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The control of a stochastic manufacturing system that executes capital asset repairs and remanufacturing in an 
integrated system is examined. The remanufacturing resources respond to planned returns of worn-out 
equipments at the end of their expected life and unplanned returns triggered by major equipment failures. 
Remanufacturing operations for planned demand can be executed at different rates and costs corresponding to 
different replacement and repair modes. The replacement components inventory is provided by an upstream 
supply with random lead times. The objective is to determine a control policy for both the supply and 
remanufacturing activities that minimizes the average repair/replacement, acquisition and inventory/shortage 
total cost over an infinite horizon. We propose a sub-optimal joint remanufacturing and supply control policy, 
composed of a multi-hedging point policy (MHPP) for the remanufacturing stage and an (s, Q) policy for the 
replacement parts supply. The MHPP is based on two inventory thresholds that trigger the use of predefined 
remanufacturing modes. Control policy parameters are obtained combining analytical modeling, simulation 
experiments and response surface methodology. The effects of the distribution, mean and variability of the 
lead time are tested and a sensitivity analysis of cost parameters is conducted to validate the proposed control 
policy. We also show that our policy leads to a significant cost reduction as compared to a combination of an 
hedging point policy (HPP) and an (s, Q) policy.  
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1. Introduction

Remanufacturing is defined as the restoration of a product to a standard as close as possible to its original 
condition in appearance, performance and life expectancy (Cox et al. (2002)). This article focuses on capital 
goods, which are mostly rebuilt for the purpose of being reused by the initial product owners. This type of 
remanufacturing coexists with maintenance and service organisations and is integrated through product life 
cycle management. Thus, capital goods are used, then repaired or remanufactured in an integrated system to 
be reinserted into a new life cycle. The system must fulfil, with the same skilled resources, both planned 
remanufacturing orders and unplanned repairs. The processing of unplanned repairs has priority over the 
processing of planned remanufacturing orders. 

The primary objective of this hybrid repair and remanufacturing system is to maintain the level of 
serviceable capital goods above the operating firm’s level in order to ensure sufficient operating performances 
at the lowest cost. We aim to control the level of the serviceable equipments by controlling the 
remanufacturing process of the system. In practice, managers have to decide whether to repair or replace 
worn-out equipments. Even though replacing a component is less time consuming than repairing it, it usually 
costs more and replacement parts shortages prevent managers from using the replacement mode. For example, 
when the equipment surplus exceeds a sufficient minimum level, the remanufacturing organizations will 
typically choose to repair most components, whereas replacing prevailed in emergency case to accelerate the 
serviceable equipment supply (Gharbi et al. 2008). Therefore, during an overhaul, the choice of operations 
depends on the required service level, the current level of the serviceable inventory and on the availability of 
replacement parts. It is important to note that the serviceable inventory is not fed by the remanufacturing 
system during the unplanned repair and consequently decreases with demand and that serviceable stock 
shortages will result in additional costs. Furthermore, the replacement parts replenishment may also undergo 
uncertainties on the lead time supply. The formulation of this problem is complex because of the specific 
conditions of each worn-out component, of the stochastic operating process and of the uncertainties in the 
supply. Within this context, it is critical to develop an optimal control policy that will jointly control the 
remanufacturing and replenishment processes. 

Our paper describes a control approach to jointly optimize the hybrid repair and remanufacturing system 
control policy and the supply policy. Detailed scheduling of the process is not a prime concern. The repair and 
replacement processes are treated in an aggregate way, characterized by rates and costs. The problem is 
formulated as a multi-level control problem and a sub-optimal combined policy is proposed. This policy is 
described by inventory thresholds (z1, z2) which trigger the use of the repair or replacement modes and by a 
reorder level-reorder quantity (s, Q) policy for the replacement parts supply. These parameters describe the 
entire control policy and a simulation based experimental approach is used to achieve a close approximation 
of this optimal control policy for a numerical example with random lead times. 

The following article begins with a literature review in the area of stochastic optimal control problem for 
remanufacturing systems (Section 2). The hybrid repair and remanufacturing problem is then presented and a 
control policy developed in Section 3. A resolution approach based on a simulation model, experimental 
design and response surface methodology is detailed in Section 4.  Then, in Section 5, we present our 
experimental results with an illustrative example in order to study the behaviour of the proposed control 
policy in presence of stochastic lead times. Finally we conclude by summarizing the main results and 
highlight possible directions for further research in Section 6.  

https://www.researchgate.net/publication/223496560_Production_rate_control_for_stochastic_remanufacturing_systems?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
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2. Literature review 

Reuse opportunities allow managers to consider remanufacturing as an alternative to manufacturing. 
However, the interaction between these two supply chains limits the effectiveness of traditional management 
methods. The emergence of remanufacturing has recently prompted researchers to address remanufacturing 
operation issues. The reader is referred to Fleischman et al. (1997), Guide and Jayaraman (2000) and Rubio et 
al. (2008) for an overview of the remanufacturing literature. More precisely, the production and inventory 
control approach generally considers systems where remanufacturing processes are integrated in a single 
production environment (Inderfurth et al. 2001, Van der Laan and Salomon 1997, Van der Laan et al. 1999), 
whereby managers can fulfil demand by ordering raw materials externally and manufacturing new products, 
or by overhauling used products and bringing them back to “as new conditions”. Within this context of hybrid 
production/remanufacturing systems, the objective is to control two different inventory positions and to 
synchronize external component orders and internal recovery activities at a minimum cost. For stochastic 
models, where the demand and returns are stochastic variables, PUSH, PULL or DUAL sourcing policies 
have been investigated for both periodic (Kiesmuller 2003) and continuous reviews (Zanoni et al. 2006, Van 
der Laan et al. 1999). The latter article also studied the effects of lead time duration and variability on the 
total expected cost in remanufacturing and manufacturing processes.  

This article proposes a different framework for repair/remanufacturing systems for capital goods, where 
repair and replacement are treated in the same execution system and with the same pool of resources. This 
leads to the adoption of different remanufacturing rates to keep an optimal serviceable inventory level.  

As the hybrid repair and remanufacturing processes respond to both planned and unplanned return flows 
of worn-out capital goods, similarities are observed with the stochastic optimal control problem of Flexible 
Manufacturing Systems (FMS). Kimemia and Gerschwin (1983) introduced the concept of hedging point 
policy (HPP) to control the flow rates of parts through a manufacturing system prone to machine failures and 
repair cycles defined by Markov chains. Within such a policy, a non negative production surplus of part types, 
corresponding to an optimal inventory level, is maintained to compensate for future backlogs caused by 
machine failures. The production rate of the system is simply controlled by the inventory level. Gharbi et al. 
(2008) provided an approach to solve the hybrid repair and remanufacturing systems control policy problem, 
based on the multi-hedging point policy (MHPP) theory, as in Sharifnia (1988). The serviceable inventory 
controls the remanufacturing rate by repairing or replacing (a faster process) a worn-out component in order 
to minimize the remanufacturing and inventory/shortage cost per unit of time over an infinite horizon. An 
important assumption made in the previous paper is that the replacement components are always available. To 
fill this gap and study the effects of an unreliable supply on the MHPP, Berthaut et al. (2008) introduced a 
constraining probabilistic availability of replacement parts that indicates whether the replacement components 
can be used every time replacement is required. However, the system did not consider a supply control policy.  

Recent research has shown that integrated control systems that combine manufacturing and raw material 
procurement give better performance in terms of average total cost than when control is performed separately 
(Lee, 2005). Similarly, Brezavscek and Hudoklin (2003), Huang et al. (2008) included spare provisioning 
policy in preventive maintenance models and Hajji et al. (2008a, 2008b) developed an integrated production 
and supply policy for a three levels flexible supply chain system. Since the resolution of the problem is 
difficult, Hajji et al. (2008b) proposed a numerical approach that led to a modified and simplified policy that 
combines an (s, Q) policy and HPP and adopted a simulation based experimental approach to achieve a close 
approximation of this control policy. 

Moreover, shortages in material capacity of the supplier, unexpected breakdowns, process adjustments, 
strikes, etc., make the treatment of supply uncertainty an important issue in the analysis of stochastic 
inventory problems (Gullu et al. 1999). This uncertainty takes the form of a stochastic lead time in our 
problem. During replacement parts stock outs, demand from the remanufacturing stage cannot be met by the 
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replacement mode and consequently the repair mode is executed. Such a situation whereby the demand not 
immediately met is lost is known in the supply control field as the lost sales scenario. The lost sales scenario 
for stochastic supply problem is more difficult to model and has received less attention than backorders case 
(Hadley and Within 1963). Bensoussan et al. (1983), Cheng and Sethi (1999) proved the optimality of (s, S) 
type policies for periodic review inventory problem with lost sales and stochastic demand, using a dynamic 
programming approach and the concept of K-convexity. In the context of continuous review, inventory 
systems with lost sales are in general intractable and neither an (s, S) nor an (s, Q) policy will be optimal. 
Nevertheless, best policies among (s, S) and (s, Q) have a cost which is generally close to that of the optimal 
policy (Hill and Johansen 2006), assuming a compound Poisson demand, fixed lead times and at most a single 
order to be outstanding at any time. The variable lead time case has been investigated, among others, by 
Mohebbi and Posner (1998), who presented an exact cost minimization formulation for an (s, Q) policy. 
Determination of the control parameters is then achieved through a minimization procedure or heuristics, such 
as the well-known Hadley and Within iterative procedure. They studied the effects of the lead time variability 
on the control policy parameters and on the associated cost. In addition, (s, S) and (s, Q) policies are attractive 
to managers due to their simplicity and ease of implementation. 

The main contribution of the present paper is to jointly solve the control problems associated with hybrid 
repair and remanufacturing systems and replacement parts supply in a two-stage remanufacturing system. We 
formulate the problem as a multi-level control problem and propose in the next section a multi-hedging point 
policy based on two thresholds and an (s, Q) policy to control the remanufacturing and supply processes.  

 

3. Problem statement 

3.1 Model assumptions and notations 

The system studied (figure 1) consists of an integrated hybrid repair and remanufacturing system and an 
unreliable upstream supplier. The entire system faces a single product type demand. The system must meet a 
demand of serviceable equipments by treating planned and unplanned returns. The planned returns are defined 
as the foreseeable returns of used equipments at the expected end of life and are disturbed by the unplanned 
returns that are triggered by major equipment failures and that must be processed right away. When an 
unplanned return occurs, all remanufacturing resources are pre-empted to treat it, while the serviceable 
equipment level decreases with equipment demand. Managers of the remanufacturing system choose to repair 
or replace parts of the worn-out equipments for executing the planned demand. The replacement depends on 
the replacement parts inventory, and thus indirectly depends on the supply policy. When the replacement is 
executed, the level of the replacement parts inventory decreases. Whether the replacement parts inventory is 
starved, replacing is not yet available until the reception of a previously placed order and repair mode is 
executed instead. 

The remanufacturing system is designed to perform three different execution modes, noted by 
  ,,α and described by a cost per unit of time cuα and a repair rate uα, as follows: 
 a repair mode, characterized by (u0, cu0); 
 an accelerated repair mode, characterized by (u1, cu1), with u1 > u0 and cu1 > cu0; 
 a replacement mode, characterized by (u2, cu2), with u2 > u1 and cu2 > cu1, and by the replacement parts 

consumption. Note that the replacement part acquisition cost is included in cu2. 
In order to ensure the feasibility of the replacement mode in the long run, managers have to supply the 

replacement parts inventory by ordering a Qi lot of replacement parts with an ordering cost K. This order is 
then delivered at instant θi after a stochastic delay τ. The replacement parts holding cost per unit of time is c1

+. 

https://www.researchgate.net/publication/2577434_Optimality_of_State-Dependent_s_S_Policies_in_Inventory_Models_with_Markov-Modulated_Demand_and_Lost_Sales?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
https://www.researchgate.net/publication/31982868_Mathematical_Theory_of_Production_Planning?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
https://www.researchgate.net/publication/272712732_Analysis_of_Inventory_Systems?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
https://www.researchgate.net/publication/229810156_Continuous-review_inventory_system_with_lost_sales_and_variable_lead_time?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
https://www.researchgate.net/publication/222706517_Optimal_and_near-optimal_policies_for_lost_sales_inventory_models_with_at_most_one_replenishment_order_outstanding?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
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Figure 1. Joint Remanufacturing and replenishment activities control problem. 
 

 
 
When the number of serviceable equipment is insufficient, the operating firm is significantly penalized by 

having to cancel operations or renting equipments. c2
- denotes the cost to be paid per equipment per unit of 

time for failing to meet the service level. Similarly, c2
+ denotes the cost for keeping inventory at a higher level 

than the service level. These backlog and holding costs are such that c2
- > c2

+ > c1
+. 

The state of the system at time t can be described by the three following components: 
 a continuous part which describes the cumulative surplus level (inventory if positive, backlog if 

negative), measured by x2(t) ; 
 a piecewise continuous part which describes the replacement parts level and measured by x1(t). This 

part faces a continuous downstream demand (i.e., replacement rate of the remanufacturing system) and 
an upstream supply. When x1(t) is equal to zero, the remanufacturing system cannot perform any 
replacement. Let Ltx   )(  be the capacity constraint of the replacement part inventory. 

 a discrete part which describes the state of remanufacturing system. This state can be classified as 
“producing planned demand”, denoted by )(ξ t , or “producing unplanned demand”, denoted by 

)(ξ t . This process could be modeled as a continuous time Markov chain, with time-invariant 
transition rates λ12 and λ21.  

The following differential equations give the dynamic of the stock levels x1(t) and x2 (t): 

dtutx  ),()(
.

2   , 22 )0( xx  , 0t  

 2)2,()(
.

1  Indtutx  , 11 )0( xx  ,  1,  ii θθt  

iii Qθxθx   )()( 11 , i = 1… N 

Where  


 


otherwise0

if1 mα
mInd   

(1)

Where x1, x2 denote the initial stock levels, d denotes the demand rate, u(t, α) the remanufacturing rate control 

in mode α, 
iθ and 

iθ denote the negative and positive boundaries of the ith receipt instant iθ . 
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3.2 Remanufacturing and supply policies formulation 

The problem formulated in the previous section is similar to the stochastic optimal control of manufacturing 
systems facing an unreliable upstream supply. Hajji et al. (2008a) considered this class of systems by a three 
level supply chain system responding to one-part type demand.  This system was composed of an unreliable 
manufacturing system and of an unreliable supplier, both of which are subjected to availability and 
unavailability periods.  In order to hedge against supply and capacity shortage, the raw material inventory x1 
and the final products surplus x2 have to be maintained at excess levels. The decision variables were the 
production rate u(.) when the manufacturing system is up and a sequence of supply orders denoted by 

    ,...,,,Ω  QθQθ , where Qi is the order quantity received at time θi. The objective was to find the 

optimum decisions (Ω, u(.)) that minimize the total cost J(.), which includes the manufacturing, inventory, 
backlog and supply costs over an infinite horizon for each system state and inventory levels. Once the 
problem was formulated as a dynamic programming problem, the value function was given by: 

),,,,(inf),,( 2121
),(

 


uxxJxxv
Au

 (2)

Where ξ is the state of the system (i.e. the availability state). 
Hajji et al. (2008a) were able to establish that the value function is a viscosity solution of Hamilton-Jacob-

Bellman equations that cannot be solved analytically. Since the joint production and supply policy is obtained 
when the value function is known, Hajji et al. (2008a) applied a numerical approximation method based on 
the Kushner iterative algorithm (Kushner and Dupuis 1992) in order to estimate the value function for discrete 
values of the state variables (x1, x2, ξ). By observing separately the corresponding production and supply 
policies for the different systems states, they approximated the joint optimal control policy by a combination 
of a modified state dependent multi level base stock policy (MBSP) for the remanufacturing stage, and a state 
dependent (s, Q) supply policy. However, Hajji et al. (2008b) proposed a simplified approximation governed 
by a hedging point policy (HPP) and an (s, Q) type policy, such that: 

 
 














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u
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2

2
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
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
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 


otherwise

stxifQ
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with Z0 ; LQs  ; 0s . 

(3)

Where Umax is the maximum production rate and ξ = 1 denoted the system state 1 (manufacturing system 
available). 

In this paper, the objective is to determine a control policy (Ω, u(.)) that minimizes the following average 
expected cost per unit of time over an infinite horizon: 

),,,,,(lim),,,,,( 2121  QuxxJQuxxJ T
T 

   

with  
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
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
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


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


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i

T

jRT QcKtuxxg
T

QuxxJ
0

0
d),,(E

1
),,,,,( 2121  , nn Tn θθ:   

and (.))()()()),(),(),(( 22221121 uctxctxctxcαtutxtxg u   ,  1,  ii θθt  

(4)

https://www.researchgate.net/publication/225152981_Joint_production_and_supply_control_in_three_levels_flexible_manufacturing_systems?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
https://www.researchgate.net/publication/46958144_Numerical_Methods_for_Stochastic_Control_Problems_in_Continuous_Time?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
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Where g(.) denotes the instantaneous cost of maintaining the inventory/shortage x1(t) and x2(t) per unit time,   
),0max( jj xx  , )0,max( jj xx   and cu is the cost of remanufacturing at rate u(.). 

This paper aims to transpose the joint production and supply policy of Hajji et al. (2008b) to the hybrid 
repair and remanufacturing systems presented in the previous section. The main difference between these 
problems is that instead of two different modes (u0, cu0) and (u2, cu2), the flexibility of the remanufacturing 
processes allows us to consider an additional repair mode (u1, cu1), which does not consume any material of 
the replacement parts inventory. The control policy will be affected in two ways. First, the remanufacturing 
process will be managed by a multi-hedging point policy (MHPP), composed of two thresholds that trigger 
the execution of the three remanufacturing modes, as proposed in Gharbi et al. (2008). Then, the joint 
production policy and supply presented above entails, in the case of raw material starvation, that the 
production rate is stopped until the reception of a previously placed order. When the replacement parts 
inventory drops to 0 in our remanufacturing system, the replacement mode cannot be executed and the 
subsequent maximum rate (the accelerated repair rate) is applied, as it does not require any material to be 
attained. Concerning the replacement parts supply, we also adopt a classical (s, Q) policy to control the 
replenishment. Such a policy should improve the cost performance as compared to a single hedging point 
policy with two execution modes, which will be showed on a numerical case in the last section. Indeed, the 
accelerated repair mode is less expensive than the replacement mode (cu1 < cu2) when the serviceable 
equipment inventory is plenty, and postpones possible serviceable equipment shortages, and thus additional 
costs (c2

- > c2
+), in the case of replacement parts unavailability (x1(t) = 0). Consequently a more appropriate 

joint remanufacturing and supply control policy is proposed below: 
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

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
otherwise

stxifQ

0

)(
(.) 1  

with the constraints: 120 zz   , LQs  , 0s . 

(5)

The remanufacturing and supply policies presented above are interrelated. Indeed, the MHPP part depends 
on the replacement parts availability (x1(t) > 0). In a similar manner, the differential equations (1), that depicts 
the system dynamics, highlight the influence of the remanufacturing states (x2, ξ) on the demand of 
replacement parts, thus on the replacement parts level. 
Figure 2 shows the dynamics of the serviceable equipments and replacement parts inventories controlled 
according to the joint remanufacturing and supply control policy. As unplanned demand occurs, the 
remanufacturing resources are pre-empted to treat it and consequently the amount of serviceable equipments 
x2(t) decreases until the demand is satisfied. Then, as x2(t) drops below z1, the remanufacturing process is 
accelerated to rate u1. When x2(t) drops below z2, if replacement parts are available (x1(t) > 0), the 
remanufacturing process is further accelerated to rate u2, to prevent the surplus level from crossing over a 
negative value or else remains at rate u1 (for x1(t) = 0). When x1(t) crosses the level s, an order of Q 
replacement parts is placed and received after a delay τ. During this delay, if x1(t) decreases to zero, then the 
replacement mode would not be available until the reception of the order. Note that the replacement parts 
inventory remains constant when the replacement mode is not used (x2(t) > z2 or ξ = 2). 

https://www.researchgate.net/publication/225152981_Joint_production_and_supply_control_in_three_levels_flexible_manufacturing_systems?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
https://www.researchgate.net/publication/223496560_Production_rate_control_for_stochastic_remanufacturing_systems?el=1_x_8&enrichId=rgreq-c8da5682-1f66-4e7b-89e4-d83ad1ea43fb&enrichSource=Y292ZXJQYWdlOzI0NTMzMTE2MjtBUzoxNTk2MTE2MzgyNjM4MDhAMTQxNTA2NTc4ODU0Nw==
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Figure 2. Evolution of the serviceable equipment inventory x2(t) and of the replacement parts inventory x1(t)  
under the joint remanufacturing and supply policy. 
 
 
 

Once the values of (z1, z2, Q, s) are determined, the control policy is completely defined. These four 
control policy parameters have to be chosen in order to minimize the total cost defined in equation (4). 
 

4. Simulation resolution and optimization 

Within the sphere of control theory, especially for systems with multiple stochastic elements such as 
remanufacturing systems, optimal solutions are often difficult to calculate and/or are obtained under strict 
conditions limiting their application in real cases. Numerical methods or simulation tools are often effective 
approaches to understand the behaviour of a system and to obtain a close approximation of the optimal control 
policy. Thus, based on the work of Kenne and Gharbi (1999), we introduce a resolution approach that 
combines the descriptive capacities of conventional simulation models with analytical models, experimental 
design and response surface methodology techniques. The values of the control policy parameters are 
obtained by minimizing the total cost incurred by the simulation runs. 
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4.1 Resolution Approach 

The first step consists of representing the remanufacturing and supply processes control problem through a 
stochastic optimal control model based on control theory. The objective of this approach is to obtain the 
control variables, namely the repair rates (ui) and the supply parameters, in order to improve the response 
variable (i.e., the incurred total cost). The problem is then structured in a near optimal control policy for the 
hybrid repair and remanufacturing system and for the replenishment as presented in the previous section. This 
policy consists in defining the thresholds (z1, z2) associated with the predefined remanufacturing modes, and 
in defining the (s, Q) type policy parameters. A simulation model is developed to describe the dynamics of the 
system under the control policy parameterized by (z1, z2, s, Q). These four factors and the related incurred cost 
are respectively considered as input and output of the model. 

The experimental design approach defines how the control factors can be varied in order to determine the 
effects of the main factors, their quadratic effects and their interactions (i.e., analysis of variance or ANOVA) 
on cost with a minimal set of simulation experiments. In the next step, the response surface methodology is 
used to obtain the relationship between the incurred cost and the significant main factors, quadratic effects and 
interactions. Assuming that g(.) is jointly convex, it can be shown, with a proof similar to Lou et al. (1994), 
that the total cost J(.) is jointly convex and then that the value function is convex. This convexity assumption 
was also used by Yong (1989) and Hajji et al. (2008). For this reason, we choose a second-order model as 
regression model for constructing the cost value and aim to find its unknown parameters. The model is then 
optimized by minimizing the estimated cost in order to determine the best values of the factors, here called 
(z1

*, z2
*, s*, Q*), and the optimal cost value J* for executing our joint policy.  

 

4.2 Simulation model 

A simulation model that combines discrete-continuous changes was developed using the Visual SLAM 
language (Pritsker 1999). This model consists of several networks and user routines, each of which describes 
a specific task in the system (demand generation, control policy, states of the system, threshold crossing of 
inventory variables…, etc). We adopt a schematic representation of the model in figure 3 to facilitate 
understanding with the following descriptions of the different blocks.  

(1) The INITIALIZATION block initializes the values of the joint remanufacturing and supply policy (z1, 
z2, s, Q), for which the simulation run is conducted and the values of parameters of the system, such as 
the remanufacturing rates, the planned and unplanned demand occurrences, the demand rate of 
serviceable items, the supply lead time. 

(2) The UNPLANNED-PLANNED DEMAND OCCURENCES block performs the arrival of a planned 
flow of equipments to be remanufactured and the arrival of an unplanned return of equipments to be 
repaired at each λ12

-1 units of time. The REPAIR block will then treat this unplanned demand (λ21
-1 

units of time). Note that when unplanned demand occurs, the remanufacturing resources are pre-
empted until this demand is satisfied. Planned demands are therefore not fulfilled during this period 
and the surplus level decreases. 

(3) The CONTROL POLICY block provides the remanufacturing rates and the supply orders (refer to 
equation (5)). Observation networks raise a FLAG whenever inventory levels cross one of the control 
policy thresholds (z1, z2 and s). 
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Figure 3. Diagram of simulation model. 
 
 
 

(4) The STATE EQUATIONS are the equations (1) expressed by a C language insert and networks. This 
block performs the remanufacturing activities of equipments depending on the remanufacturing rates 
and the supplies set by the control policies. 

(5) The TIME ADVANCE block change the current time according to a time step. Visual SLAM uses an 
algorithm to change the values of the discrete event scheduling (demand and unplanned demand rates) 
and continuous variables threshold crossing events. 

(6) The UPDATE REPLACEMENT PARTS INVENTORY x1 and UPDATE SERVICEABLE INVENTORY 
x2 blocks trace the real-time variations of x1(t) and x2(t). The surplus level varies as equipments are 
remanufactured or as a demand arrival occurs, whereas the replacement parts inventory level varies as 
replacement parts are consumed or as ordered items are delivered. 
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(7) The UPDATE INCURRED COST block calculates the average total costs. This cost consists of the 
inventory/backlogs costs, which depends on the inventory levels, the remanufacturing costs and the 
replacement parts ordering costs.  

The simulation runs until the current time Tnow reaches the simulation horizon Tsim, which is the time 
needed to reach the steady state. 

 

5. Numerical examples 

For the following example, simulation runs are carried out and steady state cost data are collected for specific 
combinations of (z1, z2, s, Q). Assuming that an optimal solution of the stochastic problem described in 
section 3 exists and taking into account the convexity property of the cost function, three levels were required 
for each independent variable to obtain a convex estimated cost function. For these reasons, a 34 experimental 
design and a second-order response surface model were proposed. We plan to demonstrate that this approach 
is efficient and robust by studying the total cost when using the proposed control policy under different 
conditions. First exponential supply lead times are considered and a sensitivity analysis of cost parameters is 
detailed. Then the effects of the distribution, mean and variability of the lead time on the optimal control 
policy and on the total cost are broached. Finally the control policy is compared to the combined hedging 
point and (s, Q) policy. 
 

5.1 Basic case 

In an illustrative example the following numerical values are considered: 

(1) planned demand rate: a constant demand inter-arrival 1/d with d = 20 units per month; 
(2) unplanned demand times:  

 the time between unplanned demand arrivals is exponentially distributed with the rate parameter 
λ12

-1, with λ12 = 4 per month; 
 the processing time of unplanned demand is exponentially distributed with the rate parameter λ21

-1, 
with λ21 = 10 per month; 

(3) remanufacturing rates (units per month )and costs (K $ per unit ) associated with the predefined 
execution modes: 

 u0 = d = 20; u1 = 25; u2 = 40; 
 cu0 = 20; cu1 = 40; cu2 =100; 

(4) inventories surplus and backlog costs (K $ per unit per month):  c2
+ = 10; c2

- = 100; c1
+ = 4; 

(5) replacement parts ordering costs: K = 200 K $ per order; 
(6) the order lead time is a random variable. In the next sections we will study different time distributions, 

whereby µ is the mean and σ the standard deviation. For the basic case, an exponential lead time 
distribution with the rate parameter λI = 0.25 per month (µI = σI = 4) is presented. 

In each case, five replications were conducted for each combination of factors (i.e., 34 x 5 simulation 
runs). To ensure that the total cost reaches a steady state, the duration of simulation Tsim was set at a value of 
1,000,000 months for each replication. 

The statistical analysis of the simulation data consists of a multifactor analysis of variance (ANOVA). 
This is accomplished using a statistical software application (STATISTICA) to determine the effects of the 
four independent variables (z1, z2, s, Q) on the dependent variable (incurred cost J). We present in the table 1 
the ANOVA table of the total cost for the basic case. The effects of the main factors, their interactions and  
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Table 1.  ANOVA table for  the to tal  cost ,  case I .  

 sum of squares d.f. mean square F-ratio P-value 

A : z1 16439.754 1 16439.754 43.907 0.0000 
B : z2 60488.200 1 60488.200 161.55 0.0000 
C : s 319252.78 1 319252.78 852.65 0.0000 
D : Q 1181935.2 1 1181935.2 3156.7 0.0000 
AA 4635.2637 1 4635.2637 12.380 0.0000 
BB 30037.292 1 30037.292 80.223 0.0005 
CC 50345.562 1 50345.562 134.46 0.0000 
DD 394052.67 1 394052.67 1052.4 0.0000 
AB 13389.009 1 13389.009 35.759 0.0000 
AC 806.41102 1 806.41102 2.1537 0.1430 
AD 3361.4178 1 3361.4178 8.9776 0.0029 
BC 108491.61 1 108491.61 289.76 0.0000 
BD 133304.96 1 133304.96 356.03 0.0000 
CD 694491.02 1 694491.02 1854.8 0.0000 

blocks 422.93467 4 105.73367 0.2824 0.8893 
Total error 144527.01 386 374.42230   

Total (corr.) 3155981.1 404   R2 (adj.) = 95.21 % 

 
 
 
their quadratic effects on the dependent variable were observed. The factors, the quadratics effects and the 
interactions were considered significant at p < 0.05. An R-squared adjusted value of 0.9521 for exponentially 
distributed lead times, as shown in the ANOVA table, implies that 95.21% of the total variability is explained 
by the model (Montgomery 2001). The residual versus predicted value plots and normal probability plots 
were used to verify the homogeneity of the variances and the residual normality, respectively. It can be 
concluded that the model composed of the main factors, their quadratic effects and their interactions (except 
z1.s) fit the basic case data. 

We assume that there exists a function ψ of (z1, z2, s, Q) that provides values of the average cost 
corresponding to any combination of input factors:  sQzzCost ,,,ψ  . The function ψ(.) is called the response 
surface function. The non significant effect (p > 0.05), the third-order interactions and all other effects were 
ignored or added to the error ε. The estimated second-order model in the basic case with standardized factors 
is given by: 

sQzzIcaseCost  39.3416.6697.14803.799.1564)( 21  

222
2

2
1 65.2317.6627.18177.7 sQzz   

 sQszQzQzzz 11.6255.2421.27321.4625.8 22121  

(6)

 The projection of the corresponding cost response surfaces onto two-dimensional planes are presented in 
figure 4. The minimum of the total cost function, J* = 1546.65 $, is located at z1* = 48.33, z2* = 10.74,  
s* = 32.19, Q* = 84.61. As each response surface displays the value of the total cost in function of two of the 
input factors (the others being fixed at their optimal values), six plots are required for four factors. These 
values are the sub-optimal control policy parameters defined in the previous sections and which should be 
applied to the remanufacturing and supply processes. 
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Figure 4. Cost response surfaces for an exponential lead time distribution and (z1*=48.33, z2*=10.74, s*=32.19, Q*=84.61). 
 
 

5.2 Sensitivity analysis of cost parameters 

Another set of experiments is considered to measure the sensitivity of the near-optimal joint remanufacturing 
and supply control policy with respect to the cost parameters. Table 2 highlights the consistency between the 
variation of each cost parameters (i.e., c2

+, c2
-, cu0, cu1, cu2 for the hybrid repair and remanufacturing system 

and c1
+ and K for the supply), tested through eleven cost configurations, and the optimal  parameters (z1

*, z2
*, 

s*, Q*) for the exponentially distributed lead time case. Results obtained, and discussed below are coherent 
and confirm our expectations. J* denotes the incurred cost for the optimal values (z1

*, z2
*, s*, Q*).  

Before analysing the variation of each cost parameter, it is noted that the order point and the order quantity 
evolve in opposite directions for every variation of cost parameters. Indeed, the optimal supply policy is a 
compromise between: 

 the need for low holding costs, especially when the serviceable inventory is in the region x2(t) > z2, 
where the replacement parts stock level remains constant and triggers holding costs, 

 the need for maintaining a critical availability of replacement parts for the remanufacturing stage to 
prevent the serviceable equipment backlogs. 

For this reason, if Q decreases (resp. increases), then s increases (resp. decreases) to ensure a proper 
availability of replacement parts (resp. to prevent holding costs from increasing). Hajji et al. (2008b) reported 
the same opposite directions in a sensitivity analysis for the joint production and supply control of FMS. 

 Variation of the serviceable inventory cost c2
+: 

When the serviceable inventory cost increases (resp. decreases), the hedging points levels decrease (resp. 
increase), which is intuitively predictable. At the same time, the remanufacturing stage is more subject to 
backlogs (resp. less), thus the replacement mode, which is the fastest mode, must be more reliable. 
Consequently s* increases (resp. decreases) and Q* decreases (resp. increases). 
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Table 2.  Sensi t iv i ty analysis  for  d ifferent  costs  with  
exponent ial  lead t ime dis t r ibut ion (μ  =  σ  =  4) .  

No. c2
+ c2

- cu0 cu1 cu2  c1
+ K  z1

* z2
* Q* s* J* 

1 10 100 20 40 100 4 200 48.33 10.74 84.61 32.19 1546.65
2 8 100 20 40 100 4 200 53.63 12.94 84.84 29.04 1522.25
3 12 100 20 40 100 4 200 42.67 8.46 84.31 35.70 1567.30
4 10 80 20 40 100 4 200 45.47 9.77 87.08 27.27 1530.84
5 10 150 20 40 100 4 200 52.28 12.09 81.19 39.07 1572.71
6 10 100 20 40 80 4 200 45.42 11.05 84.91 31.57 1434.69
7 10 100 20 40 120 4 200 48.41 10.47 84.66 32.47 1658.45
8 10 100 20 40 100 3 200 44.17 8.70 82.02 41.77 1489.71
9 10 100 20 40 100 5 200 51.89 12.54 86.64 23.96 1597.10

10 10 100 20 40 100 4 100 48.56 10.73 83.47 33.11 1540.13
11 10 100 20 40 100 4 300 48.13 10.75 85.66 31.33 1553.08

 
 
 

 Variation of the backlog cost c2
-: 

When the backlog cost increases (resp. decreases), the hedging levels increase (resp. decrease), the s* 
increases (resp. decreases) and the Q* decreases (resp. increases). Indeed one has to keep higher the stock 
security levels (z1

*, z2
*, s*) to avoid backlogs. The rise of s* is balanced by the fall of Q*, because of the 

holding costs of the replacement parts inventory. 

 Variation of the replacement cost cu2: 

When the replacement cost increases (resp. decreases), the replacement strategy is less profitable (resp. 
more profitable) and the control policy gives special weight to the accelerated repair mode (resp. replacement 
mode). Thereby the accelerated repair region, which is bounded by z1

 and z2, enlarges and thus z1
* increases 

and z2
* decreases. Concerning the supply parameters, the amount of needed replacement parts decreases (Q* 

is then lower), and the s* increases to keep an appropriate availability of the replacement parts inventory. 

 Variation of the replacement parts inventory cost c1
+: 

When the replacement parts inventory cost increases (resp. decreases), the system reacts by lowering the 
average replacement inventory level (resp. increases). As a result, the s* is lower (resp. higher) and a higher 
Q* is required (resp. lower). A lower average replacement inventory level also means a lower availability, 
thus more uncertainty for the remanufacturing stage, which is counterbalanced by higher hedging points. 

 Variation of the order cost K: 

When the order cost increases (resp. decreases), Q* increases (resp. decreases) and s* decreases (resp. 
decreases). Indeed a higher order cost incites fewer frequent orders but an increasing number of new 
replacement parts per order to decrease the acquisition cost per equipment unit. This effect must be balanced 
by a lower order point in order to maintain a proper average replacement parts inventory level. The influence 
on the hedging point levels is weak. 
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5.3 The effects of lead time on the control policy 

5.3.1 General lead time mean results 
 
The influence of lead time distributions on the optimal parameters of the control policy is examined using 
gamma, normal, log-normal time distributions instead of exponential time distribution. The former 
distributions are often encountered in literature to represent stochastic lead times (Song and Yao 2002, Bagchi 
1987, Van der Laan et al. 1999). For the normal distribution, a modified normal distribution that only 
provides positive values of lead times is used. In order to compare these different lead time distributions, the 
same mean and standard deviation are used in all distributions (µ = σ = 4) and simulation experiments are 
conducted with the cost parameters of the basic case. 

The convexity property holds and then there exists a set of factors (z1, z2, s, Q) that minimizes the total 
cost for the tested lead time distributions. In all cases, a multifactor analysis of variance (ANOVA) was 
conducted and lead to R-squared adjusted values close to 0.95. The residual analysis completed these studies 
and confirmed the adequacy of the second order model. As shown in table 3, the optimal values (z1*, z2*, s*, 
Q*) and the total cost obtained with different lead time distributions are close to the values obtained 
numerically with the exponential distribution. 

 
 

Table 3.  Estimated best  values for  different  lead t ime dis tr ibut ions,  with (µ  =  σ  =  4) .  

lead time distributions z1
* z2

* Q* s* J* ($) R2 adj. (%) 

Exponential 48.33 10.74 84.61 32.19 1546.65 95.21 
Gamma 46.59 10.64 85.51 31.44 1547.37 95.11 
Normal 51.18 10.68 81.64 34.98 1530.15 94.97 

Lognormal 50.83 10.75 90.67 26.40 1558.48 95.36 

 

5.3.2 The effects of the lead time mean 
 
Several researchers have investigated the effects of lead time mean and variability on the cost 

performance. Generally, a higher average lead time as well as higher lead time variability of a supplier would 
cause a higher level of inventory, and thus higher holding and total cost. A large part of the literature is 
focused on quantifying the effects of lead time on the optimal inventory costs and policy decision variables in 
stochastic inventory models (among others, Mohebbi and Posner 1998, Song 1994, He et al. 2005), 
considering the lead time as an exogenous variable. Note that variance reduction is also a common theme in 
several theories, including total quality management (TQM) and just-in-time (JIT). However, few papers have 
considered the effects of lead time in a remanufacturing environment. Van der Laan, Salomon and Dekker 
(1999), under PUSH and PULL strategies and Tang and Grubbström (2005), for a cycle ordering policy, 
studied the impact of stochastic remanufacturing and manufacturing lead times in a hybrid 
production/remanufacturing system.  

For the hybrid repair and remanufacturing presented in this paper, a set of experiments was conducted in 
order to study the impact of lead time mean and variability on the proposed control policy. Under the gamma 
distribution to model the lead time, we used the same approach and experimental design to test the control 
policy with respectively different lead time means and variability factors (defined as the ratio μσ ). 

The effects of the lead time mean on the optimal values of the control parameters and on the total cost are 
presented in figure 5. As the lead time mean increases, the reorder point s* and the average replacement parts 
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Figure 5. Effect of the lead time mean on the control policy and on the estimated cost. 

 
 

inventory level increase to avoid replacement part starvation and thus to avoid serviceable equipments stock 
outs, whereas the other control parameters (z1*, z2*, Q*) remain almost constant. Our simulation results show 
that the stationary replacement parts availability associated with the optimal control parameters is close to 
90% in each case, which means that the impact of a higher lead time mean is absorbed by the supply stage and 
does not affect the remanufacturing stage. Furthermore, a higher lead time mean leads to a slight increase of 
the total cost, as the replacement parts holding costs increase. 

5.3.3 The effects of the lead time variability 
 
Figure 6 shows that the total cost and the optimal values of the supply parameters increase significantly as the 
lead time variability factor increases. Indeed, the more scattered the lead time is, the more uncertain is the 
supply. Early and late deliveries introduce waste in the form of excess cost into the remanufacturing and 
supply system. Early deliveries contribute to excess inventory holding costs, particularly holding costs 
associated to the replacement parts inventory when the replacement mode is not used (x2 (t) > z2), whereas 
late deliveries contribute to replacement parts being out of stock (x1(t) = 0), and thus to serviceable equipment 
backlogs (x2(t) < 0). In other words, the control policy parameters increase tends to protect the system against 
supply uncertainty, triggering higher total costs. In addition, we observe that the reorder point s* and the order 
quantity Q* serve as adjustment variables for low and high variability factors, respectively. 
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Figure 6. Effect of the lead time variability on the control policy and on the estimated cost. 
 
 
 

5.4 Comparison with the joint HPP and (s, Q) policy 

Results obtained using the joint multi-hedging point and (s, Q) policies, presented above, are compared to 
results of the joint single hedging point and (s, Q) policies, inspired from Hajji et al. (2008b). This joint policy 
is fully described by three parameters, namely the threshold Z, the order point s and the order quantity Q. By 
fitting a second order polynomial model to link the incurred total cost and the parameters of the control 
policy, we obtain for the basic case: 

sQZIcaseCost  16.2509.2168.4281.2101)(  
222 70.3370.1674.43 sQZ   

 sQsZQZ 59.3680.5072.24  

(7)

We present in table 4 the sensitivity analysis conducted with joint HPP and (s, Q) policies. These results 
were obtained under the same conditions (simulation, experimental design, and response surface 
methodology) as those in the joint MHPP and (s, Q) policies. It is interesting to note that for each variation of 
cost parameter, the variation of the optimal parameters and of the incurred cost JHPP* follow the same 
direction as for the multi-hedging point case previously presented, but has greater amplitude. 
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Table 4.  Sensi t iv i ty analysis  for  d ifferent  cost  for  a  jo in t  HPP and (s ,  Q )  pol icy 

with exponent ial  lead t ime dis tr ibution (µ  = σ  = 4) .  

No. c2
+ c2

- cu0 cu2  c1
+ K  Z* Q* S* JHPP* 

I 10 100 20 100  4 200  12.19 136.98 101.28 2088.50
2 8 100 20 100  4 200  20.36 141.00 87.85 2061.53
3 12 100 20 100  4 200  3.92 132.58 115.82 2100.86
4 10 80 20 100  4 200  8.62 128.33 97.47 2048.40
5 10 150 20 100  4 200  17.53 146.88 106.60 2149.45
6 10 100 20 80  4 200  12.24 137.00 101.20 1859.85
7 10 100 20 120  4 200  12.15 136.95 101.36 2317.14
8 10 100 20 100  3 200  5.43 140.91 122.93 1954.21
9 10 100 20 100  5 200  18.46 129.75 82.73 2200.40

10 10 100 20 100  4 100  12.05 131.15 104.21 2079.95
11 10 100 20 100  4 300  12.33 142.22 98.64 2096.71

 
 

 
The reorder point and quantity optimal values are considerably larger than those obtained with joint MHPP 
and (s, Q) policies. It is evident that since the MHPP is composed of three modes compared to the HPP 
composed only of two modes, the replacement mode would be more frequently executed with the latter policy 
and would require a more reliable replacement parts supply. For the same reason, the control policy 
parameters are more sensitive to a cost parameter variation with joint HPP and (s, Q) policies. Comparing 
these optimal cost values to those obtained by the joint MHPP and (s, Q) policies, denoted by J* in the table 2 
(previous sections), it is noted that in all cases J* is lower by at least 20% than JHPP*. As mentioned 
previously in section 3.2, the joint multi-hedging point and (s, Q) policies are better in term of cost 
performance than the joint single hedging point and (s, Q) policies and can be used to better approximate the 
optimal control policy of the system. 

 

6. Conclusion 

In this paper, we have studied the production and supply problem for hybrid repair and remanufacturing 
systems and proposed a solution in the case of one product type. The mathematical formulation of this 
problem is difficult to tackle, due to the stochastic aspect of the supply, the variability of the remanufacturing 
processes and of the conditions of the items to be returned. In order to benefit from the flexibility of the 
remanufacturing execution, from repair to replacement, a near-optimal joint remanufacturing and supply 
control policy composed of a multi hedging point policy (MHPP) for the remanufacturing stage and of an (s, 
Q) policy for the replacement parts supply have been proposed. To optimize the control parameters, an 
experimental approach based on design of experiment, simulation modeling and response surface 
methodology have been used. With this approach, the influence of the lead time distributions and the effects 
of the lead time duration and variability on the control policy have been investigated. It has also been shown 
that the developed control policy is better that a combined HPP and (s, Q) policy in term of cost 
performances.  

In conclusion, the stochastic and complex nature of remanufacturing industry problems forces managers to 
consider new approaches, different from those already used in traditional production management. This paper 
presents an easy to implement and simple structure of stock level parameters that bound the use of 
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predetermined repair or replacement modes, allied with a classical supply policy. Repair and replacement 
modes should be consciously selected by managers with an overall perspective, whereas this decision is often 
left up to technicians performing the work. 

For hybrid repair and remanufacturing control problems where the classical control theory limits are 
reached, we think that adopting the experimental designs and simulation techniques presented in this paper 
provides satisfactory approximate solutions of the optimal control problems. The situations of multi-parts 
products, non-repairable returned items or multiple suppliers that differ in terms of cost, lead time and quality, 
are possible extensions to be investigated in future research.  
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