FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

An efficient Radio Frequency Interference (RFI) recognition and characterization using end-to-end transfer learning

Downloads

Downloads per month over past year

Ujan, Sahar, Navidi, Neda and Landry, René Jr.. 2020. « An efficient Radio Frequency Interference (RFI) recognition and characterization using end-to-end transfer learning ». Applied Sciences, vol. 10, nº 19.
Compte des citations dans Scopus : 19.

[thumbnail of Landry-R-2020-21978.pdf]
Preview
PDF
Landry-R-2020-21978.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (4MB) | Preview

Abstract

Radio Frequency Interference (RFI) detection and characterization play a critical role in ensuring the security of all wireless communication networks. Advances in Machine Learning (ML) have led to the deployment of many robust techniques dealing with various types of RFI. To sidestep an unavoidable complicated feature extraction step in ML, we propose an efficient Deep Learning (DL)-based methodology using transfer learning to determine both the type of received signals and their modulation type. To this end, the scalogram of the received signals is used as the input of the pretrained convolutional neural networks (CNN), followed by a fully-connected classifier. This study considers a digital video stream as the signal of interest (SoI), transmitted in a real-time satellite-to-ground communication using DVB-S2 standards. To create the RFI dataset, the SoI is combined with three well-known jammers namely, continuous-wave interference (CWI), multi- continuous-wave interference (MCWI), and chirp interference (CI). This study investigated four well-known pretrained CNN architectures, namely, AlexNet, VGG-16, GoogleNet, and ResNet-18, for the feature extraction to recognize the visual RFI patterns directly from pixel images with minimal preprocessing. Moreover, the robustness of the proposed classifiers is evaluated by the data generated at different signal to noise ratios (SNR)

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Landry, René Jr
Affiliation: Génie électrique
Date Deposited: 08 Jan 2021 20:22
Last Modified: 17 Mar 2022 20:05
URI: https://espace2.etsmtl.ca/id/eprint/21978

Actions (login required)

View Item View Item