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Abstract. Image-based navigation during percutaneous coronary inter-
ventions is highly challenging since it involves estimating the 3D motion
of a complex topology using 2D angiographic views. A static coronary
tree segmented in a pre-operative CT-scan can be overlaid on top of the
angiographic frames to outline the coronary vessels, but this overlay does
not account for coronary motion, which has to be mentally compensated
by the cardiologist. In this paper, we propose a new approach to the mo-
tion estimation problem, where the temporal evolution of the coronary
deformation over the cardiac cycle is modeled as a stochastic process.
The sequence of angiographic frames is interpreted as a probabilistic ev-
idence of the succession of unknown deformation states, which can be
optimized using particle filtering. Iterative and non-rigid registration is
performed in a projective manner, and relies on a feature-based similar-
ity measure. Experiments show promising results in terms of registration
accuracy, learning capability and computation time.

1 Introduction

Percutaneous coronary intervention (PCI) is a routine procedure in cardiology
aimed at providing revascularization of coronary vessels. Such interventions re-
main highly challenging since cardiologists must rely on occasional contrast injec-
tion to assess coronary motion and topology on 2D X-ray angiographic frames.
CT-based navigation was proposed [1] to outline coronary vessels even when
contrast agent is not present, but these techniques provide only static guidance.
The task of intra-vascular navigation through the coronary arteries is impeded
by the complexity of their topology, their constant motion composed of sudden
movements, and the fact that they can often be observed only one angle at a
time. An accurate estimation of this motion would be a step further towards
efficient motion compensation techniques, or augmented reality solutions, where
angiographic frames would be overlaid with interactive catheter roadmaps. This
problem is difficult for several reasons: first, the coronary motion is a complex
combination of rigid and non-rigid deformations caused by both cardiac and res-
piratory activities. Second, the topology of the coronary arteries is remarkably
complex and varies significantly from one patient to another. Third, because
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we aim for an intra-operative application, computational costs have to remain
low. Last, the estimation of 3D motion from 2D temporal projections is notably
known as an ill-posed problem, therefore difficult by essence.

1.1 Related works

The goal of 3D/2D registration methods is to find a geometric transformation
that brings a 3D pre-operative patient dataset into the best spatial correspon-
dence with 2D intra-operative datasets [2]. Such methods can be roughly grouped
in three separate categories. The first category proposes simple rigid deformation
models and focuses on the registration criterion, implicitly seeking a smooth cri-
terion to be optimized [3]. The second category derives from the work on active
shape models, and focuses on the deformation model using statistical atlases
[4, 5]. These methods rely on the assumption that an average topology can be
drawn from multiple segmentations, and that patient-specific structures can later
be consistently described as deviations from this mean topology. In our case, this
assumption does not apply since the topology of the coronary arteries varies too
much from one patient to another. Recently, [6] proposed a graph-based non-
rigid deformation model showing good results despite the important number of
parameters and the heavy computational costs. Other attempts at motion com-
pensation in the field of 3D reconstruction require multiple views and generally
propose heavily parameterized deformation models [7–9]. Finally, the methods
in the third category put their attention on the optimization strategy [10, 11],
arguing that the ill-posedness of 3D/2D registration calls for the use of robust op-
timization techniques allowing multiple hypothesis to coexist during the search,
such as techniques based on Monte-Carlo sampling. Nevertheless, very few of
the works in the litterature explicitly consider temporal consistency in the prob-
lem of coronary motion estimation. Furthermore, when included, such temporal
constraints are usually applied between consecutive frames only, instead of con-
sidering a stable and coherent deformation over the entire cardiac cycle – a point
that is stressed out in the discussion of [8].

1.2 Contributions

We propose a novel probabilistic approach to describe and predict the 3D defor-
mations of the coronary arteries from 2D monoplane angiogram. The originality
and advantages of this approach, with respect to existing methods for the prob-
lem of 3D/2D registration of coronary arteries, are the following:

– As opposed to current methods, our approach enforces temporal consistency
over the entire sequence by using a Hidden Markov Model, which enables a
more robust and accurate registration;

– Unlike deterministic registration methods, our probabilistic approach con-
siders multiple hypotheses simultaneously during the optimization process,
thereby avoiding the problem of local optima;



– Since its deformation model has few parameters and the optimization pro-
cess, based on particle filtering, is highly parallelizable, it is computationally
efficient and could eventually be used in a real-time registration setting.

The rest of this paper is divided as follows. The next section presents our method
and the probabilistic model on which it is based. In the experimental section,
we evaluate the accuracy of this method on simulated and real patients an-
giograms. Finally, we conclude this paper by summarizing our contributions and
experimental results, and provide possible extensions of this work.

2 Proposed method

The 3D/2D coronary registration problem can be formulated as follows. Let I1..K
be a sequence of K segmented binary angiographic images, where image Ik is
taken at time tk, and denote by X0 the set of points forming the centerline of the
reference 3D coronary tree. As mentioned above, this reference data is acquired
prior to the registration process, for instance, by segmenting vessel centerlines
from a CT-scan. The goal is to find the sequence of deformed 3D centerline points
X1..K that best corresponds to the sequence of observed images, once projected
in the image plane. In practice, optimizing every deformed centerline coordinate
directly, at each instant, is not feasible due to the largeness of the resulting search
space. Instead, we suppose that these coordinates are fully determined by the
parameters θ of a deformation model fd(X0; θ), and search for the most likely
sequence of parameters θ1..K . In the next section, we describe a probabilistic
model that offers a simple yet realistic description of the coronary motion.

2.1 Probabilistic generative model

The general tracking approach proposed by [12] was adapted to the problem of
coronary motion compensation by including a model of cardiac motion based on
Hidden Markov Models (HMM). This model, illustrated in Figure 1, receives at

each instant tk an estimate φ̂k of the 2π-period phase of the cardiac cycle, and
describes the evolution of the unknown cardiac deformations as follows1:

p(θk | θk−1, vk−1) ∼ δ(θk, θk−1 + (tk−tk−1)vk−1) (1)

p(vk | vk−1, φk) ∼ N ((1−α)vk−1 + α ve(φk),Σv) (2)

p(φk) ∼ N (φ̂k, σ
2
φ) (3)

Instead of estimating directly the deformation parameters θk, we evaluate their
instantaneous variations vk, using a time-linear approximation (Equation 1). By
constraining the variations instead of the actual parameters, we obtain smoother
and more realistic movements. Moreover, the transition model of these param-
eter variations, as defined in Equation 2, is constrained in two important ways.
First, we consider a temporal constraint that acts as an inertial factor on the
movement. Again, this allows to focus on regular, jitter-free movements.

1 δ is the Kronecker symbol, and N is the multivariate normal law.
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Fig. 1. Graphical model (HMM) of the image generation process.

However, because the cardiac motion contains sudden movements caused by
ventricular contractions, we also inject prior knowledge, which enables the model
to anticipate and follow such movements. Thus, vk also depends on an empirical
model (or template) of the cardiac motion, given by the continuous function ve.
Since the cardiac motion is cyclic, ve is defined as a 2π-periodic function of the
cardiac phase φk. To control the trade-off between having a purely inertial model
or a model based only on empirical knowledge, we use the parameter α ∈ [0, 1].
Moreover, covariance matrix Σv is used to model the inherent uncertainty of
the estimation and the possible temporal correlation between the deformation
parameters. In Section 2.5, we describe how ve and Σv can be learned.

Finally, as expressed in Equation 3, we suppose the measured phase values
to be noisy estimates of the real values, and use parameter σ2

φ to model this
noise. In practice, the cardiac cycle phase can be estimated from the ECG signal
by synchronizing (φk mod 2π) = 0 with end-diastolic phases. Interestingly, this
latter assumption allows for the exploration of a wider range of deformations at
contraction time. Indeed, for a given phase uncertainty, a larger range of values
can be found in the template function ve in regions where this function has
greater variations. Additionally, slower component of the cardiac motion (e.g.,
the respiratory component) can be implicitely captured by this model, due to
the first-order inertial constraints allowing small, potentially directed velocity
increments throughout the sequence.

2.2 Cardiac deformation model

The unknown 3D deformed centerline points at time tk are assumed to be fully
determined once the parameters θk of the deformation model fd are estimated:

p(Xk|θk) = δ(Xk, fd(X0, θk)) (4)

The choice of fd is critical to the efficiency and accuracy of registrations. Such
model should have the following two properties: i) be expressive enough to allow
realistic deformations, and ii) have a limited number of parameters to reduce
the search space at registration time. For this work, we chose the planispheric
deformation model defined in [13], which is presented as a compromise between
spherical and cylindrical models, and provides a convenient affine formulation to



non-rigid deformations in a transformed coordinates system. This system relies
on a geometrical model of the left ventricle, and can be conceived as a spherical
frame shifting along a portion of the long axis. Our deformation model comprised
6 rigid parameters (rotations and translations), and 5 non-rigid parameters.

2.3 Image generation and likelihood

The last component of our probabilistic model describes how 2D images Ik are
generated from the deformed 3D centerline points Xk, and how their likeli-
hood p(Ik|Xk) is evaluated. We considered a feature-based similarity measure
involving a Frangi et al. vesselness filter [14] followed by a graylevel thresholding
of angiographic frames I1..K to obtain binary images of the coronary vessels.
In order to diffuse the information of proximity to the target vessels, a dis-
tance transform was computed on the resulting sequences, using the distance
d(γ; di) = ((1 + di)γ)−1, where γ ≥ 0 is a diffusion factor and di is the dis-
tance to nearest centerline pixel. From preliminary tests, we found γ = 0.5 to
give optimal results and used this value for our experiments. Given a predicted
deformation θk, a 2D predicted image Îk is then generated by projecting the
3D deformed centerlines points Xk, and compared to the target image using a
cosine similarity:

p(Ik|Xk) = sim(Ik, Îk) =

∑
i,j Ik(i, j) · Îk(i, j)(∑

i,j I
2
k(i, j)

)1/2
·
(∑

i,j Î
2
k(i, j)

)1/2 (5)

2.4 Deformation parameters optimization

To find the most likely sequence of parameters θ1..K , given the observed images
and measured phase values, we use particle filtering [15]. Essentially, a set of
candidate deformations (the particles) are extended using the transition model
and resampled according to their observation likelihood (Equation 5). At each
frame, the deformation used for registration is the one having the highest likeli-
hood. While well-known approaches, such as Kalman filtering, exist to compute
the a posterori distribution directly, we have selected particle filtering for three
important reasons. First, unlike Kalman filters, particle filters can learn multi-
modal distributions, which allows to consider several hypotheses simultaneously.
Secondly, it is highly parallelizable and, therefore, a good candidate for real-
time registration. Finally, it allows one to use probability models that can not
be expressed in closed form, such as our image generation process.

2.5 Learning ve and Σv

The empirical knowledge ve and the covariance matrix Σv play important roles
in our model, respectively guiding the search, and controling its range during
optimization. However, when these values are unknown, our model can still be
used with purely inertial transitions (α = 0), compensating for the loss of prior



by increasing manually the search space controled by Σv, and increasing the
number of particles accordingly, at the expense of longer computation times. In
turn, this allows one to estimate both parameters from multiple registrations
performed without empirical knowledge.

3 Results and Discussion

Our dataset contained the 3D coronary centerlines – extracted from pre-operative
CT-scans – and associated intra-operative biplane angiographic sequences of 7
patients (5 left coronary arteries, 2 right, sequences from 10 to 18 frames). The
projection matrices were computed from the geometric parameters of the imag-
ing systems. Although not necessary, covariance matrix Σv was assumed to be
diagonal to simplify the configuration and learning steps of our experiments. The
registration was performed in a coarse-to-fine manner, dividing the search of the
deformation parameters in two steps. The first step looked for rigid deformations
using N1 particles, while the second step looked for both rigid and non-rigid de-
formations with N2 particles. Target-to-registration errors were used to evaluate
the accuracy of the compensation, in 3D (TRE 3D) during the simulations, and
in 2D (TRE 2D) for both simulations and real patient datasets. For the latter,
the TRE 2D was computed, with knowledge of the pixel-spacing, as the average
pixel-wise product between an Euclidian distance transform computed on the
target binary image, and the registered binary projection of the centerline.

3.1 Evaluation on synthetic sequences

For these experiments, matrix Σv and function ve were configured manually
to randomly sample visually realistic deformation sequences with motion noise.
The deformed centerlines were projected on binary images, and thickened prior
to the distance transform, to better simulate thresholded, vesselness-filtered an-
giographic images. Four experiments aimed at quantifying the influence, respec-
tively of: template confidence, noise, coronary topology, and number of particles
on the registration accuracy (see Figure 2). The TRE 2D was less than 1.2 mm
for all experiments, and as expected, degraded with increasing noise, and de-
creased with increasing prior knowledge or number of particles. Nevertheless, if
TRE 3D globally followed these variations, the 3D errors remained high during
simulations (average of 4 mm), and the results indicated that the 3D accuracy
was sensitive to the template ve. These observations can be explained by the
fact that only one projection plane was used to assess the 3D motion.

3.2 Evaluation on real sequences

These experiments were designed to estimate both the applicability of our method
to clinical datasets, and the ability of our method to learn parameters Σv and ve
as presented in Section 2.5. For this purposes, we used a leave-one-out approach,
registering six out of seven sequences using both planes, with α = 0, N1 = 600



and N2 = 1200 particles. These registrations were used to estimate Σv and
ve, which were then injected in our model (with N1 = 60 and N2 = 150) for
the single-plane registration of the remaining sequence, with learned template
(α = 0.8) and without (α = 0). The mean TRE 2D were respectively 2.75±1.15
mm and 3.61± 2.10 mm (24% improvement in accuracy, 46% in deviation), for
a mean computation time of 5.2 seconds per image using Matlab.
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Fig. 2. TRE 3D (red squares) and 2D (green triangles) for simulations under the influ-
ence of: increasing noise level (top left, with N1 = 150, N2 = 600, α = 80%); increasing
template confidence (top right, with N1 = 90, N2 = 300, 60% noise); coronary topol-
ogy (bottom left, mean ± std, with N1 = 150, N2 = 600, α = 80%, 30% noise); and
increasing number of particles (bottom-right, with α = 50%, 70% noise).

Fig. 3. Motion-compensated CT-centerline overlaid on top of angiographic images at
different cardiac phases; end-diastole, early systole and systolic peak (from left to right).



4 Conclusion

This study presented a novel 3D stochastic motion compensation technique from
single-plane angiograms based on a temporal model of 3D coronary centerline de-
formations over the cardiac cycle. Despite its generic formulation, this approach
allows one to learn patient-specific knowledge on coronary motion, and use this
knowledge to improve the accuracy and robustness of the registration with no-
tably low computation times. Motion can be learned and generalized from a large
database of patients undergoing coronary intervention, or measured using X-ray
rotational angiography before the beginning of the intervention. The latter case
could be further investigated in future works, to provide a more personalized
model of coronary motion.
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9. Rohkohl, C., Lauritsch, G., Prümmer, M., Hornegger, J.: Interventional 4-D Motion
Estimation and Reconstruction of Cardiac Vasculature without Motion Periodicity
Assumption. In: MICCAI 2009. Volume 5761 of LNCS. 132–139

10. Florin, C., Williams, J., Khamene, A., Paragios, N.: Registration of 3D angio-
graphic and X-ray images using sequential monte carlo sampling. In: Computer
Vision for Biomedical Image Applications. Volume 3765 of LNCS. Springer (2005)
427–436

11. Ruijters, D., ter Haar Romeny, B., Suetens, P.: Vesselness-based 2D-3D registration
of the coronary arteries. Int. Journal of Computer Assisted Radiology and Surgery
4(4) (2009) 391–397

12. Sidenbladh, H., Black, M., Fleet, D.: Stochastic tracking of 3D human figures using
2D image motion. In: ECCV 2000. Volume 1843 of LNCS. Springer 702–718



13. Declerck, J., Feldmar, J., Ayache, N.: Definition of a four-dimensional continu-
ous planispheric transformation for the tracking and the analysis of left-ventricle
motion. Medical Image Analysis 2(2) (1998) 197–213

14. Frangi, A., Niessen, W., Vincken, K., Viergever, M.: Multiscale vessel enhancement
filtering. In: MICCAI 1998. Volume 1496 of LNCS. Springer 130–137

15. Djuric, P., Kotecha, J., Zhang, J., Huang, Y., Ghirmai, T., Bugallo, M., Miguez,
J.: Particle filtering. Signal Processing Magazine, IEEE 20(5) (Sep 2003) 19–38


