FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

3D grid of carbon tubes with Mn3O4-NPs/CNTs filled in their inner cavity as ultrahigh-rate and stable lithium anode

Downloads

Downloads per month over past year

Zhang, S. P., Han, F. M., Pan, Q. J., Lin, D., Zhu, X. G., Shao, C., Zhang, G. X., Wang, Z. M., Sun, S. H. and Meng, G. W.. 2023. « 3D grid of carbon tubes with Mn3O4-NPs/CNTs filled in their inner cavity as ultrahigh-rate and stable lithium anode ». Energy & Environmental Materials.
Compte des citations dans Scopus : 3. (In press)

[thumbnail of Zhang-G-2023-26347.pdf]
Preview
PDF
Zhang-G-2023-26347.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (5MB) | Preview

Abstract

Transition metal oxides are regarded as promising candidates of anode for next-generation lithium-ion batteries (LIBs) due to their ultrahigh theoretical capacity and low cost, but are restricted by their low conductivity and large volume expansion during Li+ intercalation. Herein, we designed and constructed a structurally integrated 3D carbon tube (3D-CT) grid film with Mn3O4 nanoparticles (Mn3O4-NPs) and carbon nanotubes (CNTs) filled in the inner cavity of CTs (denoted as Mn3O4-NPs/CNTs@3D-CT) as high-performance free-standing anode for LIBs. The Mn3O4-NPs/CNTs@3D-CT grid with Mn3O4-NPs filled in the inner cavity of 3D-CT not only afford sufficient space to overcome the damage caused by the volume expansion of Mn3O4-NPs during charge and discharge processes, but also achieves highly efficient channels for the fast transport of both electrons and Li+ during cycling, thus offering outstanding electrochemical performance (865 mAh g−1 at 1 A g−1 after 300 cycles) and excellent rate capability (418 mAh g−1 at 4 A g−1) based on the total mass of electrode. The unique 3D-CT framework structure would open up a new route to the highly stable, high-capacity, and excellent cycle and high-rate performance free-standing electrodes for high-performance Li-ion storage.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Zhang, Gaixia
Affiliation: Génie électrique
Date Deposited: 06 Apr 2023 21:47
Last Modified: 12 Apr 2023 18:04
URI: https://espace2.etsmtl.ca/id/eprint/26347

Actions (login required)

View Item View Item