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ABSTRACT

Percutaneous cardiac interventions rely mainly on the experience of the cardiologist to safely navigate inside
soft tissues vessels under X-ray angiography guidance. Additional navigation guidance tool might contribute to
improve reliability and safety of percutaneous procedures. This study focus on major aorta-pulmonary collat-
eral arteries (MAPCAs) which are pediatric structures. We present a fully automatic intensity-based 3D/2D
registration method that accurately maps pre-operatively acquired 3D tomographic vascular data of a newborn
patient over intra-operatively acquired angiograms. The tomographic dataset 3D pose is evaluated by compar-
ing the angiograms with simulated X-ray projections, computed from the pre-operative dataset with a proposed
splatting-based projection technique. The rigid 3D pose is updated via a transformation matrix usually defined
in respect of the C-Arm acquisition system reference frame, but it can also be defined in respect of the projection
plane local reference frame. The optimization of the transformation is driven by two algorithms. First the hill
climbing local search and secondly a proposed variant, the dense hill climbing. The latter makes the search space
denser by considering the combinations of the registration parameters instead of neighboring solutions only.
Although this study focused on the registration of pediatric structures, the same procedure could be applied for
any cardiovascular structures involving CT-scan and X-ray angiography. Our preliminary results are promising
that an accurate (3D TRE 0.265 ± 0.647mm) and robust (99% success rate) bi-planes registration of the aorta
and MAPCAs from a initial displacement up to 20mm and 20◦ can be obtained within a reasonable amount of
time (13.7 seconds).

Keywords: 3D/2D Registration, Image-Guided Interventions, Cardiac Procedures

1. INTRODUCTION

Multimodal 3D/2D registration has multiple applications in assisting medical diagnosis and therapy, from data
fusion from different acquisition modalities to radiographic-based navigation guidance. The aim of 3D/2D
registration is to define a common reference frame for multimodal medical datasets in order to align corresponding
anatomical structures of the patient. The motivation of this work is to improve minimally invasive treatment of
major aorta-pulmonary collateral arteries (MAPCAs) in pediatric cardiology. MAPCAs are immature arteries
with blob morphology associated with severe congenital heart diseases as the pulmonary atresia with ventricular
septal defect or the Tetralogy of Fallot, observed in newborn patients.1 Furthermore, MAPCAs are very thin
vascular structures2 (their diameter is smaller than 4mm) that can be highly complex in 3D and thus extremely
challenging to navigate. By mapping a pre-operative segmented 3D tomographic dataset of MAPCAs onto
X-ray intra-operative angiographies, we aimed at improving X-ray angiography-based navigation of MAPCAs
for pediatric patients. The first purpose of this work is to investigate whether rigid registration of small was
possible, and the second is to compensate rigid respiratory movements of such vascular structures. This study
is focused on pediatric cardiology, but could be adapted to any adult percutaneous procedure in cardiology
involving tomographic data and X-ray angiographies such as aortic or coronary diseases.
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Intensity-based rigid 3D/2D registration methods described in the literature are mainly developed for adult
decease interventions.3 The common workflow relies on the simulation of X-ray angiographies from the pre-
operative tomographic data at an estimated 3D pose. This process is known as digitally reconstructed radiographs
(DRR) that is mainly achieved by voxels projection4 or ray tracing techniques.5 DRRs are iteratively compared
with the reals angiograms via an intensity-based similarity measure.6 The 3D rigid pose of the CT data is then
updated until the similarity measure is optimal. This non-linear 6 degrees of freedom problem is commonly
solved by the use of local iterative optimization algorithms as the hill climbing,7 Powell-based8 and the downhill
simplex9 algorithms or first and second order derivative-based optimization as the Levenberg-Marquardt10 and
the L-BFGS.11 To converge, these algorithms theoretically require monotone and convex objective cost functions
in the vicinity of the true position. However, none of the current similarity measures respects theses properties
which may result in the optimization process to diverge towards a local maxima. Hence, intensity-based methods
have a small capturing range and must be initialized close to the true pose. Markelj et al.3 identifies two mains
approaches, regardless the optimization algorithm, to increase the searched space while avoiding false local
optima. The first involves the use of multi-resolution and/or multi-scale search strategies. However down-
sampling or smoothing the images may, at the same time, increase risks of trapping the optimization within a
false optimum. The second intends to bring the registration problem within the capture range of the optimization
algorithm by sequential/parallel multi-initialization strategies or by iteratively decreasing a wide initial searched
space. Nevertheless, these methods appear being computationally expensive.

In this paper, we present a novel biplane automatic intensity-based 3D/2D rigid registration workflow that
accurately maps pre-operative CT data with intra-operative X-ray angiographies in order to assist percutaneous
intervention of pediatric congenital heart diseases. First, an improvement over the wobbled voxels splatting
method12 is proposed. Secondly, to improve the accuracy of the registration, the rigid transformation that maps
the 3D pre-operative and the 2D intra-operative datasets is expressed within the coordinate frame of one of the
C-Arm projection plans (the intensifiers) instead of within the coordinate frame of the radiographic acquisition
system. Finally, to increase the robustness of the registration technique, a new local iterative optimization
algorithm, based on the hill climbing,7 is proposed.

2. METHODS

2.1 DRRs simulation

DRRs are computed by projecting the volumetric CT dataset onto two different simulated projection planes,
the registration being biplane to be more accurate. To be computationally efficient, the X-ray images are
simulated with a voxels splatting method instead of a ray tracing technique.12 The main drawback of splatting-
based projection is the presence of aliasing artifacts forming undesirable lines.4 To increase the DRRs quality,
Birkfellner et al.12 used an anti-aliasing technique composed of a random wobbled vibration of the voxels and/or
the pixels positions coupled with a gaussian smoothing. Nevertheless, discretization artifacts remain persistent
with the the tomographic dataset used in this work, as shown in Figure 1(a). Furthermore, the wobbled vibration
introduces a noise that the gaussian kernel cannot properly smooth with our volumetric projected data.

In order to define a splatting-based projection method usable for our registration framework, i.e to decrease
the amount of artifacts to obtain high quality DRRs, two solutions are proposed. The first is to replace the
gaussian filter with the convolution of triangles kernel13 (COT) which appears to strongly erase both the artifacts
and the noise introduced by the vibrations, as shown in Figure 1(b). The second is to compute the length of
each projection ray within the voxels it reaches as in a ray tracing technique.5 However, the computation of the
exact path of a ray within a tomographic dataset is computationally expensive. Instead, we choose to compute
an average li length for all the voxels that a ray �pis crossed through. As shown in Figure 1(c), a mean ray length
d is first computed from a voxel along of the optical axe �pos and then projected on the current projection ray
�pis, cf. equation (1).

li = d · cos(αi) cos(αi) =
�pos · �pis

‖ �pos‖ · ‖ �pis‖ (1)

As illustrated in Figure 1(c), whereas the lengths (li1 ..li4) are different in a ray tracing technique, these lengths
are all equal in the proposed splatting-based DRR computation method.
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(a) Gaussian kernel. (b) COT kernel. (c) Projection ray length computation.

Figure 1: Improved wobbled-splatting DRRs computation method with the first MAPCAs tomographic dataset.
(a) DRR smoothed with a 5x5 Gaussian kernel with the artifacts. (b) DRR smoothed with a 5x5 COT kernel.
(c) Computation of the projection ray length within the tomographic voxels.

2.2 Similarity measure

Since the registration is quasi-multimodal,3 the similarity between the target It and the registered radiographs
Ir is quantified with the entropy correlation coefficient14 (ECC). It is theoretically maximized and equals unit
when the two images share the same information. Compared to the normalized mutual information15 (NMI),
the presence of the square root int the ECC definition tends to increase the amplitude of all the local optima,
and particularly the true one, as shown in Figure 2(a). The final measure O used to minimize the optimization
cost of both views (I1, I2) is defined by equation (2), where (E(It), E(Ir)) are the entropy and E(It, Ir) the joint
entropy of the X-ray images.

ECC(It, Ir) =

√
2 · (1 − E(It, Ir)

E(It) + E(Ir)
) O = 1 − ECC(It1 , Ir1) + ECC(It2 , Ir2)

2
(2)

2.3 Expression of the rigid transformation

The coordinate systems used in the biplane registration framework are illustrated in Figure 2(b). Ra is the
fixed and absolute global reference frame defined at the C-Arm iso-center. Rv is the local reference frame of the
volumetric tomographic dataset defined at its center. Rp defines the local reference frame of the first projection
plane, in red in the figure. To obtain the optimal rigid pose of the tomographic data, a transformation T
is applied to the volumetric tomographic dataset. The transformation T is represented by a 4x4 matrix (in
homogeneous coordinates) defined from a 6 parameters vector P representing the (�x, �y, �z) axis translations and
rotations components : P = (tx, ty, tz; θx, θy, θz)�. Rotations are uniquely factorized in Euler form since their
amplitudes are always inferior to 90◦7 and performed at the center of the tomographic dataset. The optimization
of the rotation parameters in the local reference frame is preferred over the global reference frame, since it ensures
that neighboring transformations will be spatially coherent in 3D space.

In the conventional scenario, the transformation T is defined with the respect of Ra. However, T can also be
defined with the respect of the local reference frame of one of the projection plane. We choose the first projection
plane where the reference frame is Rp and the transformation now represented by T pref . The second projection
plane is conventionally used to further constraint the volume 3D pose from an different view. To apply T pref to
the local reference frame of the CT volume Rv, the rigid transformation has to be first converted in respect of
Ra. The new transformation T aref is then defined by equation (3) where Tp is the transformation matrix of Rp

in respect of Ra, T−1
p its inverse.

T aref = T−1
p · T pref · Tp (3)

This definition allows to move and rotate the volumetric CT data in the directions of Rp axes instead of the ones
of Ra. By defining the transformations as a mapping from Rv to Rp, the influence on the similarity measure of
each single parameter transformation is better discriminated and the registration precision improved.
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(a) Registration geometry. (b) Optimization scheme. (c) ECC and NMI noise robustness.

Figure 2: Registration workflow schemes : (a) Geometry of the biplane imaging system representing an antero-
posterior view and a lateral view16 (the two planes are perpendicular) employed in the registration framework.
(b) 2D HC and DHC search schemes comparison. Positions reached by the HC are the blue points while the
positions attained by the DHC are both the blue points and the red squares. (c) Robustness of the NMI and
the ECC similarity measures to a gaussian white noise with the second dataset of MAPCAs. The CT data is
rotated from θx = −180◦ to θx = 180◦ along the �x axe of the reference frame Ra, a DRR is created at every
degree and then compared to the image of reference computed at θx = 0. The dash lines represent the results
for the NMI similarity measure while the plan lines depict the ECC measure. The colors represents the intensity
of the white gaussian noise, from blue where there is no noise to red were the angiographies are very noisy.

2.4 Optimization strategy
In the hill climbing (HC) algorithm,7 the local search is carried out by sequentially altering, at every iteration t,
the position of each search parameter, now represented by the general notation P = {pi, i ∈ [1, 6]}, a fixed step
size s in both negative and positive directions as shown in equation (4).

(pt
i − s, pt

i + s) i ∈ [1..6] (4)

After having evaluated all the 2 × 6 = 12 neighbors, the position improving the similarity measure the most
is kept and then set as the initial position for the next iteration. To cover a larger search amplitude, a initial
wide search parameters step size s = smax is decreased as the iteration number increases until s reachs smin,
the stopping condition that also represents the accuracy of the registration method to achieve. The search
parameters pi are ordered in translation-rotation components : P = (tx, ty, tz; θx, θy, θz)� and always set to null
at the initialization. The rigid transformation T is defined in respect of the reference frame Ra

7 or in respect of
Rp, as presented in paragraph 2.3.

Nevertheless, the number of the evaluations can be increased by considering all the combinations of the
6 transformation parameters instead of limiting the search to the closest neighboring locations only. As each
parameter pi of P can independently take 3 positions as shown by equation (5), the combination of all the
parameters, without counting the current pose, equals to 36 − 1 = 728 (cf. figure 2.b).

(pt
i − s, pt

i, p
t
i + s) i ∈ [1..6] (5)

Although evaluating all the possibilities will be computationally very intensive, make denser the search space
allows to make the volumetric dataset visit more locations and thus, increases the probability of finding the true
pose. However, this approach might be affected by the intensity measure properties. Indeed, if the intensity
measure is not smooth enough, visiting more locations also increases risks of trapping the optimization within a
false optimum. To confirm this hypothesis while decreasing the number of locations to evaluate, we propose a
variant of the hill climbing algorithm, the dense hill climbing (DHC). The local search is speeded up by dividing
the search 6 parameters pi of P into two groups : translation (tx, ty, tz)� and rotation (θx, θy, θz)� components.
At each iteration t, the parameters of the rotation group are first fixed and only the 33 − 1 = 26 translations
are evaluated. The translation improving the similarity measure the most is kept to next find the best rotation
combination. With this search scheme, the number of evaluations to perform at each iteration then leads up to
52 evaluations compared to the initial 728.
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3. EXPERIMENTAL RESULTS

3.1 Data sets and evaluation

Validation of the proposed registration technique was performed on three different tomographic datasets. First, an
adult size and high quality coronary arteries phantom,17 with the aorta, filled with contrast agent and acquired
by CT-scan (Figure 3). This dataset, composed of 512 × 412 × 388 voxels, represents an ideal tomographic
acquisition where the arteries are motionless and the contrast agent present within all the structure without any
diffusion effects. The later are real MAPCAs CT datasets of two pediatric patients composed of 512× 512× 214
voxels as shown in Figures 4 and 5. Theses datasets were segmented using a semi-automatic level set method.18

X-ray angiograms were simulated using 2D projection of the CT datasets as described above. The 3D/2D target-
to-registration error14 (TRE) mean and standard deviation, in millimeters, are computed with a set of 500 3D
points placed along relevant structures (aorta, vessels or MAPCAs) to create centerlines of the target vessels as
shown in Figures 3 and 4. As shown in Figure 7, the segmented second dataset does not present enough MAPCAs
to create a significant number of points usable for the TRE calculations. Instead, the centerlines defined for the
first real pediatric dataset were used.

To validate our method, two types of experimentations were performed. First, we compared, in term of
precision and bias, the proposed optimization algorithm (DHC) with the hill climbing (HC) as well as the two
possible reference frames, Ra and Rp, usable for defining the rigid transformation (cf. section 2.3). The target,
or ground truth, poses were uniformly distributed within an maximum search amplitude smax ranged from
{±10,±20,±30} millimeters for the translations and degrees for the rotations. For all the tests, the initial pose,
from where the CT datasets had to reach the target poses, was set to null and the stopping condition smin was
set to 10−4. Every test batch was composed of registrations from 100 random poses. We did not consider outlier
registrations in the final 3D/2D TRE mean and standard deviation errors, a registration i being defined as an
outlier if its own TRE3D(i) ≤ smax/2. Secondly, the proposed registration technique was used to compensate a
simulated one-dimensional respiratory motion19 r�y along the craniocaudal direction, i.e in the direction of the �y
axe of the reference frame Ra.

r�y(t) = A. cos2n(
π.t

τ
+ φ) (6)

In equation (6), the parameter A = 20mm is the maximum amplitude of the respiratory movement, τ = 11s and
φ = 0 are respectively the period and the initial phase of the breathing cycle. The last coefficient n = 1, specific
to each patient, determines the breathing pattern. Two types of motions were simulated, a perfect sinusoidal
movement and an altered one which is closer to a real breathing motion.

3.2 Rigid registration results

The Figures 3, 4 and 5 present the rigid registration results where the parameters (A, B, C) represent: (A)
the maximum simulated amplitude smax (ex. smax = 10: 10mm and 10 degrees), (B) the reference frame
considered, (C) the optimization strategy. The parameters (t, No, Nc) depict: (t) the computation time in
seconds without projection time and rounded up, (No): the number of outliers, and (Ni) the number of iterations
of the optimization algorithms.

Phantom
A B C TRE2D(mm) TRE3D(mm) t(s) No Nc

10 Ra HC 0.089 ± 0.634 0.077 ± 0.556 13 0 671
DHC 0.024 ± 0.021 0.019 ± 0.016 21 0 1224

Rp HC 0.024 ± 0.009 0.019 ± 0.008 12 0 686
DHC 0.025 ± 0.025 0.082 ± 0.085 22 0 1233

20 Ra HC 0.087 ± 0.269 0.107 ± 0.348 23 1 897
DHC 0.037 ± 0.016 0.027 ± 0.015 38 0 1160

Rp HC 0.293 ± 1.348 0.243 ± 1.093 27 1 931
DHC 0.032 ± 0.021 0.029 ± 0.020 42 1 1663

30 Ra HC 0.516 ± 1.851 0.595 ± 2.146 32 11 1269
DHC 0.275 ± 1.345 0.302 ± 1.562 45 4 2343

Rp HC 0.204 ± 0.850 0.462 ± 2.119 26 9 1197
DHC 0.148 ± 0.517 0.161 ± 0.645 44 1 2315

Figure 3: Evaluation of the precision of the 3D/2D registration of the adult-size synthetic aortic phantom.
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MAPCAs-1
A B C TRE2D(mm) TRE3D(mm) t(s) No Nc

10 RA HC 0.062 ± 0.039 0.054 ± 0.034 12 0 735
DHC 0.568 ± 0.982 0.487 ± 0.853 20 0 1298

RP HC 0.062 ± 0.054 0.053 ± 0.045 13 0 723
DHC 0.066 ± 1.178 0.581 ± 1.065 13 0 1268

20 RA HC 0.492 ± 1.204 0.435 ± 1.115 18 6 1460
DHC 2.891 ± 3.276 2.473 ± 2.752 20 12 1593

RP HC 0.265 ± 0.647 0.236 ± 0.607 14 1 1050
DHC 2.305 ± 2.787 1.954 ± 2.394 27 8 1612

30 RA HC 0.961 ± 2.581 0.850 ± 2.240 18 46 1441
DHC 3.360 ± 4.122 2.942 ± 3.648 14 32 2440

RP HC 0.995 ± 2.149 0.869 ± 1.867 21 41 1443
DHC 5.529 ± 4.812 4.703 ± 4.095 25 21 2178

Figure 4: Evaluation of the precision of the 3D/2D registration of the first real pediatric dataset of MAPCAs.
MAPCAs-2

A B C TRE2D(mm) TRE3D(mm) t(s) No Nc

10 RA HC 1.121 ± 1.596 0.962 ± 1.375 12 0 815
DHC 2.026 ± 2.388 1.735 ± 2.038 16 1 1255

RP HC 0.839 ± 1.145 0.715 ± 0.977 14 1 879
DHC 2.265 ± 1.178 1.895 ± 2.042 14 3 1260

20 RA HC 2.385 ± 3.123 2.060 ± 2.712 25 17 1075
DHC 4.548 ± 3.243 3.709 ± 2.648 38 27 1540

RP HC 1.595 ± 2.131 1.377 ± 1.837 16 18 1135
DHC 4.248 ± 3.093 3.494 ± 2.566 29 28 1479

Figure 5: Evaluation of the precision of the 3D/2D registration of the second dataset of MAPCAs. The results
for smax = ±30 are not presented since the number of outlier reach 50% of the tests, and thus are not significant.

While the most precise results, in term of 3D TRE but mainly in term of number of outliers, are obtained
with the dense hill climbing (DHC) algorithm with the synthetic CT dataset (0.161 ± 0.645mm with 1% of
outliers and smax = ±30), the hill climbing algorithm7 (HC) provides better results when dealing with the real
pediatric CT datasets (0.236 ± 0.607mm with with 1% of outliers for the first and 1.377 ± 1.837mm with 16%
of outliers for the second with smax = ±20). First, that confirms that the precision of the registration depends
on the quality of the projected CT dataset, which also defined the behavior of the similarity measure. Secondly,
that also reinforces our assumption that taking into account more locations for the 3D CT data in the search
scheme, as presented in section 2.4, is relevant only if the similarity measure presents a few number of local false
optima, i.e is well behaved in the vicinity of the true pose of the CT data. Otherwise, the risks that trapping
the optimization algorithm into a false local minimum increased enough to clearly limited the robustness of the
registration. However, the proposed optimization algorithm, with the aortic phantom, allows the registration to
be very precise with smax = 30 and exact if smax ≤ 20. If coupled with an appropriate similarity measure, the
dense hill climbing algorithm promises to be more efficient than the hill climbing optimization.

Concerning the reference frame Ra or Rp from where the rigid transformation matrix T is defined, it appears
that, when associated with the proper optimization algorithm, defining the transformation in respect of the
projection plane reference Rp increases significantly the accuracy of the registration by decreasing the final
standard deviation of the target-to-registration error.

(a) Synthetic phantom (b) First MAPCAs (c) Second MAPCAs

Figure 6: Examples of registration results in 2D with all the tomographic datasets.
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3.3 Motion compensation results
The results of the respiratory motion compensation are illustrated by the Figures 7(a) and 7(b). The simulated
respiratory motion is represented by the green points while the compensated movement is shown by the orange
squares that represent the TRE3D error. The frequency of the X-ray acquisition is 0.6 Hz which leads to one
angiography acquisition each 1.67s.

(a) Compensation of a perfect sinusoidal movement. (b) Compensation of an altered movement.

Figure 7: Automatic compensation of the respiratory motion with the second dataset of MAPCAs. The
compensation was performed with the hill climbing algorithm and the rigid transformations defined within the
reference frame Rp of the projection plane.

The propose registration framework is able to compensate a rigid breathing motion of an amplitude of
±20mm. While the compensation is perfect with the exactly sinusoidal motion, some errors appear with the
altered motion. However, these errors are rapidly corrected and, furthermore, are not propagated.

4. CONCLUSION

This study aimed at presenting a 3D/2D registration workflow for pediatric cardiac interventions. Navigation
using X-ray angiography during percutaneous interventions is highly challenging, since it involves mentally
registering two 2D views of a moving 3D anatomical structure into the patient reference. This paper presents
a novel technique for biplane intensity-based registration of the aortic root with MAPCAs of a pre-operative
tomographic acquisition and X-ray angiography imaging. The main contribution of this work is a new 3D/2D rigid
registration framework that is based on three steps. First, the wobbled splatting DRR computation method12

is improved by replacing the final gaussian smoothing with the COT kernel13 and by approximating the length
of the projection rays within the voxels they cross through. Secondly, the definition of the rigid transformations
applied to the 3D volumetric CT data with respect of the local reference of one of the projection planes allows the
registration to be more accurate. Finally, two algorithms are used to solve the pose estimation problem: the hill
climbing algorithm7 and a modified version, the dense hill climbing algorithm, which considers a combination
of transformations. Besides, the proposed method allows to compensate, with confidence, a simulated rigid
respiratory movement and thus could be used to obtain an augmented reality view to guide cardiologist navigate
through complicated and small anatomical structures such as MAPCAS vessels. Although this study focused
on the latter, the same procedure could be applied for any cardiovascular structures involving CT and X-
ray angiography. Our preliminary results are promising to automatically overlay a tomographic volumetric
acquisition of such small structure as MAPCAs with X-ray angiography in a reasonable computation time to
compensate a rigid respiratory motion during percutaneous interventions.
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