map is used. The invariant probability density function of

x is given in [1]:

ρ(x) =

{
1

π
√
1−x2

, if |x| < 1

0, otherwise
(10)

From equation (10), we can compute the mean and the variance of x2 by:

E
[
x2
]

=

∫ ∞
−∞

x2ρ(x)dx =

∫ 1

−1
x2

1

π
√

1− x2
dx =

1

2
(11)
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and

V ar
[
x2
]

= E
[
x4
]
−
(
E
[
x2
])

=
1

8
(12)

By replacing (11), (12) into equation (8), the BER of the CPF map becomes

BERGA =
1

2
erfc

((
1

N
+

4

γGA
+

2β

γ2GA

)−1/2)
(13)

where γGA = |α|2 Eb/N0 is the signal to noise ration per symbol, and Eb = 2βE[x2]

is the bit energy.

For an AWGN channel, the fading factor is constant (i.e., α = 1), the BER of

the DCSK system under a Gaussian approximation for an AWGN channel is given by

equation (13) with γGA = Eb/N0.

For an m-distributed fading channel, the mean BER of the DCSK system is ob-

tained by integrating (13) over all possible values of the channel gain:

BERfadingGA =

∫ ∞
0

BERGA(γGA)ffading(γGA)dγGA (14)

Depending on the variable α, the function ffading(.) can be the probability density

function of a Rice or a Rayleigh distribution.

3.2 Performance analysis under energy distribution approach

In this section, we present a new approach for computing the BER of the DCSK sys-

tem. This approach is based on the bit energy distribution of the spreading chaotic

sequence multiplied by the channel coefficient. The methodology results in to an ac-

curate performance prediction for any spreading factor with a low computing charge.

For a given fixed bit si, the received bit energy E
(i)
bc is constant, and the mean and

variance of the decision variable are derived as follows:

E[A] = si |αi|2E

 β∑
k=1

x2k


E[A] = si |αi|2

E
(i)
bc

2

where E
(i)
bc is the chaotic bit energy

Since the noise samples are uncorrelated, the means of the variables B and C are:

E[B] = E[C] = 0

Finally the mean of the decision variable is:

E [Di] = si |αi|2
E

(i)
bc

2
(15)

Expression (15) relies on the fact that A is the useful signal, B and C are zero

mean random quantities.
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For a constant received bit energy E
(i)
bc , the variances are computed as follow:

V ar[A] = E

(si |αi|2 E(i)
bc

2

)2
−(si |αi|2 E(i)

bc

2

)2

= 0

V ar[B] = |αi|2
E

(i)
bc

2
N0

V ar[C] = βN2
0 /4

and

cov {A,B} = cov{A,C} = cov{B,C} = 0

Since the three terms of (5) are uncorrelated, the conditional variance of the decision

variable for a given bit si is:

var [Di] = |αi|2
E

(i)
bc

2
N0 + βN2

0 /4 (16)

In order to compute the BER with our approach, the error probability must first

be evaluated for a given received energy. Considering the bit energy (or chaotic chips)

as a deterministic variable, the decision variable at the output of the correlator is

necessarily a random Gaussian variable, and this error probability becomes:

P
(i)
er = 1

2erfc

(
E[Di]√
2var[Di]

)

= 1
2erfc

 α2
i

E
(i)2
bc
2√√√√2

(
|αi|2

E
(i)2
bc
2 N0+βN2

0 /4

)
 (17)

To compute the BER performance of the DCSK system, many approaches have

considered the transmitted bit energy to be constant [19], [15]. Given the non-periodic

nature of chaotic signals, it is clear that the transmitted bit energy after spreading by

chaotic sequences varies from one bit to another [3]. The mean BER of the system is

then obtained by integrating (17) over all possible values of the bit energy and channel

gain:

The mean BER can also be expressed as:

BER =

∫ ∞
0

1

2
erfc

√ γ

4N0

(
1 +

βN0

2γ

)−1 p(γ)d (γ) (18)

where p(γ) is the probability density function of the variable γ and γ = |α|2 E(i)
bc is the

received bit energy.
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Fig. 2 Histogram of variable γ for β = 20 and K = 0 dB

3.2.1 BER computation methodology

Computing (18) requires that we know the PDF of γ. The PDF of the root square of γ

is estimated in [4] and results in an analytical BER expression for coherent chaos-based

communication systems. In the non-coherent systems case, the analytical expression

seems to be intractable because the denominator of the BER contains the term γ.

To overcome this problem, a solution relies on a numerical integration of (18). To

compute the BER expression, we have fitted the histogram of the variable for the

chaotic sequence under study. Figure 2 shows the histogram of the bit energy of the

Chebyshev chaotic function for a delay β = 10 and for a channel gain K = 0 dB.

Using the appropriate histogram for the corresponding channel (i.e., the histogram

of Figure 2), we can compute the BER expression of (18) for the communication channel

by using the following expression:

BER ≈
C∑
n=1

1

2
erfc

√γ(n)

4N0

(
1 +

βN0

2γ(n)

)−1P (γ(n)) (19)

where C is the number of histogram classes and P
(
γ(n)

)
is the probability of having

the energy within the interval centred in γ(n).

Note that all the proposed approaches to computing the performance of the DCSK

system over an m-distributed fading channels in the literature need a numerical inte-

gration. The first part of these approaches considers the Gaussian approximation which

leads to inaccurate results especially when the spreading factor is low [16],[19]; while

the second part is an exact derivation of the BER but with a high calculation com-

plexity [20]. Our proposed approach can be applied for any type of chaotic sequence

and for any type of communication channel with very simple operations: histogram of

the received bit energy (i.e., γ) followed by a numerical integration. Furthermore, this

approach explores the dynamics properties of chaotic sequences without any approx-

imation, and yields results with very high degrees of accuracy. Moreover, because of
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Fig. 3 Exact BER expression , Simulations, Computed BER expression with Gaussian ap-
proximation for spreading factors β = 5; 50 of CPF map and AWGN channel

its accuracy and computing simplicity, this method will be helpful for engineers or re-

searchers to evaluating and comparing the performance of chaos-based communication

systems.

4 Simulations

Figure 3 presents the BER curves obtained from our BER of expression (19) based on

the bit received bit energy distribution of the chaotic sequence, the Monte Carlo simu-

lations of the DCSK system, and the BER expression based on Gaussian approximation

given in (13). It clearly appears that there is an excellent match between simulations

and our computed BER expression especially when the spreading factor is low. For low

spreading factors we can see that the BER expression based on the Gaussian approxi-

mation can not match the Monte Carlo curves when the noise variance decreases. For

a high spreading factors, the bit energy variation is small [2],[5],[3], and in this case,

the Gaussian approximation can estimate the performance of the DCSK system. The

higher is the spreading factor, the smaller the difference between the two performance

analysis methods compared. We can also see for a high spreading factor (β = 50), over

an AWGN channel, and for a single user case, the performance of the DCSK system

is worse than when the spreading factor is equal to β = 5. One of the reasons of per-

formance degradation is to the variance of the squared noise, which is a function of

the spreading factor. The dependence of the performance on the spreading sequence

length and the optimal spreading factor is fully discussed in [15].

Figure 4 and 5 present the BER curves obtained from our BER expression given in

(19) and from the Monte Carlo simulations of the DCSK system. The perfect match

between the simulations and the computed BER expression for any spreading factor

proves the accuracy of the proposed approach for any communication channel.



11

Fig. 4 BER performances of DCSK system for m-distributed fading channels with gains
K = −6; 2; 6 dB and spreading factor β = 3

Fig. 5 BER performances of DCSK system for m-distributed fading channels with gains
K = 0; 5; 10 dB and spreading factor β = 15

5 Conclusion

In this paper, we have proposed a general method for computing the performance

of the DCSK system over many communication channels. The computation method

is presented and evaluated under an AWGN, a Rice and a Rayleigh channel for a
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single-user case. This latter method can successfully be applied in multi-user case,

for any chaotic map, and for any communication channel. Since chaotic sequences are

non-periodic, the Gaussian assumption doses not yield very accurate results. The new

approach used to derive the BER is based on the received bit energy distribution. The

first and the second moments of the decision variable are computed, and the numerical

integration of the BER is presented. Simulation results show accurate results and a

perfect match with simulations, even when the spreading factor is small. Furthermore,

simulation results prove that our approach outperforms the Gaussian approximation in

estimating the performance of the DCSK system. This new computation method can be

applied for any type of chaotic sequence, with very simple operations: histogram of the

transmitted bit energy followed by a numerical integration. Moreover, this approach

explores the dynamics properties of chaotic sequences, and yields results having a very

high degree of accuracy.
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