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Abstract. High Cycle Fatigue (HCF) plays an important role in Francis runner reliability. This 

paper presents a model in which reliability is defined as the probability of not exceeding a 

threshold above which HCF contributes to crack propagation. In the context of combined Low 

Cycle Fatigue (LCF) and HCF loading, the Kitagawa diagram is used as the limit state 

threshold for reliability. The reliability problem is solved using First-Order Reliability Methods 

(FORM). A study case is proposed using in situ measured strains and operational data. All the 

parameters of the reliability problem are based either on observed data or on typical design 

specifications. From the results obtained, we observed that the uncertainty around the defect 

size and the HCF stress range play an important role in reliability. At the same time, we 

observed that expected values for the LCF stress range and the number of LCF cycles have a 

significant influence on life assessment, but the uncertainty around these values could be 

neglected in the reliability assessment. 

1.  Introduction 

Our capacity to select relevant models for reliability assessment of structural components depends 

mostly on available data and knowledge at the time of the study. We observe in structures, such as 

large Francis hydroelectric turbine runners, where the cost of downtime is high and in situ inspection 

methods are limited, that cracks often reach a detectable size only after the onset of High Cycle 

Fatigue (HCF). Furthermore, because large Francis runners can sustain significant damage without 

incurring any safety issues, the main concerns are repair cost and downtime. Hence, a crack must be 

repaired as soon as possible in order to minimize the cost of repair, and concurrently, the time between 

inspections must be maximized to reduce downtime. This leads to the following dilemma: if the HCF 

onset has occurred, a longer time between inspections leads to longer cracks to be repaired, and, at the 

same time, if the component is inspected before the HCF onset, we incur downtime and maintenance 

costs with limited information on the state of the structure because the detectable flaw size has not 

been reached. Therefore, we propose to move away from the typical fatigue limits, as commonly seen 

in SN curves and critical crack lengths, which do not adequately reflect this reality, in favor of a limit 

state directly related to the HCF onset [1]. 

In this study, we state that the HCF onset should be used as the proper limit state for reliability 

assessment. This statement relies on two basic assumptions: 
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 After HCF onset, significant crack growth will be induced and the crack length will therefore 

be linked to the time of operation rather than being a function of the number of low cycle 

fatigue (LCF) cycles.  

 If significant growth is expected, a crack needs to be repaired as soon as possible in order to 

minimize costs.  

The HCF effect on crack growth is presented in Figure 1b. In this figure, we observe the crack 

propagation from the strains measured on a Francis runner shown in Figure 1a. The crack growth 

simulations show that slow crack growth can be expected when minimal time at maximum opening is 

accounted for (LCF only). However, during normal operation, almost 24 hours of operation at 

maximum opening can be expected (LCF+HCF). In this case, we reach a point (HCF onset) after 

which crack growth speed increases exponentially. The goal of the study is to understand the role of 

the HCF onset, as observed in Figure 1b, on the reliability of a Francis runner using probabilistic 

methods and parameter values representative of observed data. 

 

Figure 1. (a) Example of loading measured on a large Francis runner (b) Crack propagation results 

The thresholds below which the HCF loading does not contribute to crack propagation can be 

presented using the Kitagawa diagram. This diagram, developed by Kitagawa and Takahashi [2], is 

drawn using two thresholds: the threshold for fatigue crack growth as defined in the framework of 

Linear Elastic Fracture Mechanics (LEFM), and the fatigue limit for a given number of cycles which 

usually correspond to 1E+07 cycles for materials exhibiting an endurance limit. It should be noted that 

this diagram can also be extended to include more parameters, such as notch effects [3] and multi-

axial criteria [4]. In this paper, we intend to use the limits formed by the Kitagawa diagram combined 

with the El Haddad correction factor [5], which account for short crack behaviours, to assess the 

reliability of large Francis turbine runners. 

The paper is structured as follows: first, the HCF onset reliability is defined, followed by the 

methodology used to solve the proposed reliability problem. Next, a study case is proposed from 

which reliability results are obtained using typical design specifications and observed in situ data. 

Finally, the paper concludes with a discussion on the importance of each parameter in the design, 

maintenance and operation of the Francis runner. 

2.  High cycle fatigue (HCF) onset reliability 

To assess the fatigue reliability of a structure, we need the following elements: a properly defined limit 

state model, a reliability criterion and characterized uncertainty sources. In this study, the limit state is 

defined as the thresholds proposed by Kitagawa and Takahashi [2], combined with the correction 

factor developed by El Haddad et al. [5]. In this limit state, the El Haddad et al. [5] correction factor 

accounts for short crack growth by asymptotically matching the LEFM threshold and the fatigue limit. 
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This limit state, commonly called the Kitagawa diagram, is shown in Figure 2a, and the uncertainties 

associated with the parameters of the reliability problem are shown in Figure 2b. 

      

Figure 2. (a) Schematic Kitagawa diagram, (b) Schematic probabilistic Kitagawa diagram 

In the Kitagawa diagram, the limit formed by the LEFM threshold is obtained from the stress 

intensity factor solution defined as follows: 

 )(aYaK   (1) 

where K  is the stress intensity factor,   is the stress cycle range, a  is the crack length and )(aY  is 

the stress intensity correction factor for a given geometry. The limit state equation is obtained by 

replacing K  by the LEFM threshold thK  in Eq. (1), which is rewritten as follows: 
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To capture short crack growth, El Haddad et al. [5] proposed to asymptotically match the limits 

defined by LEFM and the fatigue limit 0  using the reference crack length 0a  as a correction factor. 

The correction factor 0a  is added to the crack length a  in Eq. (2) to obtain: 
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where the constant 0a  represents the transition between both limits, and is obtained by solving the 

following equation: 
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For infinite life, 0  is the endurance limit. However, in some cases, the limit state for a finite 

number of cycles N  might also be of interest either because the number of cycles for infinite life 

might not have been reached in a given time interval or because the material has no endurance limit. In 

those instances, a finite number of stress cycles N  can be accounted for using the fatigue limit at N  

cycles rather than the endurance limit. This approach is similar to the model developed by Ciavarella 

and Monno [6]. Furthermore, it is relevant to note that all the parameters in Eq. (3) and Eq. (4) can be 

considered as independent random variables. 

Now that the limit state has been specified, a criterion for failure must be defined. This criterion is 

expressed as follows: 

 0)( xg  (5) 
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with a probability of failure: 
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and reliability: 

 fPR 1  (7) 

in which, x  is an n-dimensional vector of random variables with a joint density function )(xfX . If we 

define the failure as the HCF onset, then )(xg  becomes: 
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In our study, we have chosen to consider four uncertainty sources: the defect size a , the LCF stress 

range LCF , the HCF stress range HCF  and the number of LCF cycles. For each of these variables, 

the uncertainty and expected value must be characterized using a proper distribution type, location and 

scale.  

3.  FORM/SORM approximation 

Two numerical approaches can be used to solve the probability of HCF onset defined by Eq. (6) in the 

previous section. The approaches can either be simulation-based, such as the Monte Carlo (MC) 

simulation and its variants, or analytical, using approximations like the First-Order Reliability Method 

(FORM) and the Second-Order Reliability Method (SORM). An advantage of the simulation-based 

method, such as crude MC, is that it asymptotically converges to the exact values for a number of 

simulations N  but nevertheless has a drawback, common to all simulation-based methods, of 

possibly requiring a prohibitive number of simulations in order to provide reliable results for a low-

probability estimate. On the other hand, analytical methods are based on the approximation of the 

probability of failure leading to a minimal numerical burden in exchange for accuracy. 

The FORM/SORM approximation relies on the assumption that a transformation in the form 

)(XTU   exists, mapping the physical space to a standard space. The transformation is expressed as 

follows: 

 

  






00)(

)()(

XTgXg

f uduxdxfP    (9) 

where )(u  is an n-dimensional standard normal density with independent components.  

Several such transformation methods are available. The Rosenblatt transform [7] was chosen in this 

study because of its flexibility, which allows the dependency structures between random variables to 

be modeled using the copula theory. The Rosenblatt transform is defined as follows: 

 )()()( 12 XTXTXTU   (10) 
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where X  in n  is a continuous random vector defined by its marginal cumulative distributions iF  

and copula. It should be noted that the conditioning order in Eq. (11) will influence the shape limit 

state in the standard space U  and the results of the FORM/SORM approximation. Because the stress 

range   is considered independent of the defect size a , the assumption can be made that the random 

vector X  has an independent copula and, with such an assumption, the Rosenblatt transform in 

Eq. (10) becomes: 
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In the standard space U , the probability of failure fP  can be obtained with a linear approximation 

(FORM) or a quadratic approximation (SORM), as shown in Figure 3. In this space U , the Most 

Probable Point (MPP) of failure, also named the design point *u , is located at the shortest distance 

between the origin and the limit state 0)( Ug . The distance to the MPP is called the Hasofer-Lind 

reliability index HL . 

 

Figure 3. Schematic isoprobabilist space 

The FORM approximation of the probability of failure fP  can be calculated directly from the 

Hasofer-Lind index HL  and is given by: 

 )()(1 HLHLfP    (14) 

where *
uHL   is the standard normal cumulative function and uu min

*
  for 0)( Ug . The main 

numerical burden of this approximation resides in finding the location of the design point *
u . Note 

that the results obtained with the FORM approximation are only accurate when the limit state is linear 

in the standard space U . Likewise, results from the SORM approximations are only accurate when the 

limit state at the design point is close to quadratic in the standard space U . In this study, the accuracy 
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of the FORM approximation will be considered sufficient for our application. We refer the reader to 

the work of Rackwitz [8] and the work of Ditlevsen and Madsen [9] for a complete overview of the 

theory and the methods used in structural reliability analysis. 

4.  Study case 

We have chosen to use the data observed on a Francis runner from a hydroelectric plant in Quebec, 

Canada, for our study case. The facility was chosen because in situ measurements combined with 

historical operational data were available. In our study case, we consider the following parameters as 

random: the defect size a , the LCF stress range LCF , the HCF stress range HCF  and the number 

of LCF cycles LCFN . For each of these random parameters, the distribution type with its location and 

scale is defined with regards to the available data. 

The critical location studied is a cutout near the runner crown on each blade. During the in situ 

strain measurements, the Francis runner was instrumented with strain gauges at this particular location. 

The position of the strain gauge is shown in Figure 4. 

    
 

Figure 4. Francis runner diagram. (a) Overall view of the runner, (b) Detailed view of the measured 

location 

The flaw geometries generally expected are either surface flaws or embedded flaws, as shown in 

Figure 5a. However, in our particular case, the critical zone is near the corner of the blade section in 

the cutout region. As a result, the corner flaw geometry is more representative of our geometry, as 

shown in Figures 5b and 5c. In this paper, however, only the corner flaw in Figure 5c is studied in 

order to limit the number of random parameters considered. For this defect geometry, both the stress 

intensity correction factor )(aY  and the crack growth are calculated according to the British Standard 

BS7910 [9]. In the study case, the expected initial defect size a  is defined as 1.5 mm for illustrative 

purposes. 

      

Figure 5. Flaw geometries. (a) Typical surface and embedded flaw, (b) Corner embedded flaw, 

(c) Corner flaw 

Note that, in our study case, the loading is simplified to two stress ranges: an LCF stress range 

LCF  and an HCF stress range HCF , as shown in Figure 6. Such a representation is similar to the 
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strain measured during a typical loading sequence (Figure 1a) if we neglect the startup and shutdown 

phases of the loading sequence. Even while these transients are not considered in this study, it should 

be noted that the amplitude of the startup transients can have a significant influence on life expectancy, 

and are directly related to the control scheme used [11, 12]. In our simplified loading, we defined the 

mean LCF stress range LCF  as 100 MPa and the mean HCF stress range HCF  as 20 MPa. These 

expected values are representative of the strain range observed during the in situ measurements at the 

cutout location; however, the distribution type and scale of both the LCF stress range LCF  and HCF 

stress range HCF  were chosen arbitrarily for illustrative purposes. Nonetheless, the values are 

considered representative of observed values even if they may not have been validated using 

experimental data.   

 

Figure 6. Schematic example of combined LCF+HCF loading 

Using the 5 years of historical operational data available for this runner, the number of LCF cycles 

LCFN  was extrapolated over a 100-year period, using semi-Markov simulations [13]. The expected 

value and uncertainty of the number of LCF cycles LCFN  were estimated using 400 semi-Markov 

simulations, and the results from these simulations are shown in Figure 7a. In this figure, we observe 

that the results include both the typical design specification of 1/day and the results from the available 

observed data replicated over the 100-year period. In our reliability assessment, the probability 

distribution observed after 100 years was used to obtain the distribution parameters for the number of 

LCF cycles LCFN  as shown in Figure 7b. 

 

Figure 7. Extrapolated LCF cycles. (a) Cumulative number of LCF cycles, (b) Probability 

distribution of LCF 
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The model parameters used for the study case are summarized in Table 1. Note that both the LEFM 

threshold thK  and the endurance limit )10( 7
0  N  are considered deterministic parameters in this 

study. 

Table 1. Study case parameters 

 Location Scale Distribution Units 

thK  2.0 - - MPa m
1/2

 

)10( 7
0  N  85.6 - - MPa 

a  1.5 0.5 Gumbel mm 

LCF  100.0 10.0 Normal MPa 

HCF  20.0 1.0 Gumbel MPa 

LCFN  0.95 0.02 Normal day
-1

 

5.  Results / discussion 

The results of four operation scenarios are shown in Figure 8. The first scenario is LCFN = 0.95/day, 

which uses the parameters in Table 1. The other three scenarios are: LCFN = 0.5/day, LCFN = 1/day and 

LCFN = 2/day, in which LCFN  is considered deterministic. We observe that a small change in the 

number of LCF cycles LCFN  can have a large influence on the life expectancy for a given probability 

of failure fP = 1/1000. This is the consequence of the slow rate of crack propagation generated by the 

LCF cycles. For a probability of failure fP = 1/1000, the life expectancy goes from 40 years at LCFN = 

2/day to what could be considered an infinite life given typical design requirements at LCFN = 0.5/day, 

for which a life expectancy of 160 years is obtained. 

 

Figure 8. Reliability Index vs. Time for various operation scenarios 

In the design specifications, a life expectancy of 60 years is often used, and detailed results for 60 

years of operation are presented in Table 2. The probability of failure obtained might look small, but if 

we consider that these results represent the probability for only one runner blade, the overall 

probability of a runner having no cracked blade can be approximated by: 

   n
fPR )1(   (15) 

in which n  is the number of blades of the runner. We observe that, for a 13 blades runner such as the 

one in our study, the reliability is significantly lower than that expected from the probability of failure 

fP  obtained at a specific location on one runner blade. If we look at the perspective of a facility 
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composed of many identical runners, even a small probability of failure might have a significant 

impact on expected maintenance costs.  

Table 2. Detailed results for 60 years of operation for a given location 

 0.5/day 1/day 2/day 

Physical space design point, *x  

 LCFLCFHCF Na  ,,,  

[ 4.6, 22.5, 0.5, 

101.0 ] 

[ 4.5, 22.4, 1.0, 

101.4 ] 

[ 4.4, 22.1, 2.0, 

102.5 ] 

Standard space design point, *u  

 LCFLCFHCF Na  ,,,  
[ 2.9, 1.4, 0.0, 0.1 ] [ 2.8, 1.3, 0.0, 0.1 ] [ 2.7, 1.2, 0.0, 0.3 ] 

Hasofer-Lind reliability index, 

HL  
3.22 3.14 2.98 

FORM probability, fP  0.643 E -3 0.853 E -3 1.427 E -3 

Runner reliability, 13)1( fP  0.991 0.989 0.981 

Furthermore, we would like to note that for each random variable, the uncertainty does not have the 

same influence on the probability of exceeding the HCF onset threshold. The influence of a random 

variable uncertainty can be calculated as follows:  

 
2

2*
2 )(

HL

i
i

u


   (16) 

in which 2
i  is the importance factor of the uncertainty around a given random parameter. The 

importance factors 2
i  for 1 year and 60 years of operation using the parameters in Table 1 are shown 

in Figure 9. Note that the importance factors 2
i  do not change significantly between Figures 9a and 

9b. Furthermore, we observe that the uncertainty around the defect size a  has the most influence, 

followed by the uncertainty around the HCF stress range HCF  and that the influence of the other 

random variables uncertainty is negligible. In our case, the uncertainty around the number of LCF 

cycles LCFN  and the LCF stress range LCF  have no influence on the Hasofer-Lind reliability index 

HL , which means that both variables could have been considered deterministic. Hence, no 

assumption needs to be made about expected distribution and uncertainties for these parameters. 

However, due to the sensitivity of life expectancy to these parameters, care should be taken in the 

choice of expected values 

 

Figure 9. Uncertainties importance Factor for 0.95/day LCF cycles. (a) 1 year, (b) 60 years 

Moreover, the two variables for which uncertainty has the highest importance are mostly controlled 

by the manufacturer, meaning that the utility often relies on data from inspections made during 

manufacturing, and on stress levels calculated during design, for reliability assessment. The results 

obtained in this study highlight the need for more collaboration between the manufacturer and the 
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utility in order to reduce uncertainties around both the defect size a  and HCF stress range HCF . We 

believe that, in order to reduce defect size uncertainty, the inspections performed during 

manufacturing and the inspections performed after commissioning must be combined and optimized. 

Further, we believe that in situ field measurement could play a significant role in the reduction of 

stress level uncertainties and the validation of calculated design values, leading to improved reliability. 

6.  Conclusions 

The goal of this paper was to obtain more insight into the role of HCF onset in the reliability of the 

Francis runner. The HCF onset was defined as the point in time after which a previously undetected or 

uncritical defect will rapidly reach detectable size. Assuming that such defect needs to be repaired as 

soon as detected, the limit state for reliability assessments has been defined as the probability of 

reaching the HCF onset. Using FORM approximations to solve the reliability problem, we have 

observed the following: 

 Reliability results are sensitive to expected LCF stress range LCF  and number of cycles 

LCFN  but not to their uncertainties. 

 Defect size a  uncertainty has the highest importance factor, meaning that reliability results 

are more sensitive to the uncertainties around this parameter. 

 HCF stress range HCF  uncertainty has a significant influence on reliability, which, as for 

defect size a , means that results are sensitive to the uncertainties around this parameter.  

These observations highlight the need for a better understanding and optimization of the runner 

inspections in order to define proper defect size a  expected value and uncertainty. Furthermore, due to 

the importance of the uncertainty around the HCF stress range HCF , we believe that in situ 

measurements should play a more important role in the validation of design calculation and evaluation 

of uncertainty levels. We also observe that the rate at which reliability decreases depends on the 

expected values of the LCF parameters, for which uncertainty do not influence the reliability results. 

However, the sensitivity to these expected values leads to a need for well-defined methodologies to 

define safe expected levels. Finally, we would like to mention that the structural reliability methods 

used in this study are well developed in the literature [8, 9], and it is in the authors’ opinion that such 

methods should play an important role in the understanding of probability crack detection in 

hydroelectric Francis runners and, potentially, in any structures subjected to combined HCF-LCF 

loading. 
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Nomenclature 
a  Crack length [mm] W  Section width [mm] 

0a  
El. Haddad et al. [4] correction factor 

[mm] 
)(Y  Stress intensity correction factor 

)(f  Joint density function x  
Multi-dimensional random vector 

variables 

iF  
Marginal cumulative probability 

distribution  
*x  Physical space design point 

)(g  Failure criteria X  Physical space 

p  Distance from surface [mm] 2
i  Importance factor 

fP  Probability of failure HL  Hasofer-Lind Reliability index 

n  Number of blades K  Stress intensity factor [MPa m
-1

] 
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N  Number of stress cycles thK  
LEFM crack growth threshold [MPa 

m
-1

] 

LCFN  Number of LCF stress cycles   Stress cycle range [MPa] 

R  Reliability HCF  HCF stress cycle range [MPa] 

)(T  Transformation LCF  LCF stress cycle range [MPa] 

u  
Multi-dimensional random vector 

variables th  Threshold Stress cycle range [MPa] 

*u  Standard space design point  0  Fatigue limit [MPa] 

U  Standard space )(  Standard normal probability density 
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