FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Catchment scale evaluation of multiple global hydrological models from ISIMIP2a over North America

Downloads

Downloads per month over past year

Troin, Magali, Arsenault, Richard, Fournier, Elyse and Brissette, François. 2021. « Catchment scale evaluation of multiple global hydrological models from ISIMIP2a over North America ». Water, vol. 13, nº 21.
Compte des citations dans Scopus : 3.

[thumbnail of Arsenault-R-2021-23628.pdf]
Preview
PDF
Arsenault-R-2021-23628.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (7MB) | Preview

Abstract

A satisfactory performance of hydrological models under historical climate conditions is considered a prerequisite step in any hydrological climate change impact study. Despite the significant interest in global hydrological modeling, few systematic evaluations of global hydrological models (gHMs) at the catchment scale have been carried out. This study investigates the performance of 4 gHMs driven by 4 global observation-based meteorological inputs at simulating weekly discharges over 198 large-sized North American catchments for the 1971–2010 period. The 16 discharge simulations serve as the basis for evaluating gHM accuracy at the catchment scale within the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). The simulated discharges by the four gHMs are compared against observed and simulated weekly discharge values by two regional hydrological models (rHMs) driven by a global meteorological dataset for the same period. We discuss the implications of both modeling approaches as well as the influence of catchment characteristics and global meteorological forcing in terms of model performance through statistical criteria and visual hydrograph comparison for catchment-scale hydrological studies. Overall, the gHM discharge statistics exhibit poor agreement with observations at the catchment scale and manifest considerable bias and errors in seasonal flow simulations. We confirm that the gHM approach, as experimentally implemented through the ISIMIP2a, must be used with caution for regional studies. We find the rHM approach to be more trustworthy and recommend using it for hydrological studies, especially if findings are intended to support operational decision-making.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Arsenault, Richard
Brissette, François
Affiliation: Génie de la construction, Génie de la construction
Date Deposited: 26 Nov 2021 19:17
Last Modified: 17 Dec 2021 16:59
URI: https://espace2.etsmtl.ca/id/eprint/23628

Actions (login required)

View Item View Item