ENGLISH
La vitrine de diffusion des publications et contributions des chercheurs de l'ÉTS
RECHERCHER

Grasp stability assessment through unsupervised feature learning of tactile images

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Cockburn, Deen et Roberge, Jean-Philippe et Thuy-Hong-Loan, Le et Maslyczyk, Alexis et Duchaine, Vincent. 2017. « Grasp stability assessment through unsupervised feature learning of tactile images ». In 2017 IEEE International Conference on Robotics and Automation (ICRA) (Singapore, Singapore, May 29- June 03, 2017), p. 2238-2244. Piscataway, NJ, USA : IEEE.
Compte des citations dans Scopus : 2.

[img]
Prévisualisation
PDF
Grasp-Stability-Assessment-through-Unsupervised-Feature-Learning-of-Tactile-Images.pdf

Télécharger (1MB) | Prévisualisation

Résumé

Grasping tasks have always been challenging for robots, despite recent innovations in vision-based algorithms and object-specific training. If robots are to match human abilities and learn to pick up never-before-seen objects, they must combine vision with tactile sensing. This paper present a novel way to improve robotic grasping: by using tactile sensors and an unsupervised feature-learning approach, a robot can find the common denominators behind successful and failed grasps, and use this knowledge to predict whether a grasp attempt will succeed or fail. This method is promising as it uses only high-level features from two tactile sensors to evaluate grasp quality, and works for the training set as well as for new objects. In total, using a total of 54 different objects, our system recognized grasp failure 83.70% of time.

Type de document: Compte rendu de conférence
Professeur:
Professeur
Duchaine, Vincent
Affiliation: Génie de la production automatisée
Date de dépôt: 24 mars 2017 16:39
Dernière modification: 30 août 2017 20:43
URI: http://espace2.etsmtl.ca/id/eprint/14834

Actions (Authentification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt