
A Maximum Likelihood Approach to Video Error
Correction Applied to H.264 Decoding

François Caron
Department of Software and IT Engineering

École de technologie supérieure, Université du Québec
1100 Notre Dame St. West, Montreal, H3C 1K1, Canada

cc-francois.caron@etsmtl.ca

Stéphane Coulombe
Department of Software and IT Engineering

École de technologie supérieure, Université du Québec
1100 Notre Dame St. West, Montreal, H3C 1K1, Canada

Stephane.Coulombe@etsmtl.ca

Abstract—In real-time video applications, where unreliable
networks are commonplace, corrupted video packets can
adversely affect visual quality. In this paper, we present a novel
maximum likelihood approach to performing video error
correction. Rather than discarding corrupted video packets, the
method estimates the likeliest syntactically valid video slice
content based on these packets. First, we present the
mathematical foundations that enable solution of the problem at
the slice level. Then, we present a simplified solution operating at
the syntax element level. The method's performance is evaluated
using the H.264 baseline profile. Unlike error concealment
methods, we correct the errors in the bitstream, instead of
reconstructing missing pixels. Simulation results show that the
method yields improved visual quality. Furthermore, the
proposed approach is computationally simpler than state-of-the-
art error concealment methods.

Keywords-maximum likelihood; video error correction; H.264

I. INTRODUCTION
Real-time video transmission is a challenging task,

especially when typical error handling mechanisms, such as
retransmission, cannot be used. The H.264 standard [1], with
its network friendly approach, introduced new coding tools to
deal with the challenging task of sending video from one
device to another. Flexible Macroblock Ordering (FMO) [3]
was introduced to break the traditional raster scan, ordering
allowing packets to hold non consecutive macroblocks (MBs).
As a result, packet loss has less impact, and error concealment
mechanisms are offered more information (boundaries). It was
hopped that error concealment, under FMO, would produce
better visual results.

Arbitrary Slice Ordering (ASO) [2] was introduced to break
up the relationship between packets, making every slice/packet
independently decodable. ASO also enhances the robustness of
the data to packet loss. Data partitioning [3] – available with
the Extended Profile – took the process one step further,
splitting the prediction information (MB types, motion vectors,
etc.) from the residual information (luminance and
chrominance values), based on the argument that the prediction
information was more important than the residual information.
Researchers verified this assumption by applying Unequal
Error Protection (UEP) schemes where data partitions A –
those carrying all the syntax elements belonging to Category 2
– are better protected. Intra placement, although not a new

feature, was enhanced, to allow Intra MBs to use information
from neighboring Inter MBs. These tools all share the same
two goals: 1) enhance robustness to data loss; and 2) assist
error concealment/resynchronization. They also share the same
drawback, as the added robustness comes at the cost of reduced
compression efficiency (lower visual quality compared to a non
error resilient scheme when there is no error).

Error concealment, by contrast, does not require additional
bandwidth (or doesn’t sacrifice bandwidth for error protection).
Using the correctly received information, as well as
information from the previous pictures, it estimates the value of
the missing pixels to reconstruct the pictures when errors occur.
Starting with Sun [18] and Kwok's [17] initial work,
researchers have published spatial, temporal, and hybrid
approaches to interpolate the lost pixels. The common
denominator throughout the error concealment literature is that
transmission errors only arise in the form of packet loss –
corrupted packets are always discarded. However, video data
fall into the class of applications that benefit from having
damaged data delivered, rather than discarded [4]. Wenger
conveniently illustrates the use of the forbidden_zero_bit in a
scenario where a smart node forwards a corrupted Network
Abstraction Layer Unit (NALU) to its destination [3].
Assuming that corrupted packets do reach the decoder,
Weidmann [5] uses Joint Source-Channel Decoding (JSCD) to
correct the CAVLC prediction residual coefficients found in
data partitions B and C, using the number of MBs extracted
from data partitions A, which are always intact, to impose
additional constraints on the solution. Wang and Yu [6] apply
JSCD to correct the motion vectors. Their experiment does not
comply with the H.264 standard, however, as partitions B and
C carry the horizontal and vertical motion vectors respectively.
Sabeva [7] applies JSCD to CABAC encoded bitstreams, on
the assumption that each packet carries an entire picture, and so
the number of MBs in a packet is known a priori. As both the
picture resolution and the visual quality increase, the solution
becomes increasingly complex computationally. Lee [8]
proposes to use Fuzzy Logic to feed information back to the
channel decoder, although they provide very few details about
their Fuzzy Logic engine.

Levine [9] and Nguyen [10] both apply iterative JSCD to a
CABAC coded stream. A Slice Candidate Generator produces
a list of hypothetical slices by flipping one or more bits in the

stephanecoulombe
Typewritten Text
Accepted in the 6th International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST 2012), 2012

mstewart
Texte tapé à la machine
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

corrupted slices received. Each candidate is then studied at the
semantic level. The bits that seem to have been correctly fixed
are fed back into the channel decoder between iterations, until
the likeliest bitstream is selected. Farrugia [11] uses a list
decoding approach, where the M likeliest feasible bitstreams
are reconstructed and evaluated in the pixel domain. Using a
value of M=5, the approach produces very good visual results.
However, its high computational complexity makes it
prohibitively costly for most applications. Trudeau [12]
proposes a two-step solution: decoding the corrupted stream
without a list of candidates, and concealing the potentially lost
MBs. The fit of the decoded and concealed MBs – the way they
connect to the correctly received MBs in the pixel domain – are
then compared, and the best fitting MBs are selected for
display. He does not assume the use of any error resilience or
data portioning method.

In this paper, we present a novel method for video error
correction based on maximum likelihood decoding at the
syntax element level. The proposed approach does not require
additional overhead for forward error correction, can be applied
in conjunction with error resiliency and requires fewer
computations than error concealment. The correction
performance translates into increased visual quality compared
to state-of-the-art error concealment. Fig. 1 shows the proposed
system's architecture. A video encoder first compresses and
packages video slices. After channel encoding, the slices are
sent to their destination via an unreliable channel. Upon
reception, the channel decoder forwards hard and/or soft
information (bits and/or information indicating the reliability of
each bit) to the communication protocol stack, where protocol
headers, typically IP headers, are checked for transmission
errors. Assuming that the headers are intact, the information is
then sent to the video application layer, where the headers of
other protocols, such as RTP, are used. Depending on the
results of the UDP checksum, the video information is sent
either directly to the video decoder or to the proposed video
error correction layer, to produce the likeliest video slice based
on the corrupted information received. If, after decoding, MBs
are still missing because they could not be repaired, they are
concealed before being displayed.

The rest of the paper is organized as follows. Section II
presents the slice-level maximum likelihood solution to
correcting transmission errors. Section III then presents a less
complex approach, in which the maximum likelihood approach
is applied to each syntax element individually. A solution is
then derived in section IV, specifically for four syntax elements
present in an H.264 slice header. The experimental results are
given in section V, and our concluding remarks are presented
in section VI.

II. SLICE-LEVEL MAXIMUM LIKELIHOOD DECODING
Let S = s1, s2 ,, sN{ } be the series of syntax elements (SE)

in a transmitted slice. For example, the H.264 standard uses the
SE first_mb_in_slice to indicate the raster index of the MB
coded first in the slice and the SE mb_type to indicate the MB
coding type. Let

S = s1, s2 ,, s N{ } be the series of SEs in a

received corrupted slice.

 Figure 1 Proposed system architecture

Although both

�

S and

�

˜ S contain the same number of bits,
the number of SEs in each slice may differ, due to transmission
errors affecting variable length codewords (VLC). For clarity,
let

�

LS ⋅() represent the number of syntax elements in a slice,
and let

�

LB ⋅() represent the number of bits in a slice or a
codeword. Since we know that

�

˜ S contains at least one
erroneous bit, let

�

H = ˆ S j 0 ≤ j < K{ } be the set of all

hypothetical syntactically valid slices of length

�

LB
˜ S () that

could have been sent (that is,

∀j :LB Ŝj() = LB S()), where

Ŝ j = ŝ1, ŝ2 ,, ŝN̂ j{ } is the series of SEs of the jth hypothetical

slice. A syntactically valid slice meets all the requirements of a
specific video standard (e.g. the ranges and restrictions
associated with each H.264 SE defined in subclause 7.4 and
Annex A respectively [1]). Note that

�

˜ S is not always an
element of

�

H .

Let

S* = s1

*, s2
,, sN

*{ } be the likeliest series of syntactically
valid SEs given that

�

˜ S was received. Equation (1) gives the
proposed slice-level maximum likelihood decoding approach
for finding

�

S*.

S* = argmax
Ŝ j∈H

P Ŝ j
S(){ } (1)

Using Baye's theorem, we can express (1) as follows:

S* = argmax
Ŝ j∈H

P S Ŝ j()× P Ŝ j()
P S()

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= argmax

Ŝ j∈H
P S Ŝ j()× P Ŝ j(){ } (2)

The denominator in (2) has been factored out, as it is
constant and maximizing the numerator is its equivalent. The
likelihood

�

P ˜ S ˆ S j() can be modeled as

�

LB
˜ S () independent

Bernoulli trials with a fixed success rate, represented by the bit
error rate, where the Hamming distance

�

d j , the number of
different bits between the two slices, represents the number of
successes:

�

P ˜ S ˆ S j() = ρ d j × 1− ρ()LB
˜ S ()−d j (3)

The bit error rate

�

ρ can either be estimated from the
observed received slices, or it could be a known value
guaranteed by the channel's quality of service.

The unknown number of MBs carried in a slice, combined
with the sequential dependencies between SEs, makes
evaluating

�

P ˆ S j() for a whole slice difficult and impractical.
Using the Chain Rule, we can conveniently account for the
sequential dependencies between SEs and write the probability

�

P ˆ S j() as follows:

P Ŝj() = P ŝ j , i ŝ j , i−1, ŝ j , i−2 ,, ŝ j , 1()
i=1

N̂ j

∏

= P ŝ j , 1()× P ŝ j , 2 ŝ j , 1()×× P ŝ j , N̂ j
ŝ j , N̂ j−1

, ŝ j , N̂ j−1
,, ŝ j , 1()

 (4)

Decomposing the Hamming distance

�

d j for each SE (i.e.

dj = dj , 1 + dj 2 ++ d

j , LS Ŝ j() , where

�

d j, i represents the number of

different bits between

�

ˆ s j, i and the bits in

�

˜ S at the same
positions), we can rewrite (3) as:

�

P ˜ S ˆ S j() = ρ d j, i × 1− ρ()LB ˆ s j, i()−d j, i

i=1

LS
ˆ S j()

∏ (5)

Substituting (4) and (5) into (2), we obtain:

S* = argmax
Ŝ j∈H

ρd j , i

i=1

LS Ŝ j()
∏ 1− ρ()LB ŝ j , i()−d j , i ×

P ŝ j , i ŝ j , i−1, ŝ j , i−2 ,, ŝ j , 1()

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 (6)

Finding the likeliest slice

�

S* is computationally expensive,
however. Let

�

H + be a set composed of all possible slices of
size

�

LB
˜ S () (it includes syntactically valid as well as invalid

slices). The cardinality, or number of elements, of

�

H + , denoted

�

Card H +() , is

�

2
LB

˜ S () . For an ideal video standard in terms of

compression efficiency, all the elements of

�

H + would be
syntactically valid and

�

H = H + . However, for existing video
standards, such as H.264,

�

Card H() is significantly smaller than

�

Card H +() (i.e.

�

H ⊂ H +), and even with additional constraints,

�

Card H() will still be extremely large. It is clear that a method
operating on a smaller solution space, and following the
sequential behavior of existing decoders would be highly
desirable for real-time video applications.

III. SE-LEVEL MAXIMUM LIKELIHOOD DECODING
To alleviate the problems discussed in the previous section,

we propose a breadth-first approach based solely on the
previously decoded SE. By maximizing the likelihood of
individual SEs, or groups of SEs, rather than the whole slice,
we are reducing the cardinality of the solution space, since each
maximization step eliminates all but one outcome.

Let

�

Ci = ˆ c i, j 0 ≤ j < M i{ } be the codebook containing all the

valid codewords the ith SE can use, and let

C* = c1

*,c2
*,,cM

*{ }
be the series containing the likeliest codewords creating a
syntactically valid slice using our proposed method. This
method progressively decodes each SE by maximizing the
codeword likelihood without considering the SEs in the slice
that remain to be decoded. Using a similar development
leading to (2), we can derive the SE-level maximum likelihood
decoding solution:

ci

* = argmax
ĉi, j∈Ci

P S ĉi, j()× P ĉi, j(){ } (7)

where the likelihood

�

P ˜ S ˆ c i, j() represents the ith term in (5),

and

�

P ˆ c i, j() represents the probability of a codeword being
selected based on the previously decoded SEs.

�

P ˜ S ˆ c i, j() = ρ d i, j 1− ρ()LB ˆ c i, j()−d i, j (8)

P ĉi, j() = P ĉi, j ci−1

* ,ci−2
* ,,c1

*() (9)

Substituting (8) and (9) into (7), we obtain:

ci
* = argmax

ĉi , j∈Ci

ρdi , j 1− ρ()LB ĉi , j()−di , j ×

P ĉi, j ci−1
* ,ci−2

* ,,c1
*()

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (10)

A small adjustment to (10) is required to account for the use
of VLC. The maximization step should consider the same
number of bits, as a codeword's exposure to transmission errors
increases with its length. Since we are not using the subsequent
SEs to maximize the likelihood, we can use the so-called
Random Tail Assumption [5] to model the bits beyond the
codeword under study as random events to account for the
codeword length differences.

Let

�

max LB Ci()() represent the number of bits in the longest
codeword in the codebook

�

Ci. Assuming that the coded video
information is generated by a good binary source (i.e. zeros and
ones are equally likely), the uninterpreted bits can be seen as
random information:

ci
* = argmax

ĉi, j∈Ci

ρdi , j 1− ρ()LB ĉi , j()−di , j ×
1
2
max LB Ci()()−LB ĉi , j() ×

P ĉi, j ci−1
* ,ci−2

* ,,c1
*()

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 (11)

IV. SLICE HEADER CORRECTION BASED ON SE-LEVEL ML
DECODING APPLIED TO H.264

Consider the scenario where an H.264 Baseline profile
encoder sends video coding layer (VCL) packets using
unreliable means and non VCL packets using reliable means.
In addition, consider that the MBs are coded following the
raster scan order, and that the transmitted slices are limited to a
fixed number of bytes and arrive in the order in which they
were sent. Finally, consider that all the packets sent reach their
destination. To test our approach, we model the following
syntax elements: first_mb_in_slice, slice_type, frame_num and

pic_order_cnt_lsb, since the last three SEs all depend on the
SE first_mb_in_slice.

The SE first_mb_in_slice represents the raster scan index of
the first coded MB carried in the slice. Under our current
assumptions, the number of MBs carried in a slice can be
expressed as the difference between the values used in
consecutive slices associated with the same picture. For clarity,
we will use the notation

�

ci
k−1() to represent the value of a

reconstructed codeword from the previous slice, and

�

ˆ c 1, j to
represent the jth valid value of first_mb_in_slice in the kth slice.
In addition, let X, a discrete random variable, represent the
difference between

�

ˆ c 1, j and

�

c1
k−1() , corresponding to the

number of MBs in the previous slice. Since we know that
transmission errors can affect the number of MBs extracted
from a corrupted slice, and because X represents a count, let us
assume that X follows a Poisson distribution. Then, the
probability of an outcome

�

ˆ c 1, j can be expressed using the
previously reconstructed value as follows:

�

P ˆ c 1, j() =
e−E X()E X() ˆ c 1, j −c1

k−1()⎛
⎝
⎜ ⎞

⎠
⎟

ˆ c 1, j − c1
k−1()⎛

⎝
⎜ ⎞

⎠
⎟

 (12)

where

�

E X() is the average number of MBs in a slice and
can be estimated using the intact slices previously received. It
is worth mentioning that the last slice associated with a picture
is not considered in estimating

�

E X() in our scenario. Limiting
the maximum number of bytes a packet may carry introduces
the possibility that the last slice contains significantly fewer
MBs than the other slices since MBs associated with different
pictures cannot be transported together.

The SE slice_type indicates the coding type employed in
the current slice. Under our current assumptions, the valid
outcomes are 0 or 5 for Inter coding, and 2 or 7 for Intra
coding. Values above 4, corresponding to the higher range, are
used to indicate that all the slices associated with the current
picture share the same coding type. We assume that the
encoder does not mix values from the lower and higher ranges
within a picture, because if it does, the only slice using
information in the higher range could be lost during
transmission. This behavior has been observed in the H.264
reference software JM 18.2 [15]. We can model the SE
slice_type as two pairwise independent Bernoulli trials. The
first experiment checks for the range used, where a value in the
range above 4 indicates success. The second experiment checks
for the coding type, where the use of Intra coding indicates
success. Furthermore, the value of the SE first_mb_in_slice
(

�

c1
*) must be considered, since the effect of using a slice_type

value above 4 is limited by the picture boundaries. The
conditional probability distribution of

�

ˆ c 2, j varies, based on the

reconstructed value

�

c2
k−1() . This means that, for each

combination of

�

c2
k−1() and

�

c1
*, we obtain a different probability

distribution:

P ĉ2, j c1
*() =

1−α() ⋅ δ ĉ2, j() ⋅ 1− β() +δ ĉ2, j − 2() ⋅β() +
α ⋅ δ ĉ2, j − 5() ⋅ 1− β() +δ ĉ2, j − 7() ⋅β()

c1
* = 0

δ ĉ2, j() ⋅ 1− β() +δ ĉ2, j − 2() ⋅β c1
* ≠ 0, c2

k−1() ≤ 4

δ ĉ2, j − c2
k−1()() c1

* ≠ 0, c2
k−1() > 4

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (13)

where

�

δ ⋅() is the discrete Dirac function (δ w() = 1 if
w = 0 ; δ w() = 0 otherwise),

�

α represents the probability that
a slice_type value above 4 is used, and

�

β represents the
probability that the slice_type value maps to Intra coding. Both
probabilities are estimated from the previously reconstructed
slice_type values.

The SEs frame_num and pic_order_cnt_lsb are used to
identify pictures. They both represent the least significant bits
of monotonically increasing sequences, where the use of a new
value is triggered when the value of first_mb_in_slice (

�

c1
*)

equals 0 (the start of a new picture). Subclause 7.4.3 [1]
specifically indicates that all slices belonging to the same
picture shall use the same values of frame_num and
pic_order_cnt_lsb. The only difference is that
pic_order_cnt_lsb's increment is typically 2 instead of 1 [16].
Assuming that slices may be damaged but never lost, this
behavior indicates that we only need to consider two outcomes:
either the same values present in the previous slice are used, or
the least significant bits of the next value in the monotonically
increasing sequence are used. As in the case of

�

ˆ c 2, j , the
conditional probability distribution of

�

ˆ c 3, j and

�

ˆ c 4, j varies
based on previously reconstructed values:

�

P ˆ c 3, j c2
* ,c1

*() =
δ ˆ c 3, j − c3

k−1()⎛
⎝
⎜ ⎞

⎠
⎟ c1

* ≠ 0

δ ˆ c 3, j − lsb c3
k−1() + 1⎛

⎝
⎜ ⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ c1

* = 0

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

 (14)

�

P ˆ c 4, j c3
* ,c2

* ,c1
*() =

δ ˆ c 4, j − c4
k−1()⎛

⎝
⎜ ⎞

⎠
⎟ c1

* ≠ 0

δ ˆ c 4, j − lsb c4
k−1() + 2⎛

⎝
⎜ ⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟ c1

* = 0

⎧

⎨
⎪ ⎪

⎩
⎪
⎪

 (15)

where

�

lsb ⋅() is the modulo operator. The divisors are
derived from the SEs log2_max_frame_num_minus4 and
log2_max_pic_order_cnt_lsb_minus4, found in the active
Sequence Parameter Set.

V. EXPERIMENTAL RESULTS
The DVD-NTSC sequences Driving, Opening ceremony,

and Whale show were coded using the JM 18.2 software [15].
The first 60 frames of each sequence were selected, where the
first picture was coded as an IDR picture and the 31st picture
was coded using only Intra slices. The other 58 pictures were
coded using Inter slices. The packet size was limited to 100
bytes, so as to obtain slices with a variable number of MBs.

The decoder corrects the four SEs as described above, and
uses the rest of the slice if it can. If an invalid codeword is
encountered during the decoding of the remaining SEs (i.e.

motion vectors, residual coefficients, MB coding types, etc.),
the MB containing the syntax error, as well as the remaining
MBs in the slice, are discarded. The MBs successfully decoded
(i.e. those containing only valid SEs) are reconstructed. When
all the slices associated with a picture have been decoded, the
missing MBs are concealed using the state-of-the-art error
concealment method described in [13] with the following
parameters:

�

α = 0.5 ,

�

λ = 0.1 ,

�

σ1
2 = 0.5 ,

�

σ 2
2 = 4 ,

�

T = 40 ,

�

T1 = 0.01 , and the diffusion process is limited to 30 iterations.
Furthermore, the algorithm described in [14] is used to select
the order in which the missing MBs are concealed.

To evaluate the performance of the proposed method, we
used three different quantization parameters (QP), as these will
affect the number of MBs per slice. Errors were introduced
using a Gilbert-Elliott channel with a fixed bit error rate of 10-5
and three different average burst lengths (ABL), 2, 4 and 9, to
make consecutive slices more or less likely to contain errors.
The locations of the erroneous bits were selected with a
Uniform Distribution, as we assumed that a bit interleaver was
used to combat burst errors. For each combination of QP and
ABL, 10 noisy sequences were generated. A total of 270
corrupted sequences were studied.

Table I presents both the average number of MBs and the
standard deviation per slice type (Intra and Inter) for each
combination of sequence and QP. The values increase
significantly from QP 28 to QP 40, especially in the case of the
Opening ceremony sequence. The effects of such a large
standard deviation are apparent in Tables II, III, and IV. As
expected, the average number of MBs per slice increases with
increasing QP, reaching values between 18 and 88 for QP=40
in the case of Inter slices, which makes error correction very
challenging.

Tables II, III, and IV list the statistical errors committed by
the proposed approach applied at the SE level. Type I errors
refer to the cases where the received value of first_mb_in_slice
was actually correct, and the reconstructed value, after our
correction method, was incorrect (i.e. the correction should not
have changed the value). Type II errors refer to the cases where
the received value was incorrect and remained unchanged after
the correction step (i.e. the correction should have changed the
value, but it didn’t).

Table I. Statistics on MBs per slice

Sequence QP Intra
average

Intra
standard
deviation

Inter
average

Inter
standard
deviation

Driving
20 1.1 0.58 1.5 1.03
28 2.0 1.55 5.1 4.76
40 9.2 5.30 38.6 15.3

Opening
ceremony

20 1.0 0.21 1.7 1.51
28 1.3 1.06 8.0 14.2
40 4.0 3.39 88.3 112.9

Whale
show

20 1.1 0.31 1.1 0.43
28 1.6 1.00 2.3 1.75
40 6.7 4.16 18.0 14.28

The effect of a very large average and standard deviation

(Table I) when a QP of 40 is used to compress the Opening
ceremony sequence is apparent in Table IV. As the ABL
increases, the probability of committing a type I error increases

to nearly 50%. However, the number of type I statistical errors
committed with the other sequences is very low, no matter
what the conditions were.

Table II. Statistical errors for first_mb_in_slice (ABL = 2)

Sequence QP Corrupted
slices

Type I
errors

Type II
errors

Driving
20 387 1 0
28 171 6 1
40 37 0 1

Opening
ceremony

20 241 0 0
28 90 2 2
40 25 7 1

Whale
show

20 365 0 1
28 223 0 0
40 42 4 0

Table III. Statistical errors for first_mb_in_slice (ABL = 4)

Sequence QP Corrupted
slices

Type I
errors

Type II
errors

Driving
20 142 0 1
28 148 10 2
40 38 2 0

Opening
ceremony

20 182 2 2
28 144 9 0
40 45 22 1

Whale
show

20 89 0 0
28 164 2 0
40 42 5 1

Table IV. Statistical errors for first_mb_in_slice (ABL = 9)

Sequences QP Corrupted
slices

Type I
errors

Type II
errors

Driving
20 113 0 1
28 109 14 3
40 102 4 0

Opening
ceremony

20 198 25 2
28 89 21 0
40 77 36 1

Whale
show

20 108 0 0
28 135 0 0
40 157 5 1

Fig. 2 presents the PSNR distribution of the first picture
affected by transmission errors. The box plots appear in pairs.
The first box plot represents the PSNR distribution when a
state-of-the-art concealment method is used, combined with an
optimal concealment order selection. The second box plot
represents the PSNR distribution when our proposed method is
used. Each row of box plots is associated with an ABL, while
each column is associated with a video sequence.

The results show that a higher PSNR is expected with our
method. Although there are statistical errors, the vast majority
of the observations show improvements when error correction
is applied first, as this reduces the area where error
concealment is applied. Indeed, the error concealment method
performs better when MBs are successfully repaired from
corrupted slices. Over the three sequences tested, for an ABL
value of 2 and a QP of 28, the average expected PSNR gains
range from 0.75 dB to 2.22 dB with peaks at 3.67 dB. The
worst loss observed (concealment performed better than our
method) was of -0.32 dB.

Figure 2 PSNR distributions using state-of-the-art error concealment [13][14] and our proposed method. Boxes 1, 3, and 5 correspond to state-of-the-art error
concealment with QP=20, 28, and 40 respectively. Boxes 2, 4, and 6 correspond to the proposed error correction method followed by the same state-of-the-art
error concealment method with QP=20, 28, and 40 respectively. The rows correspond to ABL values of 2, 4, and 9 respectively. The columns correspond to the
video sequences Driving, Opening ceremony, and Whale show respectively.

VI. CONCLUSION
In this paper, we presented a novel maximum likelihood

method for performing video error correction, both at the slice
level and at the SE level. We have demonstrated that a breadth-
first approach at the SE level using only four H.264 slice
header SEs performed better than a state-of-the-art error
concealment method at a BER of 10-5. Not only were the PSNR
results better, but they were obtained using significantly fewer
computations. Future work will be aimed at modeling more
SEs, as well as applying the method to the upcoming HEVC
standard.

ACKNOWLEDGMENT
The authors thank Dr. Yan Chen for validating our spatio-

temporal cost function implementation of [13].

REFERENCES
[1] "Advanced Video Coding for Generic Audiovisual Services," ISO/IEC

14496-10 and ITU-T Recommendation H.264, Nov. 2007.
[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra. "Overview of

the H.264/AVC video coding standard," IEEE Trans. on Circuits and
Systems for Video Technology, vol. 13, no. 7, p. 560-576, July 2003.

[3] S. Wenger. "H.264/AVC over IP," IEEE Trans. on Circuits and Systems
for Video Technology, vol. 13, no 7, p. 645-656, July 2003.

[4] L. A. Larzon, M. Degemark and S. Pink. "UDP lite for real time
multimedia," IEEE Int. Conf. on Communications, June 1999.

[5] C. Weidman, P. Kadlec, O. Nemethova and A. Al Moghrabi. "Combined
sequential decoding and error concealment of H.264 video," IEEE 6th
Workshop on Multimedia Signal Processing, p. 299-302, Sept. 2004.

[6] Y. Wang and S. Yu. "Joint Source-Channel Decoding for H.264 Coded
Video Stream," IEEE Trans. on Consumer Electronics, vol. 51, no 4, p.
1273-1276, Nov. 2005.

[7] G. Sabeva, S. Ben Jamaa, M. Kieffer and P. Duhamel. "Robust
Decoding of H.264 Encoded Video Transmitted over Wireless

Channels," IEEE 8th Workshop on Multimedia Signal Processing, p. 9-
13, Oct. 2006.

[8] W. T. Lee, H. Chen, Y. Hwang and J. J. Chen. "Joint Source-Channel
Decoder for H.264 Coded Video Employing Fuzzy Adaptive Method,"
IEEE Int. Conf. on Multimedia and Expo, p. 755-758, July 2007.

[9] D. Levine, W. E. Lynch and T. Le-Ngoc. "Iterative Joint Source-
Channel Decoding of H.264 Compressed Video," IEEE Int. Symposium
on Circuits and Systems, p. 1517-1520, May 2007.

[10] N. Q. Nguyen, W. E. Lynch and T. Le-Ngoc. "Iterative Joint Source-
Channel Decoding for H.264 video transmission using virtual checking
method at source decoder," 23rd Canadian Conf. on Electrical and
Computer Engineering, p.1-4, May 2010.

[11] R. Farrugia and C. Debono. "Robust decoder-based error control strategy
for recovery of H.264/AVC video content," IET Communications, vol.
5, no 13, p. 1928-1938, Sept. 2011.

[12] L. Trudeau, S. Coulombe and S. Pigeon. "Pixel domain referenceless
visual degradation detection and error concealment for mobile video,"
18th IEEE Int. Conf. on Image Processing, p. 2229-2232, Sept. 2011.

[13] Y. Chen, Y. Hu, O. Au, H. Li and C. W. Chen. "Video Error
Concealment Using Spatio-Temporal Boundary Matching and Partial
Differential Equation," IEEE Trans. on Multimedia, vol. 10, no 1, p. 2-
15, Jan. 2008.

[14] X. Qian, G. Liu and H. Wang. "Recovering Connected Error Region
Based on Adaptive Error Concealment Order Determination," IEEE
Trans. on Multimedia, vol. 11, no 4, p. 683-695, June 2009.

[15] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG.
"H.264/AVC JM reference software," 2011,
http://iphome.hhi.de/suehring/tml/.

[16] J. B. Lee and H. Kalva. "The VC-1 and H.264 Video Compression
Standards for Broadcast Video Services (Multimedia Systems and
Applications)," Springer, Aug. 2008.

[17] W. Kwok and H. Sun. "Multi-directional interpolation for spatial error
concealment," IEEE Trans. on Consumer Electronics, vol. 39, no 3, p.
455-460, June 1993.

[18] H. Sun and W. Kwok. "Concealment on Damaged Block Transform
Coded Images Using Projections onto Convex Sets," IEEE Trans. on
Image Processing, vol. 4, no 4, p. 470-477, Apr. 1995.

