A showcase of ÉTS researchers’ publications and other contributions

Landing system development based on Inverse Homography Range Camera Fusion (IHRCF)


Downloads per month over past year

Sefidgar, Mohammad and Landry, René. 2022. « Landing system development based on Inverse Homography Range Camera Fusion (IHRCF) ». Sensors, vol. 22, nº 5.
Compte des citations dans Scopus : 2.

[thumbnail of Landry-R-2022-24063.pdf]
Landry-R-2022-24063.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (8MB) | Preview


The Unmanned Aerial Vehicle (UAV) is one of the most remarkable inventions of the last 100 years. Much research has been invested in the development of this flying robot. The landing system is one of the more challenging aspects of this system’s development. Artificial Intelligence (AI) has become the preferred technique for landing system development, including reinforcement learning. However, current research is more focused is on system development based on image processing and advanced geometry. A novel calibration based on our previous research had been used to ameliorate the accuracy of the AprilTag pose estimation. With the help of advanced geometry from camera and range sensor data, a process known as Inverse Homography Range Camera Fusion (IHRCF), a pose estimation that outperforms our previous work, is now possible. The range sensor used here is a Time of Flight (ToF) sensor, but the algorithm can be used with any range sensor. First, images are captured by the image acquisition device, a monocular camera. Next, the corners of the landing landmark are detected through AprilTag detection algorithms (ATDA). The pixel correspondence between the image and the range sensor is then calculated via the calibration data. In the succeeding phase, the planar homography between the real-world locations of sensor data and their obtained pixel coordinates is calculated. In the next phase, the pixel coordinates of the AprilTag-detected four corners are transformed by inverse planar homography from pixel coordinates to world coordinates in the camera frame. Finally, knowing the world frame corner points of the AprilTag, rigid body transformation can be used to create the pose data. A CoppeliaSim simulation environment was used to evaluate the IHRCF algorithm, and the test was implemented in real-time Software-in-the-Loop (SIL). The IHRCF algorithm outperformed the AprilTag-only detection approach significantly in both translational and rotational terms. To conclude, the conventional landmark detection algorithm can be ameliorated by incorporating sensor fusion for cameras with lower radial distortion.

Item Type: Peer reviewed article published in a journal
Landry, René Jr
Affiliation: Génie électrique
Date Deposited: 07 Mar 2022 18:51
Last Modified: 10 Mar 2022 19:00

Actions (login required)

View Item View Item