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Abstract—In real-time video applications, where unreliable 
networks are commonplace, corrupted video packets can 
adversely affect visual quality. In this paper, we present a novel 
maximum likelihood approach to performing video error 
correction. Rather than discarding corrupted video packets, the 
method estimates the likeliest syntactically valid video slice 
content based on these packets. First, we present the 
mathematical foundations that enable solution of the problem at 
the slice level. Then, we present a simplified solution operating at 
the syntax element level. The method's performance is evaluated 
using the H.264 baseline profile. Unlike error concealment 
methods, we correct the errors in the bitstream, instead of 
reconstructing missing pixels. Simulation results show that the 
method yields improved visual quality. Furthermore, the 
proposed approach is computationally simpler than state-of-the-
art error concealment methods. 
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I.  INTRODUCTION 
Real-time video transmission is a challenging task, 

especially when typical error handling mechanisms, such as 
retransmission, cannot be used. The H.264 standard [1], with 
its network friendly approach, introduced new coding tools to 
deal with the challenging task of sending video from one 
device to another. Flexible Macroblock Ordering (FMO) [3] 
was introduced to break the traditional raster scan, ordering 
allowing packets to hold non consecutive macroblocks (MBs). 
As a result, packet loss has less impact, and error concealment 
mechanisms are offered more information (boundaries). It was 
hopped that error concealment, under FMO, would produce 
better visual results. 

Arbitrary Slice Ordering (ASO) [2] was introduced to break 
up the relationship between packets, making every slice/packet 
independently decodable. ASO also enhances the robustness of 
the data to packet loss. Data partitioning [3] – available with 
the Extended Profile – took the process one step further, 
splitting the prediction information (MB types, motion vectors, 
etc.) from the residual information (luminance and 
chrominance values), based on the argument that the prediction 
information was more important than the residual information. 
Researchers verified this assumption by applying Unequal 
Error Protection (UEP) schemes where data partitions A – 
those carrying all the syntax elements belonging to Category 2 
– are better protected. Intra placement, although not a new 

feature, was enhanced, to allow Intra MBs to use information 
from neighboring Inter MBs. These tools all share the same 
two goals: 1) enhance robustness to data loss; and 2) assist 
error concealment/resynchronization. They also share the same 
drawback, as the added robustness comes at the cost of reduced 
compression efficiency (lower visual quality compared to a non 
error resilient scheme when there is no error). 

Error concealment, by contrast, does not require additional 
bandwidth (or doesn’t sacrifice bandwidth for error protection). 
Using the correctly received information, as well as 
information from the previous pictures, it estimates the value of 
the missing pixels to reconstruct the pictures when errors occur. 
Starting with Sun [18] and Kwok's [17] initial work, 
researchers have published spatial, temporal, and hybrid 
approaches to interpolate the lost pixels. The common 
denominator throughout the error concealment literature is that 
transmission errors only arise in the form of packet loss – 
corrupted packets are always discarded. However, video data 
fall into the class of applications that benefit from having 
damaged data delivered, rather than discarded [4]. Wenger 
conveniently illustrates the use of the forbidden_zero_bit in a 
scenario where a smart node forwards a corrupted Network 
Abstraction Layer Unit (NALU) to its destination [3]. 
Assuming that corrupted packets do reach the decoder, 
Weidmann [5] uses Joint Source-Channel Decoding (JSCD) to 
correct the CAVLC prediction residual coefficients found in 
data partitions B and C, using the number of MBs extracted 
from data partitions A, which are always intact, to impose 
additional constraints on the solution. Wang and Yu [6] apply 
JSCD to correct the motion vectors. Their experiment does not 
comply with the H.264 standard, however, as partitions B and 
C carry the horizontal and vertical motion vectors respectively. 
Sabeva [7] applies JSCD to CABAC encoded bitstreams, on 
the assumption that each packet carries an entire picture, and so 
the number of MBs in a packet is known a priori. As both the 
picture resolution and the visual quality increase, the solution 
becomes increasingly complex computationally. Lee [8] 
proposes to use Fuzzy Logic to feed information back to the 
channel decoder, although they provide very few details about 
their Fuzzy Logic engine. 

Levine [9] and Nguyen [10] both apply iterative JSCD to a 
CABAC coded stream. A Slice Candidate Generator produces 
a list of hypothetical slices by flipping one or more bits in the 
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corrupted slices received. Each candidate is then studied at the 
semantic level. The bits that seem to have been correctly fixed 
are fed back into the channel decoder between iterations, until 
the likeliest bitstream is selected. Farrugia [11] uses a list 
decoding approach, where the M likeliest feasible bitstreams 
are reconstructed and evaluated in the pixel domain. Using a 
value of M=5, the approach produces very good visual results. 
However, its high computational complexity makes it 
prohibitively costly for most applications. Trudeau [12] 
proposes a two-step solution: decoding the corrupted stream 
without a list of candidates, and concealing the potentially lost 
MBs. The fit of the decoded and concealed MBs – the way they 
connect to the correctly received MBs in the pixel domain – are 
then compared, and the best fitting MBs are selected for 
display. He does not assume the use of any error resilience or 
data portioning method. 

In this paper, we present a novel method for video error 
correction based on maximum likelihood decoding at the 
syntax element level. The proposed approach does not require 
additional overhead for forward error correction, can be applied 
in conjunction with error resiliency and requires fewer 
computations than error concealment. The correction 
performance translates into increased visual quality compared 
to state-of-the-art error concealment. Fig. 1 shows the proposed 
system's architecture. A video encoder first compresses and 
packages video slices. After channel encoding, the slices are 
sent to their destination via an unreliable channel. Upon 
reception, the channel decoder forwards hard and/or soft 
information (bits and/or information indicating the reliability of 
each bit) to the communication protocol stack, where protocol 
headers, typically IP headers, are checked for transmission 
errors. Assuming that the headers are intact, the information is 
then sent to the video application layer, where the headers of 
other protocols, such as RTP, are used. Depending on the 
results of the UDP checksum, the video information is sent 
either directly to the video decoder or to the proposed video 
error correction layer, to produce the likeliest video slice based 
on the corrupted information received. If, after decoding, MBs 
are still missing because they could not be repaired, they are 
concealed before being displayed. 

The rest of the paper is organized as follows. Section II 
presents the slice-level maximum likelihood solution to 
correcting transmission errors. Section III then presents a less 
complex approach, in which the maximum likelihood approach 
is applied to each syntax element individually. A solution is 
then derived in section IV, specifically for four syntax elements 
present in an H.264 slice header. The experimental results are 
given in section V, and our concluding remarks are presented 
in section VI. 

II. SLICE-LEVEL MAXIMUM LIKELIHOOD DECODING 
Let  S = s1, s2 ,, sN{ }  be the series of syntax elements (SE) 

in a transmitted slice. For example, the H.264 standard uses the 
SE first_mb_in_slice to indicate the raster index of the MB 
coded first in the slice and the SE mb_type to indicate the MB 
coding type. Let 

 
S = s1, s2 ,, s N{ }  be the series of SEs in a 

received corrupted slice. 

 
 Figure 1 Proposed system architecture 

Although both 

� 

S  and 

� 

˜ S  contain the same number of bits, 
the number of SEs in each slice may differ, due to transmission 
errors affecting variable length codewords (VLC). For clarity, 
let 

� 

LS ⋅( )  represent the number of syntax elements in a slice, 
and let 

� 

LB ⋅( )  represent the number of bits in a slice or a 
codeword. Since we know that 

� 

˜ S  contains at least one 
erroneous bit, let 

� 

H = ˆ S j 0 ≤ j < K{ }  be the set of all 

hypothetical syntactically valid slices of length 

� 

LB
˜ S ( )  that 

could have been sent (that is, 
 
∀j :LB Ŝj( ) = LB S( ) ), where 

 
Ŝ j = ŝ1, ŝ2 ,, ŝN̂ j{ }  is the series of SEs of the jth hypothetical 

slice. A syntactically valid slice meets all the requirements of a 
specific video standard (e.g. the ranges and restrictions 
associated with each H.264 SE defined in subclause 7.4 and 
Annex A respectively [1]). Note that 

� 

˜ S  is not always an 
element of 

� 

H .  

Let 
 
S* = s1

*, s2
*,, sN*

*{ }  be the likeliest series of syntactically 
valid SEs given that 

� 

˜ S  was received. Equation (1) gives the 
proposed slice-level maximum likelihood decoding approach 
for finding 

� 

S*. 

    

S* = argmax
Ŝ j∈H

P Ŝ j
S( ){ }  (1) 

Using Baye's theorem, we can express (1) as follows: 

 

   

S* = argmax
Ŝ j∈H

P S Ŝ j( )× P Ŝ j( )
P S( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= argmax

Ŝ j∈H
P S Ŝ j( )× P Ŝ j( ){ }  (2) 

The denominator in (2) has been factored out, as it is 
constant and maximizing the numerator is its equivalent. The 
likelihood 

� 

P ˜ S ˆ S j( )  can be modeled as 

� 

LB
˜ S ( )  independent 

Bernoulli trials with a fixed success rate, represented by the bit 
error rate, where the Hamming distance 

� 

d j , the number of 
different bits between the two slices, represents the number of 
successes: 

 

� 

P ˜ S ˆ S j( ) = ρ d j × 1− ρ( )LB
˜ S ( )−d j  (3) 



The bit error rate 

� 

ρ  can either be estimated from the 
observed received slices, or it could be a known value 
guaranteed by the channel's quality of service. 

The unknown number of MBs carried in a slice, combined 
with the sequential dependencies between SEs, makes 
evaluating 

� 

P ˆ S j( )  for a whole slice difficult and impractical. 
Using the Chain Rule, we can conveniently account for the 
sequential dependencies between SEs and write the probability 

� 

P ˆ S j( )  as follows: 

 

P Ŝj( ) = P ŝ j , i ŝ j , i−1, ŝ j , i−2 ,, ŝ j , 1( )
i=1

N̂ j

∏

= P ŝ j , 1( )× P ŝ j , 2 ŝ j , 1( )×× P ŝ j , N̂ j
ŝ j , N̂ j−1

, ŝ j , N̂ j−1
,, ŝ j , 1( )

  (4) 

Decomposing the Hamming distance 

� 

d j  for each SE (i.e. 

 
dj = dj , 1 + dj 2 ++ d

j , LS Ŝ j( ) , where 

� 

d j, i  represents the number of 

different bits between 

� 

ˆ s j, i  and the bits in 

� 

˜ S  at the same 
positions), we can rewrite (3) as: 

 

� 

P ˜ S ˆ S j( ) = ρ d j, i × 1− ρ( )LB ˆ s j, i( )−d j, i

i=1

LS
ˆ S j( )

∏  (5) 

Substituting (4) and (5) into (2), we obtain: 

 

 

S* = argmax
Ŝ j∈H

ρd j , i

i=1

LS Ŝ j( )
∏ 1− ρ( )LB ŝ j , i( )−d j , i ×

P ŝ j , i ŝ j , i−1, ŝ j , i−2 ,, ŝ j , 1( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 (6) 

Finding the likeliest slice 

� 

S* is computationally expensive, 
however. Let 

� 

H +  be a set composed of all possible slices of 
size 

� 

LB
˜ S ( )  (it includes syntactically valid as well as invalid 

slices). The cardinality, or number of elements, of 

� 

H + , denoted 

� 

Card H +( ) , is 

� 

2
LB

˜ S ( ) . For an ideal video standard in terms of 

compression efficiency, all the elements of 

� 

H +  would be 
syntactically valid and 

� 

H = H + . However, for existing video 
standards, such as H.264, 

� 

Card H( )  is significantly smaller than 

� 

Card H +( )  (i.e. 

� 

H ⊂ H + ), and even with additional constraints, 

� 

Card H( )  will still be extremely large. It is clear that a method 
operating on a smaller solution space, and following the 
sequential behavior of existing decoders would be highly 
desirable for real-time video applications. 

III. SE-LEVEL MAXIMUM LIKELIHOOD DECODING 
To alleviate the problems discussed in the previous section, 

we propose a breadth-first approach based solely on the 
previously decoded SE. By maximizing the likelihood of 
individual SEs, or groups of SEs, rather than the whole slice, 
we are reducing the cardinality of the solution space, since each 
maximization step eliminates all but one outcome. 

Let 

� 

Ci = ˆ c i, j 0 ≤ j < M i{ } be the codebook containing all the 

valid codewords the ith SE can use, and let 
 
C* = c1

*,c2
*,,cM

*{ }  
be the series containing the likeliest codewords creating a 
syntactically valid slice using our proposed method. This 
method progressively decodes each SE by maximizing the 
codeword likelihood without considering the SEs in the slice 
that remain to be decoded. Using a similar development 
leading to (2), we can derive the SE-level maximum likelihood 
decoding solution: 

 
   
ci

* = argmax
ĉi, j∈Ci

P S ĉi, j( )× P ĉi, j( ){ }  (7) 

where the likelihood 

� 

P ˜ S ˆ c i, j( )  represents the ith term in (5), 

and 

� 

P ˆ c i, j( )  represents the probability of a codeword being 
selected based on the previously decoded SEs. 

 

� 

P ˜ S ˆ c i, j( ) = ρ d i, j 1− ρ( )LB ˆ c i, j( )−d i, j  (8) 

 
 
P ĉi, j( ) = P ĉi, j ci−1

* ,ci−2
* ,,c1

*( )  (9) 

Substituting (8) and (9) into (7), we obtain: 

 

 

ci
* = argmax

ĉi , j∈Ci

ρdi , j 1− ρ( )LB ĉi , j( )−di , j ×

P ĉi, j ci−1
* ,ci−2

* ,,c1
*( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (10) 

A small adjustment to (10) is required to account for the use 
of VLC. The maximization step should consider the same 
number of bits, as a codeword's exposure to transmission errors 
increases with its length. Since we are not using the subsequent 
SEs to maximize the likelihood, we can use the so-called 
Random Tail Assumption [5] to model the bits beyond the 
codeword under study as random events to account for the 
codeword length differences. 

Let 

� 

max LB Ci( )( ) represent the number of bits in the longest 
codeword in the codebook 

� 

Ci. Assuming that the coded video 
information is generated by a good binary source (i.e. zeros and 
ones are equally likely), the uninterpreted bits can be seen as 
random information: 

 

 

ci
* = argmax

ĉi, j∈Ci

ρdi , j 1− ρ( )LB ĉi , j( )−di , j ×
1
2
max LB Ci( )( )−LB ĉi , j( ) ×

P ĉi, j ci−1
* ,ci−2

* ,,c1
*( )

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 (11) 

IV. SLICE HEADER CORRECTION BASED ON SE-LEVEL ML 
DECODING APPLIED TO H.264 

Consider the scenario where an H.264 Baseline profile 
encoder sends video coding layer (VCL) packets using 
unreliable means and non VCL packets using reliable means. 
In addition, consider that the MBs are coded following the 
raster scan order, and that the transmitted slices are limited to a 
fixed number of bytes and arrive in the order in which they 
were sent. Finally, consider that all the packets sent reach their 
destination. To test our approach, we model the following 
syntax elements: first_mb_in_slice, slice_type, frame_num and 



pic_order_cnt_lsb, since the last three SEs all depend on the 
SE first_mb_in_slice. 

The SE first_mb_in_slice represents the raster scan index of 
the first coded MB carried in the slice. Under our current 
assumptions, the number of MBs carried in a slice can be 
expressed as the difference between the values used in 
consecutive slices associated with the same picture. For clarity, 
we will use the notation 

� 

ci
k−1( )  to represent the value of a 

reconstructed codeword from the previous slice, and 

� 

ˆ c 1, j  to 
represent the jth valid value of first_mb_in_slice in the kth slice. 
In addition, let X, a discrete random variable, represent the 
difference between 

� 

ˆ c 1, j  and 

� 

c1
k−1( ) , corresponding to the 

number of MBs in the previous slice. Since we know that 
transmission errors can affect the number of MBs extracted 
from a corrupted slice, and because X represents a count, let us 
assume that X follows a Poisson distribution. Then, the 
probability of an outcome 

� 

ˆ c 1, j  can be expressed using the 
previously reconstructed value as follows: 

 

� 

P ˆ c 1, j( ) =
e−E X( )E X( ) ˆ c 1, j −c1

k−1( )⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

ˆ c 1, j − c1
k−1( )⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 (12) 

where 

� 

E X( )  is the average number of MBs in a slice and 
can be estimated using the intact slices previously received. It 
is worth mentioning that the last slice associated with a picture 
is not considered in estimating 

� 

E X( )  in our scenario. Limiting 
the maximum number of bytes a packet may carry introduces 
the possibility that the last slice contains significantly fewer 
MBs than the other slices since MBs associated with different 
pictures cannot be transported together. 

The SE slice_type indicates the coding type employed in 
the current slice. Under our current assumptions, the valid 
outcomes are 0 or 5 for Inter coding, and 2 or 7 for Intra 
coding. Values above 4, corresponding to the higher range, are 
used to indicate that all the slices associated with the current 
picture share the same coding type. We assume that the 
encoder does not mix values from the lower and higher ranges 
within a picture, because if it does, the only slice using 
information in the higher range could be lost during 
transmission. This behavior has been observed in the H.264 
reference software JM 18.2 [15]. We can model the SE 
slice_type as two pairwise independent Bernoulli trials. The 
first experiment checks for the range used, where a value in the 
range above 4 indicates success. The second experiment checks 
for the coding type, where the use of Intra coding indicates 
success. Furthermore, the value of the SE first_mb_in_slice 
(

� 

c1
*) must be considered, since the effect of using a slice_type 

value above 4 is limited by the picture boundaries. The 
conditional probability distribution of 

� 

ˆ c 2, j  varies, based on the 

reconstructed value 

� 

c2
k−1( ) . This means that, for each 

combination of 

� 

c2
k−1( )  and 

� 

c1
*, we obtain a different probability 

distribution: 

P ĉ2, j c1
*( ) =

1−α( ) ⋅ δ ĉ2, j( ) ⋅ 1− β( ) +δ ĉ2, j − 2( ) ⋅β( ) +
α ⋅ δ ĉ2, j − 5( ) ⋅ 1− β( ) +δ ĉ2, j − 7( ) ⋅β( )

c1
* = 0

δ ĉ2, j( ) ⋅ 1− β( ) +δ ĉ2, j − 2( ) ⋅β c1
* ≠ 0, c2

k−1( ) ≤ 4

δ ĉ2, j − c2
k−1( )( ) c1

* ≠ 0, c2
k−1( ) > 4

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (13) 

where 

� 

δ ⋅( )  is the discrete Dirac function ( δ w( ) = 1 if 
w = 0 ; δ w( ) = 0 otherwise), 

� 

α  represents the probability that 
a  slice_type value above 4 is used, and 

� 

β  represents the 
probability that the slice_type value maps to Intra coding. Both 
probabilities are estimated from the previously reconstructed 
slice_type values.  

The SEs frame_num and pic_order_cnt_lsb are used to 
identify pictures. They both represent the least significant bits 
of monotonically increasing sequences, where the use of a new 
value is triggered when the value of first_mb_in_slice (

� 

c1
*) 

equals 0 (the start of a new picture). Subclause 7.4.3 [1] 
specifically indicates that all slices belonging to the same 
picture shall use the same values of frame_num and 
pic_order_cnt_lsb. The only difference is that 
pic_order_cnt_lsb's increment is typically 2 instead of 1 [16]. 
Assuming that slices may be damaged but never lost, this 
behavior indicates that we only need to consider two outcomes: 
either the same values present in the previous slice are used, or 
the least significant bits of the next value in the monotonically 
increasing sequence are used. As in the case of 

� 

ˆ c 2, j , the 
conditional probability distribution of 

� 

ˆ c 3, j  and 

� 

ˆ c 4, j  varies 
based on previously reconstructed values: 

 

� 

P ˆ c 3, j c2
* ,c1

*( ) =
δ ˆ c 3, j − c3

k−1( )⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ c1

* ≠ 0

δ ˆ c 3, j − lsb c3
k−1( ) + 1⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ c1

* = 0

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (14) 

� 

P ˆ c 4, j c3
* ,c2

* ,c1
*( ) =

δ ˆ c 4, j − c4
k−1( )⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ c1

* ≠ 0

δ ˆ c 4, j − lsb c4
k−1( ) + 2⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ c1

* = 0

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (15) 

where 

� 

lsb ⋅( )  is the modulo operator. The divisors are 
derived from the SEs log2_max_frame_num_minus4 and 
log2_max_pic_order_cnt_lsb_minus4, found in the active 
Sequence Parameter Set. 

V. EXPERIMENTAL RESULTS 
The DVD-NTSC sequences Driving, Opening ceremony, 

and Whale show were coded using the JM 18.2 software [15]. 
The first 60 frames of each sequence were selected, where the 
first picture was coded as an IDR picture and the 31st picture 
was coded using only Intra slices. The other 58 pictures were 
coded using Inter slices. The packet size was limited to 100 
bytes, so as to obtain slices with a variable number of MBs. 

The decoder corrects the four SEs as described above, and 
uses the rest of the slice if it can. If an invalid codeword is 
encountered during the decoding of the remaining SEs (i.e. 



motion vectors, residual coefficients, MB coding types, etc.), 
the MB containing the syntax error, as well as the remaining 
MBs in the slice, are discarded. The MBs successfully decoded 
(i.e. those containing only valid SEs) are reconstructed. When 
all the slices associated with a picture have been decoded, the 
missing MBs are concealed using the state-of-the-art error 
concealment method described in [13] with the following 
parameters: 

� 

α = 0.5 , 

� 

λ = 0.1 , 

� 

σ1
2 = 0.5 , 

� 

σ 2
2 = 4 , 

� 

T = 40 , 

� 

T1 = 0.01 , and the diffusion process is limited to 30 iterations. 
Furthermore, the algorithm described in [14] is used to select 
the order in which the missing MBs are concealed. 

To evaluate the performance of the proposed method, we 
used three different quantization parameters (QP), as these will 
affect the number of MBs per slice. Errors were introduced 
using a Gilbert-Elliott channel with a fixed bit error rate of 10-5 
and three different average burst lengths (ABL), 2, 4 and 9, to 
make consecutive slices more or less likely to contain errors. 
The locations of the erroneous bits were selected with a 
Uniform Distribution, as we assumed that a bit interleaver was 
used to combat burst errors. For each combination of QP and 
ABL, 10 noisy sequences were generated. A total of 270 
corrupted sequences were studied. 

Table I presents both the average number of MBs and the 
standard deviation per slice type (Intra and Inter) for each 
combination of sequence and QP. The values increase 
significantly from QP 28 to QP 40, especially in the case of the 
Opening ceremony sequence. The effects of such a large 
standard deviation are apparent in Tables II, III, and IV. As 
expected, the average number of MBs per slice increases with 
increasing QP, reaching values between 18 and 88 for QP=40 
in the case of Inter slices, which makes error correction very 
challenging.  

Tables II, III, and IV list the statistical errors committed by 
the proposed approach applied at the SE level. Type I errors 
refer to the cases where the received value of first_mb_in_slice 
was actually correct, and the reconstructed value, after our 
correction method, was incorrect (i.e. the correction should not 
have changed the value). Type II errors refer to the cases where 
the received value was incorrect and remained unchanged after 
the correction step (i.e. the correction should have changed the 
value, but it didn’t). 

Table I. Statistics on MBs per slice 

Sequence QP Intra 
average 

Intra 
standard 
deviation 

Inter 
average 

Inter 
standard 
deviation 

Driving 
20 1.1 0.58 1.5 1.03 
28 2.0 1.55 5.1 4.76 
40 9.2 5.30 38.6 15.3 

Opening 
ceremony 

20 1.0 0.21 1.7 1.51 
28 1.3 1.06 8.0 14.2 
40 4.0 3.39 88.3 112.9 

Whale 
show 

20 1.1 0.31 1.1 0.43 
28 1.6 1.00 2.3 1.75 
40 6.7 4.16 18.0 14.28 

 
The effect of a very large average and standard deviation 

(Table I) when a QP of 40 is used to compress the Opening 
ceremony sequence is apparent in Table IV.  As the ABL 
increases, the probability of committing a type I error increases 

to nearly 50%. However, the number of type I statistical errors 
committed with the other sequences is very low, no matter 
what the conditions were. 

Table II. Statistical errors for first_mb_in_slice (ABL = 2) 

Sequence QP Corrupted 
slices 

Type I 
errors 

Type II 
errors 

Driving 
20 387 1 0 
28 171 6 1 
40 37 0 1 

Opening 
ceremony 

20 241 0 0 
28 90 2 2 
40 25 7 1 

Whale 
show 

20 365 0 1 
28 223 0 0 
40 42 4 0 

 
Table III. Statistical errors for first_mb_in_slice (ABL = 4) 

Sequence QP Corrupted 
slices 

Type I 
errors 

Type II 
errors 

Driving 
20 142 0 1 
28 148 10 2 
40 38 2 0 

Opening 
ceremony 

20 182 2 2 
28 144 9 0 
40 45 22 1 

Whale 
show 

20 89 0 0 
28 164 2 0 
40 42 5 1 

 
Table IV. Statistical errors for first_mb_in_slice (ABL = 9) 

Sequences QP Corrupted 
slices 

Type I 
errors 

Type II 
errors 

Driving 
20 113 0 1 
28 109 14 3 
40 102 4 0 

Opening 
ceremony 

20 198 25 2 
28 89 21 0 
40 77 36 1 

Whale 
show 

20 108 0 0 
28 135 0 0 
40 157 5 1 

 

Fig. 2 presents the PSNR distribution of the first picture 
affected by transmission errors. The box plots appear in pairs. 
The first box plot represents the PSNR distribution when a 
state-of-the-art concealment method is used, combined with an 
optimal concealment order selection. The second box plot 
represents the PSNR distribution when our proposed method is 
used. Each row of box plots is associated with an ABL, while 
each column is associated with a video sequence. 

The results show that a higher PSNR is expected with our 
method. Although there are statistical errors, the vast majority 
of the observations show improvements when error correction 
is applied first, as this reduces the area where error 
concealment is applied. Indeed, the error concealment method 
performs better when MBs are successfully repaired from 
corrupted slices. Over the three sequences tested, for an ABL 
value of 2 and a QP of 28, the average expected PSNR gains 
range from 0.75 dB to 2.22 dB with peaks at 3.67 dB. The 
worst loss observed (concealment performed better than our 
method) was of -0.32 dB. 



 
Figure 2 PSNR distributions using state-of-the-art error concealment [13][14] and our proposed method. Boxes 1, 3, and 5 correspond to state-of-the-art error 
concealment with QP=20, 28, and 40 respectively. Boxes 2, 4, and 6 correspond to the proposed error correction method followed by the same state-of-the-art 
error concealment method with QP=20, 28, and 40 respectively. The rows correspond to ABL values of 2, 4, and 9 respectively. The columns correspond to the 
video sequences Driving, Opening ceremony, and Whale show respectively. 

VI. CONCLUSION 
In this paper, we presented a novel maximum likelihood 

method for performing video error correction, both at the slice 
level and at the SE level. We have demonstrated that a breadth-
first approach at the SE level using only four H.264 slice 
header SEs performed better than a state-of-the-art error 
concealment method at a BER of 10-5. Not only were the PSNR 
results better, but they were obtained using significantly fewer 
computations. Future work will be aimed at modeling more 
SEs, as well as applying the method to the upcoming HEVC 
standard. 
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