FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Influence of hot top height on macrosegregation and material yield in a large-size cast steel ingot using modeling and experimental validation

Downloads

Downloads per month over past year

Ghodrati, Neda, Baiteche, Mounir, Loucif, Abdelhalim, Gallego, Paloma Isabel, Jean-Benoit, Morin et Jahazi, Mohammad. 2022. « Influence of hot top height on macrosegregation and material yield in a large-size cast steel ingot using modeling and experimental validation ». Metals, vol. 12, nº 11.

[thumbnail of Jahazi-M-2022-25984.pdf]
Preview
PDF
Jahazi-M-2022-25984.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (7MB) | Preview

Abstract

The effect of the hot top height on the formation of positive and negative macrosegregation patterns, the ingot quality, and the material yield during solidification of a 12 MT cast ingot made of a Cr-Mo-low alloy steel was investigated. A 3D numerical simulation of the process was conducted using finite element modeling. A full-size 12 MT ingot was cut off from its center in the longitudinal direction, and a large cross-section was sliced into small samples. The chemical mapping of all the elements in the steel composition was obtained for all samples and compared with the model predictions for validation purposes. The influence of the increase in hot top height on the liquid metal velocity field, size and shape of vortexes, cooling rate of the liquid, and liquidus temperature was determined. Results revealed that increasing the hot top height by 165 mm increased the solidification time, fluid velocity in regions including the hot top and ingot bottom, and decreased the local liquidus temperature. The combination of all the above resulted in an overall decrease in positive and negative macrosegregation of more than 6% and an increase in ingot quality. The results are interpreted based on the interactions between the transport of solute and heat coupled with the flow driven by thermo-solutal convection and shrinkage-induced flow.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Jahazi, Mohammad
Affiliation: Génie mécanique
Date Deposited: 19 Dec 2022 21:47
Last Modified: 05 Jan 2023 20:13
URI: https://espace2.etsmtl.ca/id/eprint/25984

Actions (login required)

View Item View Item