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Abstract—This paper describes a novel multi-frame and multi-

slice parallel video encoding approach with simultaneous 

encoding of predicted frames. The approach, when applied to 

H.264 encoding, leads to speedups comparable to those obtained 

by state-of-the-art approaches, but without the disadvantage of 

requiring bidirectional frames. The new approach uses a number 

of slices equal or greater than the number of cores used and  

supports three motion estimation modes. Their combination 

leads to various tradeoffs between speedup and visual quality 

loss. For an H.264 baseline profile encoder based on Intel IPP 

code samples running on a two quad core Xeon system (8 cores in 

total), our experiments show an average speedup of 7.20x, with 

an average quality loss of 0.22 dB (compared to a non-

parallelized version) for the most efficiency motion estimation 

mode, and an average speedup of 7.95x, with a quality loss of 

1.85 dB for the faster motion estimation mode  

Keywords- H.264; parallel algorithms; multi-core processor 

I. INTRODUCTION 

H.264 is the most recent and efficient standard for video 
compression [1]. The new tools introduced by this standard 
improve on the compression ratio of its predecessors by a 
factor of two, but at the cost of higher complexity. H.264 is 
also one of most commonly used formats in processing high 
definition (HD) videos. However, this standard is so complex 
that some video encoders face difficulties encoding HD video 
sequences in real-time, even on recent processors. 

To reduce the encoding time, most H.264 video encoders 
developed for general processors exploit parallel approaches. 
For example, Intel’s IPP H.264 video encoder is based on a 
multi-slice parallel approach, where the slices of a frame are 
encoded in parallel [2]. The multicore era does offer the 
promise of a great future for well-designed parallel approaches. 
A parallel approach must achieve speedups close to the number 
of cores used, support a variable number of cores with linear 
scalability, reduce processing latency, preserve or slightly 
reduce visual quality video, and should not change or force 
encoding parameters. 

In this paper, we describe a novel multi-frame and multi-
slice parallel approach for an H.264 video encoder. This 
approach includes three motion estimation (ME) modes and a 
support for a number of slices equal or greater than the number 
of cores used. The configuration of the modes and the number 

of slices offer various tradeoffs between speedup and visual 
quality loss. Experiments on 720p sequences show that the 
proposed approach provides speedups comparable to those 
obtained by state-of-the-art approaches, but without the 
disadvantage of requiring bidirectional (B) frames. This is 
important since B frames are not supported by the H.264 
baseline profile, and increase latency. This property makes our 
approach usable in a real-time video transmission context like 
video-conference. The speedups obtained by the proposed 
method are linear with the number of cores used, and are close 
to the theoretical maximal speedup (i.e. close to the number of 
cores used). The number of cores is configurable and this 
approach’s best motion estimation mode preserves the video 
quality (similar quality as a non-parallel encoder). 

This paper is organized as follows. In section II, we present 
state-of-the-art parallel approaches. In section III, we describe 
the proposed parallel approach. We present experimental 
results in section IV, and conclude in section V. 

II.  STATE OF THE ART PARALLEL APPROACHES 

An H.264 encoder can be parallelized into multiple threads 
by using either functional decomposition or data domain 
decomposition [3-7]. Functional decomposition divides an 
encoder into multiple tasks (motion estimation, transformation, 
entropy coding, etc.). Tasks are grouped in balanced 
processing groups, and each group is associated to a thread. 
This type of decomposition can deliver good speedup, but 
rarely allows good scalability and flexibility to change [3].  

Data domain decomposition exploits the H.264 hierarchical 
structure to parallelize an encoder. This hierarchical structure 
has six levels: sequence, groups of pictures (GOPs), pictures, 
slices, macroblocks (MBs) and blocks. Each GOP starts with 
an instantaneous decoder refresh (IDR) frame. Frames 
following an IDR frame may not refer to frames preceding the 
IDR frame, meaning that GOPs are independent of each other, 
and can be encoded in parallel. Each frame belongs to one of 
the following types: I frames, P frames or B frames. I frames 
are coded without reference to any other frame, while P frames 
are coded with reference to a past frame, and B frames are 
commonly coded with reference to a past and a future frame. 
However, no frame depends on a B frame. A slice represents a 
spatial region of a coded frame. Similarly to frames, we have 
three types of slices: I slices, P slices and B Slices. Slices 

stephanecoulombe
Typewritten Text
Accepted in the International Conference on Consumer Electronics, Communications and Networks (CECNet 2012), 2012  

stephanecoulombe
Typewritten Text

mstewart
Texte tapé à la machine
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine



belonging to the same frame are also independent of one 
another, and can therefore be encoded in parallel. Slices are 
composed of macroblocks, and a macroblock is coded with 
reference to its three upper neighbors and its left neighbor.  

In [4], Changying et al. describe a parallel algorithm at the 
GOP level for the H.264. The authors use a Master-Worker 
model and a dynamic scheduling algorithm to distribute the 
next GOP unit to process to an unused node, and obtain good 
scalability and speedup. However, this pure GOP-level parallel 
approach exhibits high latency, and is therefore not applicable 
to real-time encoding. In [5], Rodriguez et al., propose an 
approach based on GOP and slice level parallelism. In this 
approach, the system is composed of homogeneous clusters of 
workstations. Each cluster receives a GOP unit to process 
dynamically. A master workstation divides each frame into 
slices and distributes their processing among workstations. 
While this approach provides a good trade-off between 
speedup and latency, this type of encoding can however only 
be used when the system has access to all the frames of the 
video sequence to compress, making it unacceptable for real-
time telecommunications. 

In [8], Chen et al., present a parallel approach at the 
macroblock level. This algorithm exploits dependencies 
between macroblocks in a wave front manner. This kind of 
approach produces a good, but not excellent, speedup. In [9], 
Steven et al., describe a more efficient approach based on a 
frame-level and slice-level parallelism. This approach uses five 
threads on a system with four processors. One thread is used to 
load the input file (or stream), to save the output file (or 
stream) and to fill two lists of slices: a priority list of I and P 
slices and a secondary list of B slices. The other four threads 
are used to encode slices in parallel. Each thread retrieves and 
processes the next free slice in the priority list. If this list is 
empty, the thread retrieves the next free slice in the secondary 
list. This approach provides excellent speedup, but forces the 
use of B frames, which is not always possible (for example, the 
H.264 baseline profile does not allow B frames) and increases 
latency. Low latency is required in real-time video applications 
such as videoconferencing. 

III. PROPOSED MULTI-FRAME AND MULTI-SLICE PARALLEL 

ENCODING APPROACH  

 

Figure 1.  General diagram of the proposed multi-frame and multi-slice 
parallel approach. 

 

 
Figure 2.  Processing dependencies and their effect on rate control. 

To eliminate the need for B frames in order to efficiently 
parallelize the encoder, we propose a novel multi-frame and 
multi-slice (MFMS) parallel approach with three motion 
estimation modes. Fig. 1 shows a general diagram of the 
proposed approach for a K cores parallel system. 

This approach is composed of two thread sections: a multi-
frame thread section and a multi-slice thread section. The 
multi-frame thread section is composed of two encoders, E1 
and E2. Each encoder is associated to a unique thread, and is 
executed simultaneously with the other. Encoder E1 manages 
even frames (0, 2, 4, etc.) and encoder E2 manages odd frames 
(1, 3, 5, etc.). At any given time, these two encoders must 
always process neighboring frames (frame Fn and frame Fn+1). 
The multi-slice thread section is composed of a number of 
threads equal to the number of cores attributed to the 
application, and as a result, the approach uses more threads 
than logical processors.   

Parallel processing is performed as follows. Each encoder 
reads (or receives) a YUV frame from an input file (or stream), 
cuts the frame into rectangular slices of similar sizes (i.e. 
because a frame is not always divisible into an equal number of 
MBs lines, some slices may have one more MB line), and fills 
a list of slices to process. The list is filled according to certain 
rules described below. Subsequently, these slices are retrieved, 
encoded and filtered (with the deblocking filter) by threads of 
the multi-slices threads section. Once processed, a slice is 
placed in the list of processed slices. When all the slices of a 
frame are processed, the associated encoder writes these slices 
in the H.264 output file (or stream) and starts the processing of 
its next frame. 

A. Processing Dependencies and Rate-Control Delay 

Fig. 2 shows processing dependency relationships between 
neighboring frames. The processing of each frame is divided 
into three parts: pre-slice encoding, slice encoding, and post-
slice encoding. The pre-slice encoding part performs 
operations prior to the actual encoding, such as determining the 
frame type and writing the frame header. The post-slice 
encoding part performs operations after the actual encoding, 
such as applying the parallel deblocking filter and updating the 
rate control status. The slice encoding part encodes the frame’s 
slices and represents the most CPU-intensive part. The pre-
slice encoding part of a frame Fn+1 can only be started when the 
pre-slice encoding of frame Fn has been completed. Similarly, 
the post-slice encoding part of a frame Fn+1 can only be started 
when frame Fn has been completely processed.  



 
Figure 3.   Motion estimation constraints: (a) Unconstrained motion 

estimation. (b) Motion estimation constrained to the current slice’s limits. 

The slice encoding part of a frame Fn can only be started 
after completion of its pre-slice encoding, and depends on the 
availability of its reference slices (as discussed in section 
III.C).  These dependency relationships have the effect of 
introducing a delay of one frame in the quantization parameter 
(QP) determination during encoding. Thus, a frame Fn+1 
applies a quantization equal to QPn, the QP computed after the 
encoding of frame Fn, instead of QPn+1. This delay cause rate 
control to be less precise over short periods (few frames), but 
does not significantly affect the global video quality and size. 

B. Motion Estimation Modes 

The proposed approach supports three motion estimation 
(ME) modes that offer various tradeoffs between speedup and 
visual quality. Usually, ME is performed inside a square search 
window (for example, 32 × 32 pixels) of the reference frame. 
In a multi-slice parallel context, this approach has the 
disadvantage of forcing the encoder to process a new slice only 
when all its reference slices (typically three: one on top, one at 
the same spatial location, and one below) have been processed, 
and possibly having to wait for them. Our first mode, named 
Multi Slice Window (MSW), exploits this type of ME window. 
This is our slowest mode, but the one that provides the best 
video quality.  

To reduce the waiting time, the second mode, named 
Single Slice Window (SSW), adds an additional constraint to 
the ME process: ME is performed inside the current slice’s 
limits (as shown in Fig. 3). This mode, which is the fastest, but 
also the one that affects quality the most, allows an encoder to 
start processing a slice when its reference slice, located at the 
same spatial position, becomes available. The quality loss is 
caused by the reduction of the search window, which reduces 
the effectiveness of the temporal prediction algorithm (motion 
estimation). This quality loss is generally greater in a video 
sequence containing dominant vertical motion, because the 
motion estimation algorithm cannot track a block that moves 
from a slice to another one.   

The third mode, named Available Slices Window (ASW), 
is similar to the second mode, but extends the ME to 
neighboring reference slices, which have already been 
processed (i.e., once its reference slice is available, the slice 
will be encoded using all the other reference slices available at 
that time). This mode is a compromise, in terms of speedup 
and quality, between the two others modes. 

 
 
 

 

Figure 4.  Examples of empty slices to process list:. (a) Single Slice Window 
(SSW) and Available Slices Window (ASW) modes; (b) Multi Slices 

Windows (MSW).  
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Figure 5.  Effet of the number of slices on the encoding time for a sequential 

(non-parallel) execution on Intel’s IPP H.264 video encoder. 

C. Selection of the Next Slice to Process and Supplementary 

Slices 

In a pure multi-slice parallel approach, each frame must 
have a number of slices equal to the number of processor cores 
to keep all of them as active as possible during the encoding 
process. However, since some slices are less complex to 
process than others, workload balancing is not perfect. Adding 
supplementary slices in this context has the inconvenient of 
further unbalancing the workload. 

In the proposed multi-slice and multi-frame approach, 
however, adding slices has positive effects on load balancing. 
When the number of slices equals the number of threads, there 
will not be enough slices to fill the slices to process list (SPL) 
to keep all the cores busy at all times. Fig. 4 shows two 
examples where the SPL is empty: one for the SSW and ASW 
modes, and one for MSW mode. In these examples, each frame 
is composed of 4 slices, and 4 threads are used to encode the 
slices. A white box represents an unprocessed slice, a grey box 
represents a processed slice and a partially white-grey box 
represents a slice in process. Fig. 4(a) shows a situation where 
Thread 4 cannot process Slice 3 in frame Fn+1 because the 
processing of Slice 3 in frame Fn is not yet finished. Fig. 4(b) 
shows a situation where no thread can process a new slice 
because no slice of frame Fn+1 has access to all of its reference 
slices.   

To reduce the number of cases where we have an empty 
slices to process list, we can add supplementary slices. The 
number of supplementary slices (SS) is defined as the 
difference between the number of slices per frame and K, the 
number of threads used to encode slices. The more 
supplementary slices we use, the fewer cases the number of 



empty slices to process lists we will have. However, as 
mentioned earlier, increasing the number of slices reduces the 
visual quality of the encoded sequence. Moreover, increasing 
the number of slices slightly increases the complexity of 
encoding (Fig. 5 shows the effect of the number of slices on 
the encoding time of a sequential execution on Intel’s IPP 
H.264 video encoder). Therefore, we must add a sufficient 
number of slices to increase speedup, but not too many, in 
order to preserve a good video quality.   

IV.  PERFORMANCE AND DISCUSSION 

The proposed approach was implemented based on the 
H.264 encoder delivered as sample code in the Intel Integrated 
Performance Primitives (IPP) library, version 6.1.x [2]. Intel’s 
H.264 encoder already comprises a slice-level parallelism 
approach, which will be compared to our approach. 

Our simulations were executed on the first 300 frames of 
five different YUV video sequences (train-station, horse-cab, 
sunflower, waterskiing and rally) [10]. These sequences had a 
resolution of 1280 × 720 pixels at 50 frames per second, and 
were encoded using the following parameters: logarithm ME 
method, quarter-pixel motion compensation precision, 
CABAC entropy encoding, a 16 × 16 pixel ME search area, 
and constant bit rates (CBR) of 1, 5, 10, 15 and 20 Mbit/s. 

Simulations were performed on an HP Proliant ML350 G6 
system composed of two quad core Xeon E5530 systems at 2.4 
GHz with Hyper-Threading mode turn off. Fig. 6 and Fig. 7 
show the average speedup and quality loss compared to the 
H.264 sequential execution using a single slice per frame. This 
average was computed for all the above-mentioned video 
sequences, for a parallel execution using a number of cores 
varying between 2 and 8. Quality loss was measured in PSNR 
on the luminance component.  

A. Impact of Supplementary Slices on Performance 

Fig. 6 shows the impact of adding 0, 1, 2, 3 and 4 
supplementary slices on the first ME mode of the proposed 
parallel approach for a bit rate of 10 Mbit/s. We can observe 
several important points on this figure. First, the speedup 
increases with an increase in the number of supplementary 
slices. Furthermore, the more significant speedup gains are 
obtained by adding 1 and 2 supplementary slices, respectively. 
We then notice saturation. The observed gains are more 
significant when we increase the number of cores used. 
Second, increasing the number of supplementary slices also 
increases quality loss. Generally, we noticed that adding a 
number of supplementary slices equal to half the number of 
cores used was a good choice. Our experiments lead to similar 
conclusions for the other two modes and for the four others 
tested bit rates.  

B. Comparison Between the Three Proposed Motion 

Estimation Modes and Intel’s Approach 

Fig. 7 shows a comparison between the performances of the 
three proposed ME modes and Intel’s multi-slice parallel 
approach for a bit rate of 10 Mbit/s. For the three proposed 
modes, we select a number of supplementary slices equal to 4, 
offering a good trade-off between speed and quality loss for an 

8-core parallel execution. For Intel’s approach, we select a 
number of supplementary slices equal to zero, which produces 
the highest speedup and the lowest quality loss with this 
approach.  
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Figure 6.   Impact on speedup and quality of the number of supplementary 

slices (SS) on the MSW mode. Graph  
show the average results on 5 HD video sequences. 
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Figure 7.  Performance comparison between the three proposed modes with 4 

supplementary slices and Intel’s approach.  
Graph show the average results on 5 HD video sequences. 

For an 8-core execution, we observed a speedup of 7.95x 
for SSW mode, the fastest mode, and a speedup of 7.20x for 
MSW mode, the slowest mode. Therefore, the SSW mode is 
about 10% faster than the MSW mode. However, the fastest 
mode yields an average visual quality loss of 1.85 dB, which is 
high enough to produce a visually perceptible degradation, 
especially on macroblocks located close to the slice limits, 
since they use constrained ME. MSW mode produces a quality 
loss of about 0.22 dB, a barely perceptible loss of quality. 
Compared to the MSW mode, the ASW mode produces a 
negligible speedup gain at the expense of a quality loss about 
twice as high. We therefore suggest using the MSW mode, 
except when speedup is critical, in which case, SSW may be 
more appropriate, but at the cost of a much greater quality loss. 
These recommendations are also applicable for the four others 
bit rates used for simulations, as results are comparable.  



All the modes exceed the speedups achieved by Intel’s 
approach. For example, the SSW mode achieves a speedup of 
7.95x; MSW mode, a speedup of 7.20x, and Intel’s approach, a 
speedup of 4.55x, for an 8-core parallel execution. In all cases, 
the speedup gains are obtained at the cost of increased quality 
loss, particularly for the SSW mode. However, our MSW 
mode offers an excellent trade-off between speedup and 
quality loss that is much more interesting than Intel’s 
approach.  

Our approach gets speedups comparable to those obtained 
by state-of-the-art approaches. Chen et al., [8] and Steven et 
al., [9] have tested their parallel approach on a 4-processor 
multi-processor systems. In the first case, the authors obtain a 
speedup of 3.80x using CIF sequences, and in the second case, 
they obtain a speedup of 3.95x using CIF sequences. However, 
this latter approach requires the use of B frames to achieve 
such a high speedup. By comparison, our fastest mode, the 
SSW mode, obtains a speedup of 4.02x on HD sequences with 
4 cores. This speedup is slightly greater than the expected 
theoretical acceleration because the restrictions on the ME 
window reduce the encoding complexity during a parallel 
execution. 

Table I presents the impact of bit rate on performance when 
MSQ and SSW modes are applied using 8 cores and 4 
supplementary slices (for a total of 12 slices). Table I shows 
that the quality loss decreases, while the speedup increases, 
with increasing bit rate. The quality loss with MSW mode is 
entirely due to the usage of slices. As shown in Table I, using 
12 slices at 1 Mbit/s produces a quality loss of 0.84 dB 
(compared to using a single slice as in the sequential 
execution). With SSW, there is further quality loss due to 
restricted motion estimation search window.  

TABLE I.  IMPACT OF BIT RATE ON THE SPEED AND QUALITY FOR THE 
MSW AND SSW MODES 

Bit rate 
(Mbit/s) 

MSW mode SSW mode 

Speedup 
Quality 

loss (dB) 
Speedup 

Quality 

loss (dB) 

1 6.52x 0.84 7.07x 2.64 
5 7.06x 0.32 7.77x 2.16 

10 7.2x 0.22 7.95x 1.85 
15 7.33x 0.18 7.92x 1.67 
20 7.35x 0.16 7.99x 1.54 

TABLE II.  IMPACT OF SEQUENCE ON THE SPEED AND QUALITY FOR THE 
MSQ AND SSQ MODES WITH A BIT RATE OF 10 MBIT/S. 

Sequence 
MSW mode SSW mode 

Speedup 
Quality 

loss (dB) 
Speedup 

Quality 

loss (dB) 

Horse-cab 7.36x 0.23 8.15x 3.23 
Rally 6.43x 0.46 6.94x 1.6 
Sunflower 7.45x 0.06 8.58x 1.62 
Tractor 7.45x 0.012 8.15x 1.39 
Train-station 7.52x 0.06 8.4x 1.9 
Waterskiing 6.98x 0.39 7.45x 1.36 
Average 7.2x 0.22 7.95x 1.85 

 

Table II shows the influence of sequence on performance 
when the MSQ and SSW modes are applied with 8 cores and 4 
SS. Speedup and quality decrease on sequences with high 
vertical motion such as rally. As observed earlier, SSW can 
obtain speedups greater than the expected theoretical 
acceleration because the restrictions on the ME window reduce 
the encoding complexity during a parallel execution. 

V. CONCLUSION 

In this paper, we presented a new multi-frame and multi-
slice parallel video coding approach applied to H.264. This 
approach achieves high speedup, low latency and low video 
quality loss, without requiring the use of B frames. Our 
approach produces the highest speedups compared to those in 
the literature which are not requiring B frames. Our speedups 
are also comparable to those obtained by the best methods 
using B frames.  Not requiring B frames makes our approach 
usable in a real-time video transmission context such as video-
conferencing. Our high speedups are obtained from supporting 
a number slices equal or greater than the number of cores used. 
The flexibility we permit in the number of slices used is 
important because some application need a high number of 
slices for different reasons: maximum packet size, error 
resilience, parallel decoding, etc. Furthermore, our approach 
can be implemented with little effort in an H.264 encoder 
supporting a multi-slice parallel approach, such as Intel’s. The 
high speedup of the approach allows the encoding of HD video 
sequences in real time on recent multicore systems.  
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