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Abstract—Chaotic synchronization performs poorly in noisy
environments, with the main drawback being that the coher-
ent receiver cannot be implemented in realistic communication
channels. In this paper, we focus our study on a promising
communication system based on chaotic symbolic dynamics. Such
modulation shows a high synchronization quality, without the
need for a complex chaotic synchronization mechanism. Our
study mainly concerns an improvement of the bandwidth effi-
ciency of the chaotic modulator. A new chaotic map is proposed to
achieve this goal, and a receiver based on the maximum likelihood
algorithm is designed to estimate the transmitted symbols. The
performance of the proposed system is analyzed and discussed.

I. INTRODUCTION

Using chaotic systems for wireless communications is one
way to address some of the issues encountered when trying
to avoid the detection and/or interception of signals. Chaotic
signals are irregular, aperiodic, uncorrelated, broadband, and
impossible to predict over longer time frames. These are prop-
erties that align well with some of the requirements for signals
applied in communication systems for secure communications
(L, [2]).

Generally, two different approaches can be used for chaotic
signaling in digital communications. The first uses the real
value of the chaotic signal to modulate the data information
symbols [2], [3]. The second approach, proposed by Mazzini
et al. [4], quantizes the chaotic signal, which provides better
performance than conventional spreading systems, but also
leads to a loss of chaotic signal properties. To provide chaotic
signal properties, the real value of the chaotic signal is used.
Nonetheless, the general analysis which is carried out in this
paper can easily be adapted for quantized chaotic signals. A
major challenge with coherent chaotic communication systems
is the chaotic synchronization on the receiver side. The chaotic
synchronization approach with two chaotic generators was
proposed by Pecora and Carrol in [5)], and later used in
coherent chaos-based communication systems in [6] [7] [S8]
[O] [10] [A1] [L2]. This approach involves coupling between
the states of the two chaotic systems (coupled synchronization
(CS)) to establish and maintain chaotic synchronization. Since
the CS is highly sensitive to noise environments [9], coherent
communication systems using it on the receiver side show poor
performances [9]]. Further, over frequency-selective channels,
the demodulation process is particularly difficult. Note that
for the majority of coherent chaotic systems, two types of
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synchronization processes are needed to correctly accomplish
demodulation, namely, the CS and phase synchronization.

Non-coherent schemes, such as the differential chaos shift
keying (DCSK) system proposed in [[13] do not require chaotic
synchronization on the receiver side. However, the security
and the performance of the DCSK system are lower than
those of coherent chaos-based communications systems. A
promising chaotic signal modulation using symbolic dynamics
was developed in [[14] [15] and [16]] for secure communication,
which shows a high quality of synchronization. This type of
chaotic modulation consists in mapping information bits to
the state of a chaotic system through symbolic dynamics.
Assigning information bits to states is not done arbitrarily.
By dividing the phase space of the chaotic map into a finite
number of partitions and assigning a symbol to each partition,
the information bits are then embedded in the time evolution of
the transmitted signal, with the partitions of the state space of
the chaotic map being designated to represent the transmitted
bits. For channel distortions, where intersymbol interference,
as well as noise, are imposed on the transmitted sequence,
optimal estimation and sequential channel equalization algo-
rithms are developed in [14] to overcome these problems. In
[17] and [18], the synchronization process is analyzed and
a high performance is achieved with symbolic dynamics. In
our paper, we chose this type of chaotic modulation because
of its robust and high quality of CS, which is demonstrated
in the literature [17] [18]. On the receiver side, a maximum
likelihood estimator based on a Viterbi decoding algorithm
was introduced in [14] to estimate the chaotic sequence.
Unfortunately, this approach uses a trellis with a large number
of states. A simplified version of the trellis using a backward
iteration of the system is presented in [15].

One challenge that remains when using chaotic systems is
to improve bandwidth efficiency. The increasing demand for
information and services has shown that limited bandwidth
is a serious obstacle to the adoption of chaotic systems.
The novelty of our paper lies in the fact that it increases
the bandwidth efficiency of the system proposed in [15]. To
that end, a new map is proposed, in which the symbols can
be mapped onto a chaos-based multi-level modulator(i.e. M-
QAM chaotic modulator) and a new receiver based on a Viterbi
decoding algorithm is designed to decode the transmitted
symbols.

The paper is organized as follows: In Section II, the chaos-
based M-QAM communication system with symbolic chaotic
modulation and the receiver structure are explained, and the
new proposed communication system is presented. The per-
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formance analysis of the proposed system is studied and a
bit error rate expression is derived in section III. Section IV
shows the simulation results. Finally, some remarks are given
in the conclusion.

II. CHAOS-BASED M-QAM COMMUNICATION SYSTEM

This section presents the principle of symbolic dynamics;
its application to chaotic modulation is explained, and finally,
the proposed chaotic map within the receiver structure are
detailed.

A. Symbolic dynamics

Symbolic dynamics was first used in digital communication
in [19] [20]. By partitioning a chaotic phase space into
arbitrary regions, and labelling each region with a specific
symbol, the trajectories can be converted into a symbolic
sequence. In this type of modulation, data information symbols
are used to represent the trajectory of the chaotic map rather
than generating a chaotic sequence directly by iteration (1) to
modulate the transmitted symbols:

wlk] = fzlk —1]), xz[k] €, (D

where f() is a non-linear and non-invertible chaotic map and
I is the phase space.

The state space (I) of the chaotic map f() is partitioned
into N disjoint regions, I = {I}ilil, such that ; N [; = 0
for i # j and UY,I; = I. Note that this partition is not
unique. For any sequence generated by iterating (IJ), if we can
assign IV alphabets (s = [s1; ...; sn]) to each of the disjoint
regions, the dynamics of the system can be represented by
a sequence of finite alphabet S. This sequence is called the
symbolic dynamics of the system.

It was shown in [15] that the use of backward iteration
onto the inverse function (f~!) increases the quality of chaotic
synchronization. Because of the sensitivity of the chaotic map
to the initial conditions, the sequence diverges rapidly, making
the demodulation a real challenge. By iterating from a final
condition 2[N] onto the inverse function (f~!), the initial
condition is contained in the set ﬁﬁ;ol —k(I;) [15]. When
N tends to infinity, the set contains a single initial condition,
which shows a direct relation between the chaotic sequence
and an infinite symbolic sequence. This is called backward
iteration, and is well detailed in [21]. Under backward itera-
tion, the chaotic map contracts, thus alleviating the problem of
chaos synchronization since there is less sensitivity to initial
conditions. From the framed transmitter, this is less of an issue
since sampled sequences may be reversed. By using backward
iteration, a long sequence will eventually converge toward an
initial condition z[0] (independent of the last sample x[N])
when guided by the sequence of symbols [15]. The symbolic
sequence generated from backward iteration is denoted by:

k] = fy @k +1) = . = 0V @IND, @

with f;[kl} being the inverse shift map.

B. Proposed chaotic modulator

In [15], the spectral efficiency of the proposed chaotic
modulator is low, with just a binary bit b = +1, —1 capable
of being coded. Our main goal is to improve this type of
chaotic modulation because of its high security and quality of
synchronization with low complexity.

As shown in Figure E], to increase the data rate, we encode
the input bit stream into M state symbols where M = 2" is the
amplitude level and n is the number of bits per symbol. Finally,
we map the symbols into a chaotic modulation to generate a
chaos-based M-QAM signal. To achieve this goal, a chaotic
map must be designed to accommodate the input symbols.

INPUT BIT
STREAM

SYMBOLS
ENCODER CHAOTIC

MODULATOR

Fig. 2. Block diagram of a system for chaos-based M-QAM modulation at
the transmitter end

In our design, we study the case for M = 64. The proposed
chaotic map is an extension of the Bernoulli chaotic shift map.
The corresponding piecewise linear chaotic map is given:
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where p is the control parameter of the map (0 < p < 1).
The parameter p controls the width between two consecutive
regions of the map and the chaotic behavior of the generated
sequences. Figure [I] shows the chaotic function of equation
(3). The motivation for using this map resides in the adjustable
control parameter p. When p increases, the Euclidian distance
between samples generated by the two consecutive intervals
increases, which makes it possible to trade performance for
security since it becomes easier to distinguish between samples
of the two regions. The same map design is used to modulate
the input symbols on the quadrature component (Q). With 8
different space regions, this chaotic map is designed to obtain
a chaos-based 64-QAM modulator.

As earlier mentioned, to provide for the backward iterations,
we use the inverse function of equation (3):
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The improved chaotic modulator iterates backwards as per
equation @) using the symbols sequence s;[r] to define the
iteration region I[r] where 1 < r < 8. In this paper, sy[r]
is the symbol sequence transmitted on branch I[r]. A similar
sequence is constructed for branch @ (sg[r]). According to
the equation (@), the generated chaotic signals can be seen in
the 8 regions on I. The inner region between two consecutive
regions is used as a guard region to ensure a minimum distance
between the two waveforms associated with two successive
symbols. The generated symbolic chaotic sequence at the
output of the modulator on the branch I is:

wlk] = £ 1 (@lk = 1]) (5)

Figure |3 shows the M-QAM chaotic modulator. Note that
the baseband chaotic signal at the output of the modulator
can be moved to any desired frequency band for a passband
transmission.
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Fig. 3. Block diagrams illustrating the chaotic map sequences for an I input

Chaotic function f(x)

Figures [4] [5] and [6] show the different constellations of the
chaos-based M-QAM modulator for different values of the
control parameter p. It can clearly be seen that when p tends
to one, the constellation tends to the conventional 64-QAM,
and when p tends toward zero, the security of the transmitted
symbols increases.
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Fig. 4. Constellation of the 64-QAM chaotic modulator for p=1
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Fig. 5. Constellation of the 64-QAM chaotic modulator for p=0.8
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Fig. 6. Constellation of the 64-QAM chaotic modulator for p=0.4

C. Receiver structure

A simplified Viterbi decoding algorithm with two states is
fully discussed in [15]]. In our case, we extend this algorithm
to be operational with more than two states per iteration of
chaotic sequence.

After passing through an AWGN channel, the receiver signal
is:

elk] = z[k] + wlk] (6)

where w[k] is an additive white Gaussian noise with power
spectral density equal to Ny /2.

Generally, each state represents a possible symbolic se-
quence S[m] of length R, and the branch metrics are:

coi;[k] = le[k] — Ai;[K]|? 7

where co;;[k| is the branch metric of taking the j*" branch,
starting from the " node (1 < i,j < 8) at the k'
time instant, and A;;[k] is the sample resulting from the
interference induced by g(t), as:

R+1
Ajjlk] =Y zig(m(T)g(t —m(T + <)), (8)

m=1

where ¢(t) is the rectangular pulse shaping filter, ¢ represents
the interference related to the sampling error, z;;[m] =
-1 )
Iy (@i[m]) and vlm] = [S[ml, 5].
The cost of the i-th node at the (k 4 1) time is computed
from all the nodes at time £ as:

Cilk +1] = min {Cj[k] + c;ilk]} -
j=1,2..8

The Viterbi algorithm is then used to search through the
2R states of the trellis for the most likely transmitted chaotic
sequence. Finally, the estimated bits b[k] are obtained by
selecting the best path of the transmitted sequence.

In our paper, the channel is an AWGN channel, and the
sampling is perfect ¢ = 0. We use a filter without memory,
R = 3. In this case, the number of states is reduced to 8.

III. PERFORMANCE ANALYSIS

The optimal receiver for this type of transmission system
is a trellis matched to the emitted code. The detector should
estimate the correlation between the received signal and the
expected signals, and select the sequence with the maximum
total correlation according to the code constraint. This type of
receiver is known as a Maximum Likelihood (ML) detection,
and can be achieved in practice by applying the Viterbi
algorithm. In our paper, we use ML detection to decode the
received chaotic signal e[k] = z[k] + w[k]. The decoding
process is based on the trellis diagram, where an eight-state
Viterbi decoding algorithm is applied. For the equiprobable
symbol s, the branch metrics are:

cijlk] = |rlk + 1] — £ (&[k]))? 9)

where c¢;;[k] is the cost of taking the j — th branch, starting
from the ¢ — th node (1 < 4, j < 8) at the time instant
(1 <k<K),and z;[k] (i €1, 2...8) is the sample obtained
by iterating the function of equation (@) backwards. The cost
of the ¢ — th node at time k + 1 is:

Cilk+1] =

min  {Cjlk] + eilk]} (10)

J

The estimation method used for the received samples Z[k]

was developed in [21], [L16]. The decoding algorithm maxi-

mizes the likelihood function p(&[k]|x[k]), which means that

the probability that Z[k] is estimated a priori, and which the
assumption that x[k] has been transmitted.

A. Bit error rate expression

The number of states of the Viterbi algorithm determines
whether it is possible to carry out an analysis of the cor-
responding trellis in terms of error event distribution. The
optimal receiver for this system is the soft Viterbi decoding al-
gorithm, in which the Euclidean distance between the received
signal and the corresponding signal of each state is computed.
The computation results are used to feed a soft Viterbi decoder,
which returns the ML sequence of the symbols according to
the encoding chaotic map of the transmitter. To understand
the performance analysis of our system, we compare the
conventional M-QAM scheme with our proposed system. To
that end, we analyze the bit error performance of the Viterbi
algorithm on the AWGN channel with a soft decision decoding
of the M-QAM system. We start by analyzing the simple case
where the control parameter p of the chaotic map tends toward
1 (p — 1). Here, the samples of the chaotic modulator of
equation (@) tend toward 64-QAM. The BER expression in
this case is:

BER%2(1—1 )erfc 5 3Ly (11)

VM M —1)NO



where % is the bit energy-to-noise ratio, and erfc is the

complementary error function, and n is the number of bits per
symbol where M = 2". In our case, n = 3.

Further, when the parameter p is less than 1 (0 < p < 1),
the emitted bits are coded by representing each symbol with
a chaotic sample associated with one of the eight regions of
the chaotic map. Instead of having values of +1 or —1 when
p = 1 from the output of the chaotic modulator, in this case,
we have a set of values which can take the values between
the limits of each region. Since the transmitted bit energy is
not constant after the coding by the chaotic modulator, we
can consider that the equation (TI) is the lower bound of our
system.

To derive an exact expression of the bit error rate, we
analyze the effect of the chaotic modulator on the transmitted
bit. The symbol is represented by a chaotic sample which
can take a different number of values from the output of the
chaotic modulator. These values of the chaotic samples lie
within the eight intervals. Physically, this modulator can be
seen as a fading variable which affects the transmitted bits.
To establish a link between our system and the conventional
64-QAM system, we attribute the bit error rate expression over
an AWGN channel:

Winin3NEp

s —nno 02

1
BER~2(1— — Jerfc
(1= 73 e

where w;,;, 18 @ minimum code distance.

The goal of the equation (I2) is to perform a general
analysis of chaos communications systems based on symbolic
dynamics modulation. In this case, w;,;, in this model is the
fading parameter.

Since the symbols are represented by chaotic samples, the

Euclidean distance d[k] = \/|(x[k]) - f{l(j[k])|2, can take
a different value when the estimated symbol is different from
that which is transmitted (§ [k] # s [k]). The parameter wy,;r,
is directly estimated from the variable d[k].

For any given K independent and identically distributed
fading random variables with parameter w,;,, the maximum

likelihood estimate of w,,;, is:

13)

This estimation can be applied to any type of chaotic map.
In our case, the chaotic map has a particular form, Wy,
which can be computed directly from the equation ().

The Euclidean distance is easily computed from of two
successive regions is :

d— \/<1—p>z2+<1+p> — (pe (i)
d=+/(1+p)

By replacing the Euclidean distance in (I3), the expression of
parameter Wy, will be:

1
Wmin ~ 7(1 +p) (14)

2
It can clearly be seen that when the control parameter p tends
to 1, the parameter wy,;, tend to one, and the performance of
the communications system tends to the performance of the
64-QAM system (i.e Figure

IV. SIMULATION

In this section , we present different simulation results, in
terms of BER, obtained with different values for the control
parameter p, along with the theoretical results derived in the
previous sections. To that end, Figure [/| gives the theoretical
and simulated BERs for p = 0.1, 0.5, 1. An excellent match
can be seen the between analytical and simulated BERs, thus
validating the analytical studies, along with the derivation of
the corresponding parameter estimation w,,;,. Furthermore,
simulation results prove that when p tends to 1, the perfor-
mance of the system tends to the performance of the 64-QAM
system. However, the motivation to use a chaotic code will
have a number of structural advantages that may compensate
for some performance degradation. Among other things, there
is the advantage of extreme simplicity of generating spreading
sequences and other aspects involving security.

BER

—*— Simulation Chaos based 64-QAM, p=1
—& - Analytical BER chaos based 64-QAM

—e¢— Simulation Chaos hased 64-QAM, p=0.5 e
—+— Analytical BER chaos based 64-QAM g
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Fig. 7. BER performance of chaos-based M-QAM communication system
for p = 0.1, 0.5 1 under AWGN channel

V. CONCLUSION

In this paper, we focused our study on the improvement
of the bandwidth efficiency of the chaotic modulator based
on symbolic dynamics. To that end, a new chaotic map is
proposed for achieving this goal. In our case, the chaotic
function is designed to accommodate the input symbols and
to obtain a chaos-based 64-QAM modulator. A receiver based



on a maximum likelihood algorithm with 8 states is pro-
posed to estimate the transmitted symbols. The performance
of the proposed system is analyzed and discussed. A new
methodology for computing the analytical BER expression in
a mono-user transmission system based on chaotic symbolic
dynamics is presented and analyzed. This method is based on
an approximation of the minimum code distance w,;, by a
fading parameter. The code distance w,y,;, is estimated from
the Euclidian distance variable using the maximum likelihood
estimator. For a mono-user system, there is an excellent
match between the analytical and the simulated BERs, for all
considered control parameters p. Simulation results show the
accuracy of our approach. The performance of communication
systems based on symbolic dynamics under an m-distributed
fading channel is now under study.
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