FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

A viscoplastic model based on a variable strain rate sensitivity index for superplastic sheet metals

Downloads

Downloads per month over past year

Majidi, Omid, Jahazi, Mohammad et Bombardier, Nicolas. 2019. « A viscoplastic model based on a variable strain rate sensitivity index for superplastic sheet metals ». International Journal of Material Forming, vol. 12, nº 4. pp. 693-702.
Compte des citations dans Scopus : 3.

[thumbnail of Jahazi M 2019 17472.pdf]
Preview
PDF
Jahazi M 2019 17472.pdf - Accepted Version
Use licence: All rights reserved to copyright holder.

Download (1MB) | Preview

Abstract

This paper presents a new phenomenological model for describing the main features of the viscoplastic behavior of superplastic sheet metals, namely, strain hardening, softening, and damage. The proposed model is based on a variable strain rate sensitivity index (m-value) measured from uniaxial tensile tests at different strain rates under constant temperature. In this study, the uniaxial tensile tests were carried out at three strain rates (i.e., 10−3, 10−2, and 10−1 s−1) on a superplastic grade AA5083 aluminum sheet alloy. In addition, the volume fractions of cavities at different plastic strain levels were assessed using X-ray microtomography. The performance of the model was investigated by comparing its predictions with the experimental data. In addition, the model was validated with two sets of reference data for AA5083 aluminum alloy and AZ31 magnesium alloy. In particular, it was observed that the new model could predict the flow behavior of these metals more successfully compared with two reference models; nevertheless, it requires minimal experimentation and calculation efforts.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Jahazi, Mohammad
Affiliation: Génie mécanique
Date Deposited: 31 Oct 2018 14:12
Last Modified: 17 Jun 2020 15:25
URI: https://espace2.etsmtl.ca/id/eprint/17472

Actions (login required)

View Item View Item