
A Multi-Frame and Multi-Slice H.264 Parallel Video
Encoding Approach with Simultaneous Encoding of

Prediction Frames

Jean-François Franche, Stéphane Coulombe
Department of Software and IT Engineering, École de technologie supérieure, Université du Québec

Montréal, Canada
Jean-Francois.Franche.1@ens.etsmtl.ca, Stephane.Coulombe@etsmtl.ca

Abstract—This paper describes a novel multi-frame and multi-

slice parallel video encoding approach with simultaneous

encoding of predicted frames. The approach, when applied to

H.264 encoding, leads to speedups comparable to those obtained

by state-of-the-art approaches, but without the disadvantage of

requiring bidirectional frames. The new approach uses a number

of slices equal or greater than the number of cores used and

supports three motion estimation modes. Their combination

leads to various tradeoffs between speedup and visual quality

loss. For an H.264 baseline profile encoder based on Intel IPP

code samples running on a two quad core Xeon system (8 cores in

total), our experiments show an average speedup of 7.20x, with

an average quality loss of 0.22 dB (compared to a non-

parallelized version) for the most efficiency motion estimation

mode, and an average speedup of 7.95x, with a quality loss of

1.85 dB for the faster motion estimation mode

Keywords- H.264; parallel algorithms; multi-core processor

I. INTRODUCTION

H.264 is the most recent and efficient standard for video
compression [1]. The new tools introduced by this standard
improve on the compression ratio of its predecessors by a
factor of two, but at the cost of higher complexity. H.264 is
also one of most commonly used formats in processing high
definition (HD) videos. However, this standard is so complex
that some video encoders face difficulties encoding HD video
sequences in real-time, even on recent processors.

To reduce the encoding time, most H.264 video encoders
developed for general processors exploit parallel approaches.
For example, Intel’s IPP H.264 video encoder is based on a
multi-slice parallel approach, where the slices of a frame are
encoded in parallel [2]. The multicore era does offer the
promise of a great future for well-designed parallel approaches.
A parallel approach must achieve speedups close to the number
of cores used, support a variable number of cores with linear
scalability, reduce processing latency, preserve or slightly
reduce visual quality video, and should not change or force
encoding parameters.

In this paper, we describe a novel multi-frame and multi-
slice parallel approach for an H.264 video encoder. This
approach includes three motion estimation (ME) modes and a
support for a number of slices equal or greater than the number
of cores used. The configuration of the modes and the number

of slices offer various tradeoffs between speedup and visual
quality loss. Experiments on 720p sequences show that the
proposed approach provides speedups comparable to those
obtained by state-of-the-art approaches, but without the
disadvantage of requiring bidirectional (B) frames. This is
important since B frames are not supported by the H.264
baseline profile, and increase latency. This property makes our
approach usable in a real-time video transmission context like
video-conference. The speedups obtained by the proposed
method are linear with the number of cores used, and are close
to the theoretical maximal speedup (i.e. close to the number of
cores used). The number of cores is configurable and this
approach’s best motion estimation mode preserves the video
quality (similar quality as a non-parallel encoder).

This paper is organized as follows. In section II, we present
state-of-the-art parallel approaches. In section III, we describe
the proposed parallel approach. We present experimental
results in section IV, and conclude in section V.

II. STATE OF THE ART PARALLEL APPROACHES

An H.264 encoder can be parallelized into multiple threads
by using either functional decomposition or data domain
decomposition [3-7]. Functional decomposition divides an
encoder into multiple tasks (motion estimation, transformation,
entropy coding, etc.). Tasks are grouped in balanced
processing groups, and each group is associated to a thread.
This type of decomposition can deliver good speedup, but
rarely allows good scalability and flexibility to change [3].

Data domain decomposition exploits the H.264 hierarchical
structure to parallelize an encoder. This hierarchical structure
has six levels: sequence, groups of pictures (GOPs), pictures,
slices, macroblocks (MBs) and blocks. Each GOP starts with
an instantaneous decoder refresh (IDR) frame. Frames
following an IDR frame may not refer to frames preceding the
IDR frame, meaning that GOPs are independent of each other,
and can be encoded in parallel. Each frame belongs to one of
the following types: I frames, P frames or B frames. I frames
are coded without reference to any other frame, while P frames
are coded with reference to a past frame, and B frames are
commonly coded with reference to a past and a future frame.
However, no frame depends on a B frame. A slice represents a
spatial region of a coded frame. Similarly to frames, we have
three types of slices: I slices, P slices and B Slices. Slices

stephanecoulombe
Typewritten Text
Accepted in the International Conference on Consumer Electronics, Communications and Networks (CECNet 2012), 2012

stephanecoulombe
Typewritten Text

mstewart
Texte tapé à la machine
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

belonging to the same frame are also independent of one
another, and can therefore be encoded in parallel. Slices are
composed of macroblocks, and a macroblock is coded with
reference to its three upper neighbors and its left neighbor.

In [4], Changying et al. describe a parallel algorithm at the
GOP level for the H.264. The authors use a Master-Worker
model and a dynamic scheduling algorithm to distribute the
next GOP unit to process to an unused node, and obtain good
scalability and speedup. However, this pure GOP-level parallel
approach exhibits high latency, and is therefore not applicable
to real-time encoding. In [5], Rodriguez et al., propose an
approach based on GOP and slice level parallelism. In this
approach, the system is composed of homogeneous clusters of
workstations. Each cluster receives a GOP unit to process
dynamically. A master workstation divides each frame into
slices and distributes their processing among workstations.
While this approach provides a good trade-off between
speedup and latency, this type of encoding can however only
be used when the system has access to all the frames of the
video sequence to compress, making it unacceptable for real-
time telecommunications.

In [8], Chen et al., present a parallel approach at the
macroblock level. This algorithm exploits dependencies
between macroblocks in a wave front manner. This kind of
approach produces a good, but not excellent, speedup. In [9],
Steven et al., describe a more efficient approach based on a
frame-level and slice-level parallelism. This approach uses five
threads on a system with four processors. One thread is used to
load the input file (or stream), to save the output file (or
stream) and to fill two lists of slices: a priority list of I and P
slices and a secondary list of B slices. The other four threads
are used to encode slices in parallel. Each thread retrieves and
processes the next free slice in the priority list. If this list is
empty, the thread retrieves the next free slice in the secondary
list. This approach provides excellent speedup, but forces the
use of B frames, which is not always possible (for example, the
H.264 baseline profile does not allow B frames) and increases
latency. Low latency is required in real-time video applications
such as videoconferencing.

III. PROPOSED MULTI-FRAME AND MULTI-SLICE PARALLEL

ENCODING APPROACH

Figure 1. General diagram of the proposed multi-frame and multi-slice
parallel approach.

Figure 2. Processing dependencies and their effect on rate control.

To eliminate the need for B frames in order to efficiently
parallelize the encoder, we propose a novel multi-frame and
multi-slice (MFMS) parallel approach with three motion
estimation modes. Fig. 1 shows a general diagram of the
proposed approach for a K cores parallel system.

This approach is composed of two thread sections: a multi-
frame thread section and a multi-slice thread section. The
multi-frame thread section is composed of two encoders, E1
and E2. Each encoder is associated to a unique thread, and is
executed simultaneously with the other. Encoder E1 manages
even frames (0, 2, 4, etc.) and encoder E2 manages odd frames
(1, 3, 5, etc.). At any given time, these two encoders must
always process neighboring frames (frame Fn and frame Fn+1).
The multi-slice thread section is composed of a number of
threads equal to the number of cores attributed to the
application, and as a result, the approach uses more threads
than logical processors.

Parallel processing is performed as follows. Each encoder
reads (or receives) a YUV frame from an input file (or stream),
cuts the frame into rectangular slices of similar sizes (i.e.
because a frame is not always divisible into an equal number of
MBs lines, some slices may have one more MB line), and fills
a list of slices to process. The list is filled according to certain
rules described below. Subsequently, these slices are retrieved,
encoded and filtered (with the deblocking filter) by threads of
the multi-slices threads section. Once processed, a slice is
placed in the list of processed slices. When all the slices of a
frame are processed, the associated encoder writes these slices
in the H.264 output file (or stream) and starts the processing of
its next frame.

A. Processing Dependencies and Rate-Control Delay

Fig. 2 shows processing dependency relationships between
neighboring frames. The processing of each frame is divided
into three parts: pre-slice encoding, slice encoding, and post-
slice encoding. The pre-slice encoding part performs
operations prior to the actual encoding, such as determining the
frame type and writing the frame header. The post-slice
encoding part performs operations after the actual encoding,
such as applying the parallel deblocking filter and updating the
rate control status. The slice encoding part encodes the frame’s
slices and represents the most CPU-intensive part. The pre-
slice encoding part of a frame Fn+1 can only be started when the
pre-slice encoding of frame Fn has been completed. Similarly,
the post-slice encoding part of a frame Fn+1 can only be started
when frame Fn has been completely processed.

Figure 3. Motion estimation constraints: (a) Unconstrained motion

estimation. (b) Motion estimation constrained to the current slice’s limits.

The slice encoding part of a frame Fn can only be started
after completion of its pre-slice encoding, and depends on the
availability of its reference slices (as discussed in section
III.C). These dependency relationships have the effect of
introducing a delay of one frame in the quantization parameter
(QP) determination during encoding. Thus, a frame Fn+1
applies a quantization equal to QPn, the QP computed after the
encoding of frame Fn, instead of QPn+1. This delay cause rate
control to be less precise over short periods (few frames), but
does not significantly affect the global video quality and size.

B. Motion Estimation Modes

The proposed approach supports three motion estimation
(ME) modes that offer various tradeoffs between speedup and
visual quality. Usually, ME is performed inside a square search
window (for example, 32 × 32 pixels) of the reference frame.
In a multi-slice parallel context, this approach has the
disadvantage of forcing the encoder to process a new slice only
when all its reference slices (typically three: one on top, one at
the same spatial location, and one below) have been processed,
and possibly having to wait for them. Our first mode, named
Multi Slice Window (MSW), exploits this type of ME window.
This is our slowest mode, but the one that provides the best
video quality.

To reduce the waiting time, the second mode, named
Single Slice Window (SSW), adds an additional constraint to
the ME process: ME is performed inside the current slice’s
limits (as shown in Fig. 3). This mode, which is the fastest, but
also the one that affects quality the most, allows an encoder to
start processing a slice when its reference slice, located at the
same spatial position, becomes available. The quality loss is
caused by the reduction of the search window, which reduces
the effectiveness of the temporal prediction algorithm (motion
estimation). This quality loss is generally greater in a video
sequence containing dominant vertical motion, because the
motion estimation algorithm cannot track a block that moves
from a slice to another one.

The third mode, named Available Slices Window (ASW),
is similar to the second mode, but extends the ME to
neighboring reference slices, which have already been
processed (i.e., once its reference slice is available, the slice
will be encoded using all the other reference slices available at
that time). This mode is a compromise, in terms of speedup
and quality, between the two others modes.

Figure 4. Examples of empty slices to process list:. (a) Single Slice Window
(SSW) and Available Slices Window (ASW) modes; (b) Multi Slices

Windows (MSW).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

5

10

15

20

25

20 Mbits/s. 15 Mbits/s. 5 Mbits/s. 1 Mbits/s.

Number of slices

E
n
c
o
d
in

g
 t

im
e
 i
n
c
re

a
s
in

g
 (

%
)

Figure 5. Effet of the number of slices on the encoding time for a sequential

(non-parallel) execution on Intel’s IPP H.264 video encoder.

C. Selection of the Next Slice to Process and Supplementary

Slices

In a pure multi-slice parallel approach, each frame must
have a number of slices equal to the number of processor cores
to keep all of them as active as possible during the encoding
process. However, since some slices are less complex to
process than others, workload balancing is not perfect. Adding
supplementary slices in this context has the inconvenient of
further unbalancing the workload.

In the proposed multi-slice and multi-frame approach,
however, adding slices has positive effects on load balancing.
When the number of slices equals the number of threads, there
will not be enough slices to fill the slices to process list (SPL)
to keep all the cores busy at all times. Fig. 4 shows two
examples where the SPL is empty: one for the SSW and ASW
modes, and one for MSW mode. In these examples, each frame
is composed of 4 slices, and 4 threads are used to encode the
slices. A white box represents an unprocessed slice, a grey box
represents a processed slice and a partially white-grey box
represents a slice in process. Fig. 4(a) shows a situation where
Thread 4 cannot process Slice 3 in frame Fn+1 because the
processing of Slice 3 in frame Fn is not yet finished. Fig. 4(b)
shows a situation where no thread can process a new slice
because no slice of frame Fn+1 has access to all of its reference
slices.

To reduce the number of cases where we have an empty
slices to process list, we can add supplementary slices. The
number of supplementary slices (SS) is defined as the
difference between the number of slices per frame and K, the
number of threads used to encode slices. The more
supplementary slices we use, the fewer cases the number of

empty slices to process lists we will have. However, as
mentioned earlier, increasing the number of slices reduces the
visual quality of the encoded sequence. Moreover, increasing
the number of slices slightly increases the complexity of
encoding (Fig. 5 shows the effect of the number of slices on
the encoding time of a sequential execution on Intel’s IPP
H.264 video encoder). Therefore, we must add a sufficient
number of slices to increase speedup, but not too many, in
order to preserve a good video quality.

IV. PERFORMANCE AND DISCUSSION

The proposed approach was implemented based on the
H.264 encoder delivered as sample code in the Intel Integrated
Performance Primitives (IPP) library, version 6.1.x [2]. Intel’s
H.264 encoder already comprises a slice-level parallelism
approach, which will be compared to our approach.

Our simulations were executed on the first 300 frames of
five different YUV video sequences (train-station, horse-cab,
sunflower, waterskiing and rally) [10]. These sequences had a
resolution of 1280 × 720 pixels at 50 frames per second, and
were encoded using the following parameters: logarithm ME
method, quarter-pixel motion compensation precision,
CABAC entropy encoding, a 16 × 16 pixel ME search area,
and constant bit rates (CBR) of 1, 5, 10, 15 and 20 Mbit/s.

Simulations were performed on an HP Proliant ML350 G6
system composed of two quad core Xeon E5530 systems at 2.4
GHz with Hyper-Threading mode turn off. Fig. 6 and Fig. 7
show the average speedup and quality loss compared to the
H.264 sequential execution using a single slice per frame. This
average was computed for all the above-mentioned video
sequences, for a parallel execution using a number of cores
varying between 2 and 8. Quality loss was measured in PSNR
on the luminance component.

A. Impact of Supplementary Slices on Performance

Fig. 6 shows the impact of adding 0, 1, 2, 3 and 4
supplementary slices on the first ME mode of the proposed
parallel approach for a bit rate of 10 Mbit/s. We can observe
several important points on this figure. First, the speedup
increases with an increase in the number of supplementary
slices. Furthermore, the more significant speedup gains are
obtained by adding 1 and 2 supplementary slices, respectively.
We then notice saturation. The observed gains are more
significant when we increase the number of cores used.
Second, increasing the number of supplementary slices also
increases quality loss. Generally, we noticed that adding a
number of supplementary slices equal to half the number of
cores used was a good choice. Our experiments lead to similar
conclusions for the other two modes and for the four others
tested bit rates.

B. Comparison Between the Three Proposed Motion

Estimation Modes and Intel’s Approach

Fig. 7 shows a comparison between the performances of the
three proposed ME modes and Intel’s multi-slice parallel
approach for a bit rate of 10 Mbit/s. For the three proposed
modes, we select a number of supplementary slices equal to 4,
offering a good trade-off between speed and quality loss for an

8-core parallel execution. For Intel’s approach, we select a
number of supplementary slices equal to zero, which produces
the highest speedup and the lowest quality loss with this
approach.

2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 SS 1 SS 2 SS 3 SS 4 SS

0 SS 1 SS 2 SS 3 SS 4 SS

Number of cores

S
p
e
e
d
u
p

Q
u
a
lit

y
lo

s
s
 (

d
B

)

Figure 6. Impact on speedup and quality of the number of supplementary

slices (SS) on the MSW mode. Graph
show the average results on 5 HD video sequences.

2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

Intel MFMS – SSW

mode

MFMS – ASW

mode

MFMS – MSW

mode

Intel MFMS – SSW

mode

MFMS – ASW

mode

MFMS – MSW

mode

Number of cores

S
p
e
e
d
u
p

Q
u
a
lit

y
 l
o
s
s
 (

d
B

)

Figure 7. Performance comparison between the three proposed modes with 4

supplementary slices and Intel’s approach.
Graph show the average results on 5 HD video sequences.

For an 8-core execution, we observed a speedup of 7.95x
for SSW mode, the fastest mode, and a speedup of 7.20x for
MSW mode, the slowest mode. Therefore, the SSW mode is
about 10% faster than the MSW mode. However, the fastest
mode yields an average visual quality loss of 1.85 dB, which is
high enough to produce a visually perceptible degradation,
especially on macroblocks located close to the slice limits,
since they use constrained ME. MSW mode produces a quality
loss of about 0.22 dB, a barely perceptible loss of quality.
Compared to the MSW mode, the ASW mode produces a
negligible speedup gain at the expense of a quality loss about
twice as high. We therefore suggest using the MSW mode,
except when speedup is critical, in which case, SSW may be
more appropriate, but at the cost of a much greater quality loss.
These recommendations are also applicable for the four others
bit rates used for simulations, as results are comparable.

All the modes exceed the speedups achieved by Intel’s
approach. For example, the SSW mode achieves a speedup of
7.95x; MSW mode, a speedup of 7.20x, and Intel’s approach, a
speedup of 4.55x, for an 8-core parallel execution. In all cases,
the speedup gains are obtained at the cost of increased quality
loss, particularly for the SSW mode. However, our MSW
mode offers an excellent trade-off between speedup and
quality loss that is much more interesting than Intel’s
approach.

Our approach gets speedups comparable to those obtained
by state-of-the-art approaches. Chen et al., [8] and Steven et
al., [9] have tested their parallel approach on a 4-processor
multi-processor systems. In the first case, the authors obtain a
speedup of 3.80x using CIF sequences, and in the second case,
they obtain a speedup of 3.95x using CIF sequences. However,
this latter approach requires the use of B frames to achieve
such a high speedup. By comparison, our fastest mode, the
SSW mode, obtains a speedup of 4.02x on HD sequences with
4 cores. This speedup is slightly greater than the expected
theoretical acceleration because the restrictions on the ME
window reduce the encoding complexity during a parallel
execution.

Table I presents the impact of bit rate on performance when
MSQ and SSW modes are applied using 8 cores and 4
supplementary slices (for a total of 12 slices). Table I shows
that the quality loss decreases, while the speedup increases,
with increasing bit rate. The quality loss with MSW mode is
entirely due to the usage of slices. As shown in Table I, using
12 slices at 1 Mbit/s produces a quality loss of 0.84 dB
(compared to using a single slice as in the sequential
execution). With SSW, there is further quality loss due to
restricted motion estimation search window.

TABLE I. IMPACT OF BIT RATE ON THE SPEED AND QUALITY FOR THE
MSW AND SSW MODES

Bit rate
(Mbit/s)

MSW mode SSW mode

Speedup
Quality

loss (dB)
Speedup

Quality

loss (dB)

1 6.52x 0.84 7.07x 2.64
5 7.06x 0.32 7.77x 2.16

10 7.2x 0.22 7.95x 1.85
15 7.33x 0.18 7.92x 1.67
20 7.35x 0.16 7.99x 1.54

TABLE II. IMPACT OF SEQUENCE ON THE SPEED AND QUALITY FOR THE
MSQ AND SSQ MODES WITH A BIT RATE OF 10 MBIT/S.

Sequence
MSW mode SSW mode

Speedup
Quality

loss (dB)
Speedup

Quality

loss (dB)

Horse-cab 7.36x 0.23 8.15x 3.23
Rally 6.43x 0.46 6.94x 1.6
Sunflower 7.45x 0.06 8.58x 1.62
Tractor 7.45x 0.012 8.15x 1.39
Train-station 7.52x 0.06 8.4x 1.9
Waterskiing 6.98x 0.39 7.45x 1.36
Average 7.2x 0.22 7.95x 1.85

Table II shows the influence of sequence on performance
when the MSQ and SSW modes are applied with 8 cores and 4
SS. Speedup and quality decrease on sequences with high
vertical motion such as rally. As observed earlier, SSW can
obtain speedups greater than the expected theoretical
acceleration because the restrictions on the ME window reduce
the encoding complexity during a parallel execution.

V. CONCLUSION

In this paper, we presented a new multi-frame and multi-
slice parallel video coding approach applied to H.264. This
approach achieves high speedup, low latency and low video
quality loss, without requiring the use of B frames. Our
approach produces the highest speedups compared to those in
the literature which are not requiring B frames. Our speedups
are also comparable to those obtained by the best methods
using B frames. Not requiring B frames makes our approach
usable in a real-time video transmission context such as video-
conferencing. Our high speedups are obtained from supporting
a number slices equal or greater than the number of cores used.
The flexibility we permit in the number of slices used is
important because some application need a high number of
slices for different reasons: maximum packet size, error
resilience, parallel decoding, etc. Furthermore, our approach
can be implemented with little effort in an H.264 encoder
supporting a multi-slice parallel approach, such as Intel’s. The
high speedup of the approach allows the encoding of HD video
sequences in real time on recent multicore systems.

ACKNOWLEDGMENT

This work was funded by Vantrix Corporation and by the
Natural Sciences and Engineering Research Council of Canada
under the Collaborative Research and Development Program
(NSERC-CRD 326637-05).

REFERENCES
[1] ISO/IEC 14496-10 and ITU-T Rec, "H.264, Advanced video coding for

generic audiovisual services," ed, 2003.
[2] Intel. (2010, Intel® Integrated Performance Primitives 6.1 – Code

Samples Available: http://software.intel.com/en-us/articles/intel-
integrated-performance-primitives-code-samples/

[3] S. Chien, et al., "Hardware architecture design of video compression for
multimedia communication systems," IEEE Communications Magazine,

vol. 43, p. 123, 2005.
[4] L. Changying, et al., "The Research of H.264/AVC Video Encoding

Parallel Algorithm," in Intelligent Information Technology Application,

2008. IITA '08. Second International Symposium on, 2008, pp. 201-205.
[5] A. Rodriguez, et al., "Hierarchical Parallelization of an H.264/AVC

Video Encoder," in Parallel Computing in Electrical Engineering, 2006.

PAR ELEC 2006. International Symposium on, 2006, pp. 363-368.
[6] S. Shu-wei and C. Shu-ming, "An Efficient Parallel Algorithm for H.

264/AVC Encoder [J]," Acta Electronica Sinica, vol. 2, 2009.
[7] H. K. Zrida, et al., "High level H. 264/AVC video encoder parallelization

for multiprocessor implementation," 2009, pp. 940-945.
[8] Y. Chen, et al., "Implementation of H. 264 encoder and decoder on

personal computers," Journal of Visual Communication and Image

Representation, vol. 17, pp. 509-532, 2006.
[9] G. Steven, et al., "Efficient multithreading implementation of H.264

encoder on Intel hyper-threading architectures," in Information,

Communications and Signal Processin and the Fourth Pacific Rim

Conference on Multimedia. Proceedings of the 2003, pp. 469-473 Vol.1.
[10] Xiph.org. 2011, Test Media. Available: http://media.xiph.org/video/derf/

