FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

On the pitfalls of entropy-based uncertainty for multi-class semi-supervised segmentation

Van Waerebeke, Martin, Lodygensky, Gregory and Dolz, Jose. 2022. « On the pitfalls of entropy-based uncertainty for multi-class semi-supervised segmentation ». In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging : 4th International Workshop, UNSURE 2022, Held in Conjunction with MICCAI 2022 : Proceedings (Singapore, Singapore, Sept. 18, 2022) Coll. « Lecture Notes in Computer Science », vol. 13563. pp. 36-46. Springer Science and Business Media Deutschland GmbH.
Compte des citations dans Scopus : 1.

The full text of this document is not available here.
Rechercher dans Google Scholar
Item Type: Conference proceeding
Editors:
Editors
ORCID
Sudre, C. H.
UNSPECIFIED
Sudre, C. H.
UNSPECIFIED
Baumgartner, C. F.
UNSPECIFIED
Dalca, A.
UNSPECIFIED
Dalca, A.
UNSPECIFIED
Wells, Iii W. M.
UNSPECIFIED
Qin, C.
UNSPECIFIED
Tanno, R.
UNSPECIFIED
Van Leemput, K.
UNSPECIFIED
Van Leemput, K.
UNSPECIFIED
Wells, Iii W. M.
UNSPECIFIED
Professor:
Professor
Dolz, José
Affiliation: Génie logiciel et des technologies de l'information
Date Deposited: 17 Oct 2022 14:01
Last Modified: 17 Oct 2022 14:01
URI: https://espace2.etsmtl.ca/id/eprint/25652

Actions (login required)

View Item View Item