FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

An entropy-based architecture for detection of sepsis in newborn cry diagnostic systems

Downloads

Downloads per month over past year

Khalilzad, Zahra, Kheddache, Yasmina and Tadj, Chakib. 2022. « An entropy-based architecture for detection of sepsis in newborn cry diagnostic systems ». Entropy, vol. 24, nº 9.
Compte des citations dans Scopus : 5.

[thumbnail of Tadj-C-2022-25658.pdf]
Preview
PDF
Tadj-C-2022-25658.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (2MB) | Preview

Abstract

The acoustic characteristics of cries are an exhibition of an infant’s health condition and these characteristics have been acknowledged as indicators for various pathologies. This study focused on the detection of infants suffering from sepsis by developing a simplified design using acoustic features and conventional classifiers. The features for the proposed framework were Mel-frequency Cepstral Coefficients (MFCC), Spectral Entropy Cepstral Coefficients (SENCC) and Spectral Centroid Cepstral Coefficients (SCCC), which were classified through K-nearest Neighborhood (KNN) and Support Vector Machine (SVM) classification methods. The performance of the different combinations of the feature sets was also evaluated based on several measures such as accuracy, F1-score and Matthews Correlation Coefficient (MCC). Bayesian Hyperparameter Optimization (BHPO) was employed to tailor the classifiers uniquely to fit each experiment. The proposed methodology was tested on two datasets of expiratory cries (EXP) and voiced inspiratory cries (INSV). The highest accuracy and F-score were 89.99% and 89.70%, respectively. This framework also implemented a novel feature selection method based on Fuzzy Entropy (FE) as a final experiment. By employing FE, the number of features was reduced by more than 40%, whereas the evaluation measures were not hindered for the EXP dataset and were even enhanced for the INSV dataset. Therefore, it was deduced through these experiments that an entropy-based framework is successful for identifying sepsis in neonates and has the advantage of achieving high performance with conventional machine learning (ML) approaches, which makes it a reliable means for the early diagnosis of sepsis in deprived areas of the world.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Tadj, Chakib
Affiliation: Génie électrique
Date Deposited: 17 Oct 2022 14:02
Last Modified: 15 Nov 2022 13:57
URI: https://espace2.etsmtl.ca/id/eprint/25658

Actions (login required)

View Item View Item