Kaushal, Hemani and Kaddoum, Georges.
2016.
« Underwater optical wireless communication ».
IEEE Access, vol. 4.
pp. 1518-1547.
Compte des citations dans Scopus : 1018.
Preview |
PDF
Kaddoum G. 2016 12568 Underwater Optical Wireless Communication published.pdf - Published Version Use licence: All rights reserved to copyright holder. Download (28MB) | Preview |
Abstract
Underwater wireless information transfer is of great interest to the military, industry, and the scientific community, as it plays an important role in tactical surveillance, pollution monitoring, oil control and maintenance, offshore explorations, climate change monitoring, and oceanography research. In order to facilitate all these activities, there is an increase in the number of unmanned vehicles or devices deployed underwater, which require high bandwidth and high capacity for information transfer underwater. Although tremendous progress has been made in the field of acoustic communication underwater, however, it is limited by bandwidth. All this has led to the proliferation of underwater optical wireless communication (UOWC), as it provides higher data rates than the traditional acoustic communication systems with significantly lower power consumption and simpler computational complexities for short-range wireless links. UOWC has many potential applications ranging from deep oceans to coastal waters. However, the biggest challenge for underwater wireless communication originates from the fundamental characteristics of ocean or sea water; addressing these challenges requires a thorough understanding of complex physio-chemical biological systems. In this paper, the main focus is to understand the feasibility and the reliability of high data rate underwater optical links due to various propagation phenomena that impact the performance of the system. This paper provides an exhaustive overview of recent advances in UOWC. Channel characterization, modulation schemes, coding techniques, and various sources of noise which are specific to UOWC are discussed. This paper not only provides exhaustive research in underwater optical communication but also aims to provide the development of new ideas that would help in the growth of future underwater communication. A hybrid approach to an acousto-optic communication system is presented that complements the existing acoustic- system, resulting in high data rates, low latency, and an energy-efficient system.
Item Type: | Peer reviewed article published in a journal |
---|---|
Uncontrolled Keywords: | Fonds d'auteur ÉTS, FAETS |
Professor: | Professor Kaddoum, Georges |
Affiliation: | Génie électrique |
Date Deposited: | 20 Apr 2016 18:37 |
Last Modified: | 12 Jul 2016 14:57 |
URI: | https://espace2.etsmtl.ca/id/eprint/12568 |
Actions (login required)
View Item |