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Abstract

Boolean combination (BC) techniques have been
shown to efficiently integrate the responses of multi-
ple classifiers in the ROC space for improved accu-
racy and reliability. Although the impact on classifi-
cation performance of imbalanced class distributions
may be addressed using ensemble-based techniques,
it is difficult to observe with ROC curves. Given a
false alarm rate and class imbalance, performing BC in
the Precision-Recall Operating Characteristic (PROC)
space can lead to a higher level of performance. In
practice, class distributions often change over time,
and BCs should adapt to reflect operational conditions.
Thus, this paper proposes an adaptive system that ini-
tially uses skewed data to generate several BCs in the
PROC space. Then, during operations, the class im-
balance is periodically estimated, and used to estimate
the most accurate BC of classifiers among operational
points of these curves. Simulation results indicate that
this approach maintains a level of accuracy that is com-
parable to full Boolean re-combination, but for a signif-
icantly lower computational cost.

1 Introduction

In several real world classification applications, class
distributions are imbalanced and change over time. For
instance, in public sector video surveillance, face recog-
nition across a network of IP cameras allow an en-
hanced screening of individuals of interest in dense
and moving crowds. One specific challenge in video
surveillance is that only a small proportion of the faces
captured during operations correspond to an individual
of interest. Neural and statistical classifiers for face
matching are typically trained on balanced data to maxi-
mize accuracy, although actual class priors are unknown
a priori and may change over time.

Four main approaches to deal with class imbalance

are discussed in the literature [4, 11]. At the algorithm
level, the learner behavior is modified to bias toward
the minority (positive) class. It is difficult to achieve as
it depends on understanding both the learner principles
and the problem, such as scaling priors on MLP neu-
ral networks. A cost sensitive approach changes the
learning procedure to minimize the cost of misclassi-
fied instances, where each error type has a different cost
(usually higher to the minority class). The drawback
with this method is that the missclassification costs are
difficult to estimate (problem dependent). Data level
approaches require no modification to the learner algo-
rithm, and are categorized either as undersampling or
as oversampling techniques. The literature suggest that
the accuracy and reliability of a classification system
can be improved by integrating the evidence from mul-
tiple different sources of information [6]. Ensemble of
classifiers (EoCs) have been used [4, 7] to address clas-
sification problems with imbalanced class distributions,
with the advantage that they do not necessarily require
changes to base classifiers.

Boolean combination (BC) techniques [9] can effi-
ciently combine the decisions of several crisp or soft 1-
or 2-class classifiers, optimizing the combination of de-
cision thresholds (operation points) with respect to per-
formance. In literature, BC is usually performed in the
Receiver Operating Characteristics (ROC) space [3].
However, since the impact on performance of class im-
balances is difficult to observe with ROC curves, per-
forming BC in the Precision-Recall Operating Charac-
teristic (PROC) [10] space may provide a higher level of
performance. Estimating the precision (in conjunction
with recall) is more appropriate in imbalanced settings,
as it remains sensitive to the performance on each class.
Moreover, since class distributions are subjected to con-
tinuous or seasonal changes, the BC should be adapted
over time to reflect new operational conditions.

In this paper, an adaptive system is proposed to se-
lect the BC of classifiers given the desired false alarm
rate (far) and class imbalance. During design phases,
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skewed validation data is used to generate several BCs
in the PROC space, by successively growing number
of samples from the majority class. Then, during op-
erations, the system relies on the Hellinger distance to
periodically detect and estimate changes to class distri-
butions from operational data streams. Once a change
has been detected, class imbalance is estimated, and
the closest operational points on PROC curves are em-
ployed to estimate the combination of classifiers.

2 Boolean Combination

A soft classifier C produces a binary decision when
its response is compared to a threshold γ ∈ [0, 1]. For
a threshold set Γ, classifier C has the operation points
Cγ , γ ∈ Γ, providing a performance tradeoff between
classes. BC of two soft classifiers Ca and Cb is the fu-
sion of all Ca,γ and Cb,γ through Boolean operations,
thus, each resulting operation point is an EoC based on
thresholds and a Boolean function. Selecting the non-
dominated operational points in the decision space (for
instance, the ROC convex hull) defines the operation
points with the best trade offs. Haker et al. [8] used a
set of Boolean operators with the conjunction and dis-
junction (O = {∨,∧}). Khreich et al. [9] used an iter-
ative variation with 10 Boolean operations. Both works
operate in the ROC space.

The Receiver Operator Characteristics (ROC) [3]
analysis is based on two intra-class measures, the true
positive rate tpr (proportion of correct positive class
predictions) and the false positive rate fpr (proportion
of incorrect negative class predictions). BC in the ROC
space select operation points in the convex hull (best
trade off between tpr and fpr), where each vertex is a
Boolean fusion of classifiers. However, ROC analysis
is insensitive to class imbalances. The Precision-Recall
Operating Characteristic (PROC) [10] analysis focus
on an inter class measure, classifier precision (propor-
tion of correct positive predictions), and recall, the same
as tpr. Thus, PROC graph plots represents classifier
performance regarding data skew. It is demonstrated in
[1] that operating points that belong to the ROC con-
vex hull also belong to the PROC achievable curve.
Thus, one can find those operating points in the ROC
space to perform BC, and compare them in the PROC
space to consider different data skew levels when com-
paring BCs. Based on experimental results, selecting
and adapting combinations in the PROC space is better
for imbalanced data.

3 Adaptive Selection of Ensembles

Figure 1 shows the architecture of an adaptive sys-
tem to select the most accurate BC of classifiers ac-
cording to class imbalance. Assume a pool of detec-
tors D1, . . . , Dn, each connected to a sensor. Given a
signal xi(t) captured by sensor i in time t, detector i
extracts and selects features, providing a feature vector
fi to a 1- or 2-class classifier Ci. Continuous scores
si(xi) ∈ [0, 1] are compared against thresholds values
in Γ through BC to provide an overall decision d(t).

During design, BC is performed in the PROC space
according to several levels of class imbalance, by suc-
cessively growing the number of samples from the ma-
jority (negative) class w.r.t. the ones in the positive
class. One level of imbalance is selected a priori for
operations. To maintain accuracy over time, the BC re-
quires periodical adaptation to reflect current class im-
balances based on samples captured during operation.
The adaptation module is used at application-dependent
intervals to estimate the class imbalance, and update
the BC (Boolean fusion and threshold values). The
Hellinger distance [5] is used to estimate changes to
class distributions from operational data streams. Once
a change has been detected, class imbalance is esti-
mated and the most accurate combination of classifiers
is estimated based on the closest operational points on
PROC curves.

Class imbalance relates to data skew, λ, the ratio of
positive samples πp to negative ones πn. A λ = 0.01
indicates that for each positive sample we have 100 neg-
ative samples, or πp : πn = 1 : 100. In literature, some
approaches have been proposed to estimate class imbal-
ance, and these are useful to adapt classifier combina-
tions with BC. Online approaches may be either based
on transductive learning [12] or transfer learning [13].
The Hellinger distance [2, 5] allows to estimate the im-
balance between a distribution of unlabeled operational
data and of labeled training data for BC. In this paper,
operational class proportions are periodically estimated
against validation data. Given a set of operational data

Figure 1: Architecture to adapt a BC of classifiers to
imbalanced class distributions.
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opd and the validation data val, the Hellinger distance
H(val, opd) at the feature level (each sample with nf
features) is calculated for each feature f using discrete
distributions (bins) with a probability associated to each
bin b in the feature space using

H(val, opd) =
1

nf

nf∑
f=1

√√√√ b∑
i=1

(√
|valf,i|
|val|

−

√
|opdf,i|
|opd|

)2

(1)
where |valf,i| is the number of samples in val that

for feature f are within bin b limits. The same applies
to opd with |opdf,i|. Given normalized features in the
[0, 1] interval and limited positive data for training, a set
of b = 20 bins is assumed.

As the class proportions in val and opd are closer,
H(val, opd) tends towards zero. Equation 1 helps to
build a new labeled val∗ validation data set to perform
BC with the correct class proportions. Skew is then
calculated as λ = πp/πn. To avoid the costly full re-
computation of BCs for each new λ, Algorithm 1 is pro-
posed to approximate the fusion function. Every time
classifiers are combined during design for a λ value, a
set of operational points are generated and stored (set
of ensembles E), each tagged with the appropriate data
skew level. When a new data skew λ∗ is detected and
the set of ensembles for data skews 1 : i and 1 : k,
i < j < k, are available, the BC is approximated. That
is, the outer envelop of the PROC curves for both origi-
nal skew levels, 1 : i and 1 : k, are combined using val∗

data with the newly detected λ∗. The resulting EoC p is
then used to update the BC in Fig. 1.

4 Simulation Results

Two proof-of-concept experiments are performed
using synthetic bi-dimensional data, Gaussian distribu-
tions centered at (0, 0) (positive class) and (1.5, 1.5)
(negative class) using the identity matrix as the covari-
ance matrix. The training data is used to train two dif-
ferent linear discriminant classifiers (LDC), C1, trained
with the abscissa sample values, and C2, trained with
the ordinate sample values. In these experiments, the
BC technique of Haker et al. [8] is used with O =
{∨,∧}.

In Experiment 1, the impact on BC of imbalanced
data is observed with C1 and C2. As a first step, LDCs
are trained with 100 samples per class, and BC is per-
formed with a balanced val data set of 200 samples per
class. Resulting EoCs are tested against a test data set
with 1000 positive samples and different proportions of
negative samples, 1 : 10n, 0 ≤ n ≤ 3. In the sec-
ond step, the val set for BC uses the same skews as
test. Results indicate that changing the level of skew in

Data: Classifiers set C, thresholds set Γ, data set
val∗ with skew λ∗, set E of optimized BCs
for different skew levels (each a set of
ensembles, one for each operational point),
the desired false alarm rate far

Result: Ensemble p and the updated set E
F = ∅;
if ∃E∗λ ∈ E, with skew level λ∗ then

F = Eλ∗ ;
end
if ∃Eλ1 , Eλ2 ∈ E with skew levels λ1, λ2, such as
that λ1 < λ∗ < λ2 then

E′ = Eλ1 ∪ Eλ2 ;
forall d ∈ E′ do

F = F ∪ d iff @e ∈ E′, e � d on val∗;
end

else
Obtain Boolean combination BC with for C,
Γ, and val∗;
E = E ∪ {BC};

end
Select EOC (operational point) p ∈ BC at the
desired far;

Algorithm 1: Adapting BC for class imbalance.

Skew Balanced validation Skewed validation
accuracy F-Measure accuracy F-Measure

1:1 78.40% 0.743 78.40% 0.743
1:10 91.43% 0.569 91.90% 0.577

1:100 94.21% 0.176 94.66% 0.183
1:1000 94.50% 0.022 94.97% 0.024

Table 1: BCs at 5% far on imbalanced test data.

val data also changes the resulting BC EoCs. However,
this change is difficult to observe in the ROC space –
ROC curves and scalar AUC measures are equivalent.
Indeed, ROC analysis is insensitive to class imbalance
since both fpr and tpr are intra class measures. Plot-
ting these EoCs in the PROC space in Figs. 2a and 2b
show the impact of data skew in val during BC for prob-
lems with imbalanced classes. For each level of skew,
PROC curves detail the performance for LDCs alone
and the curve obtained through BC. It is first observed
that BC using imbalanced val covers a large area in the
plot, providing better trade offs. Selecting an opera-
tional point, e.g., far = 5% further supports the use of
skewed validation data, as accuracy and F1 scores are
consistently higher (see Table 1). The accuracy increase
for a same skew level, and the far = 5% translates to
an improvement of the positive class prediction and im-
provement on the F1 scores.

Experiment 2 validates Alg. 1 (adaptation module
in Fig. 1). Assuming the detection of three different in-
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(a) BC on test using balanced val data.
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(b) BC on test using imbalanced val data.
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(c) Approximated curves on val data.
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(d) Approximated curves on test data.

Figure 2: BC PROC curves. In 2a and 2b, solid lines are the BC, dashed lines c1 and c2. In 2c and 2d, solid lines are
the BC approximation and dashed lines the actual BC.

termediate class imbalances, 1 : 5, 1 : 55 and 1 : 550,
new BCs are approximated using the BCs optimized in
Experiment 1. For comparison, the actual BC for these
skew levels are also calculated. Fig. 2c (validation)
and Fig. 2d (test) compares the PROC curves of ac-
tual and approximated BCs. Curves for each skew level
are equivalent, the same for precision and F1 scores for
a 5% far in Table 2. Algorithm 1 is also computa-
tionally more efficient. For n = 2 classifiers, a tradi-
tional BC requires |T |n × |op| + |T | × n operations to
evaluate the tpr and fpr values. For the simulations in
this paper with |T | = 100, a total of 20200 evaluations
are required. Approximating with Algorithm 1 requires
(|Hi|+ |Hk|)× (|op|+n), which averaged to 184 eval-
uations, a significant reduction on computational effort.

Skew Actual combination Approximated combination
accuracy F-Measure accuracy F-Measure

1:5 89.37% 0.658 89.30% 0.654
1:55 94.40% 0.281 94.40% 0.281
1:550 94.94% 0.042 94.94% 0.042

Table 2: Approximated BCs at 5% far on test.

5 Discussion

EoCs have been proposed in the literature to reduce
the impact from imbalanced class distributions. BC of
ensembles on the ROC space have been shown to im-
prove accuracy and reliability, although the impact of
imbalanced class proportions is difficult to observe with
ROC curves. Experiments in this paper show that per-
forming BC in the PROC space produces a better com-
bination of base classifiers. In this paper, an adaptive
system is proposed to select the most accurate BCs ac-
cording to the desired far and class imbalance. Skewed
validation data is used to generate several BCs with
PROC curves, by successively growing number of sam-
ples from the majority class. During operations, the
system periodically detects changes to class proportions
from operational data, and estimated class imbalance.
The closest operational points on PROC curves are em-
ployed to estimate the most accurate BC of classifiers.
Instead of full BC, the knowledge obtained when com-
bining classifiers for other skew levels is used to approx-
imate the BC to new class priors, providing a significant
reduction in computational complexity.
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