A showcase of ÉTS researchers’ publications and other contributions

Eulerian–Lagrangian CFD model for prediction of heat transfer between aircraft deicing liquid sprays and a surface


Downloads per month over past year

Ernez, S. and Morency, F.. 2019. « Eulerian–Lagrangian CFD model for prediction of heat transfer between aircraft deicing liquid sprays and a surface ». International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29, nº 7. pp. 2450-2475.
Compte des citations dans Scopus : 8.

[thumbnail of Morency F 2019 19278.pdf]
Morency F 2019 19278.pdf - Accepted Version
Use licence: All rights reserved to copyright holder.

Download (1MB) | Preview


Purpose The aim of this paper is to present a Eulerian–Lagrangian model of aircraft ground deicing that avoids the scale’s dispersion problem caused by the great distance between the spray nozzle and the surface to be deiced. Verification is done using the case of a hot particle liquid spray impinging on a horizontal flat plate. The impinged particles flow outwards radially from the impingement zone and form a hot film wall. The computed wall heat distribution is verified. In the end, an inclination spray’s angle study is presented. Design/methodology/approach The problem is divided into two regions. First, a 3D region is created for the evolution of the Lagrangian particles spray. A second 2D region is provided for the formation of a liquid film. The two regions exchange mass, momentum and energy through an interface. Heat losses are modelled through particles and liquid-film cooling and evaporation, particles splash and heat transfer to a fixed temperature plate. Findings For a chamber pressure of 1 bar, the predicted spray penetration is within 10 per cent of the experimental results. For this study case, the heat transfer is maximized with an inclination angle of approximately 30° of the spray. Originality/value The model presented makes it possible to simulate the impingement and heat transfer of a large-scale liquid spray with a reasonable computational cost. To the best of the authors’ knowledge, this model is a first attempt of the computational fluid dynamics simulation of ground deicing.

Item Type: Peer reviewed article published in a journal
Morency, François
Affiliation: Génie mécanique
Date Deposited: 19 Aug 2019 13:11
Last Modified: 14 Nov 2019 16:47

Actions (login required)

View Item View Item