Bertrand, Samuel, Shahriari, Davood, Jahazi, Mohammad and Champliaud, Henri.
2018.
« Linear friction welding process simulation of Ti-6Al-4V alloy: a heat transfer analysis of the conditioning phase ».
In 17th International Conference on Metal Forming (Metal Forming) (Toyohashi, Japan, Sept. 16-19, 2018)
Coll. « Procedia Manufacturing », vol. 15.
pp. 1382-1390.
Netherlands : Elsevier B.V..
Compte des citations dans Scopus : 7.
Preview |
PDF
Jahazi M 2018 17962.pdf - Published Version Use licence: Creative Commons CC BY-NC-ND. Download (1MB) | Preview |
Abstract
Linear Friction Welding is an emerging solid-state joining process used for complex geometries. The process is composed of four distinct phases: conditioning (also called initial), transition, friction, and forging. This paper proposes a new numerical approach to simulate the initial phase (phase 1) while reducing the computational time. An implicit fully coupled thermomechanical 2D analysis scheme in ABAQUS was employed to compare the proposed thermal model and the conventional oscillation model. Physical and mechanical temperature-dependent properties of Ti-6Al-4V were implemented in the two models. An excellent agreement was obtained with the experimental temperature profiles published in the literature. The new thermal model reduces the computational time significantly, up to 99% with respect to an oscillating model.
| Item Type: | Conference proceeding |
|---|---|
| ISBN: | 2351-9789 |
| Professor: | Professor Jahazi, Mohammad Champliaud, Henri |
| Affiliation: | Génie mécanique, Génie mécanique |
| Date Deposited: | 22 Jan 2019 15:18 |
| Last Modified: | 13 Apr 2023 16:08 |
| URI: | https://espace2.etsmtl.ca/id/eprint/17962 |
Actions (login required)
![]() |
View Item |

