A showcase of ÉTS researchers’ publications and other contributions

Permutation Index DCSK modulation technique for secure multi-user high-data-rate communication systems


Downloads per month over past year

Herceg, Marijan, Kaddoum, Georges, Vranjes, Denis et Soujeri, Ebrahim. 2018. « Permutation Index DCSK modulation technique for secure multi-user high-data-rate communication systems ». IEEE Transactions on Vehicular Technology, vol. 67, nº 4. pp. 2997-3011.
Compte des citations dans Scopus : 50.

[thumbnail of Kaddoum G 2017 15989 Permutation Index DCSK Modulation.pdf]
Kaddoum G 2017 15989 Permutation Index DCSK Modulation.pdf - Accepted Version
Use licence: All rights reserved to copyright holder.

Download (946kB) | Preview


A new non-coherent scheme called Permutation Index Differential Chaos Shift Keying (PI-DCSK) modulation is proposed in this paper. This original design aims to enhance data security, energy and spectral efficiencies, compared to its rivals. In the proposed PI-DCSK scheme, each data frame is divided into two time slots in which the reference chaotic signal is sent in the first time slot and a permuted replica of the reference signal multiplied by a modulating bit is sent in the second time slot. In particular, the bit stream is divided at the transmitter into blocks of n+1 bits, where n mapped bits are used to select one of the predefined reference sequence permutations, while a single modulated bit is spread by the permuted reference signal just mentioned. At the receiver side, the reference signal is recovered first, then all permuted versions of it are correlated with the data bearing signal. The index of the correlator output with maximum magnitude will estimate the mapped bits, while the output of the corresponding correlator is compared to a zero threshold to recover the modulated bit. Moreover, a new multiple access (MA) method based on the proposed scheme is described and analysed. Analytical expressions for the error performance in single-user and multi-user environments are derived for additive white Gaussian noise (AWGN) and multipath Rayleigh fading channels, respectively. Furthermore, the performance of the proposed PI-DCSK system is analysed and compared with other non-coherent chaotic modulation schemes and is found to be promising.

Item Type: Peer reviewed article published in a journal
Kaddoum, Georges
Affiliation: Génie électrique
Date Deposited: 28 Nov 2017 16:18
Last Modified: 16 Mar 2022 20:33

Actions (login required)

View Item View Item