FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Multi-frequency interference detection and mitigation using multiple adaptive IIR notch filter with lattice structure

Downloads

Downloads per month over past year

El Gebali, Abdelrahman and Landry, René Jr. 2021. « Multi-frequency interference detection and mitigation using multiple adaptive IIR notch filter with lattice structure ». Journal of Computer and Communications, vol. 9, nº 5. pp. 58-77.

[thumbnail of Landry-R-2021-25820.pdf]
Preview
PDF
Landry-R-2021-25820.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (4MB) | Preview

Abstract

Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-Noise Ratio (SNR) in any wireless transmission, including in a Digital Video Broadcasting (DVB-S2) receiver. Therefore, this paper presents an algorithm for detecting and mitigating a Multi-tone Continuous Wave Interference (MCWI) using a Multiple Adaptive Notch Filter (MANF), based on the lattice form structure. The Adaptive Notch Filter (ANF) is constructed using the second-order IIR NF. The approach consists in developing a robust low-complexity algorithm for removing unknown MCWI. The MANF model is a multistage model, with each stage consisting of two ANFs: the adaptive IIR notch filter Hl(z) and the adaptive IIR notch filter HN(z), which can detect and mitigate CWI. In this model, the ANF is used for estimating the Jamming-to-Signal Ratio (JSR) and the frequency of the interference (w(0)) by using an LMS-based algorithm. The depth of the notch is then adjusted based on the estimation of the JSR. In contrast, the ANF HN(z) is used to mitigate the CW interference. Simulation results show that the proposed ANF is an effective method for eliminating/reducing the effects of MCWI, and yields better system performance than full suppression (kN=1) for low JSR values, and mostly the same performance for high JSR values. Moreover, the proposed can detect low and high JSR and track hopping frequency interference and provides better Bit error ratio (BER) performance compared to the case without an IIR notch filter.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Landry, René Jr
Affiliation: Génie électrique
Date Deposited: 16 Nov 2022 20:59
Last Modified: 08 Dec 2022 13:36
URI: https://espace2.etsmtl.ca/id/eprint/25820

Actions (login required)

View Item View Item