Ataky, Steve Tsham Mpinda et Lameiras Koerich, Alessandro.
2023.
« E-BiT: Extended bio-inspired texture descriptor for 2D texture analysis and characterization ».
Electronics, vol. 12, nº 9.
Preview |
PDF
Lameiras-Koerich-A-2023-26457.pdf - Published Version Use licence: Creative Commons CC BY. Download (1MB) | Preview |
Abstract
This paper presents an extended bio-inspired texture (E-BiT) descriptor for image texture characterization. The E-BiT descriptor combines global ecological concepts of species diversity, evenness, richness, and taxonomic indexes to effectively capture texture patterns at local and global levels while maintaining invariance to scale, translation, and permutation. First, we pre-processed the images by normalizing and applying geometric transformations to assess the invariance properties of the proposed descriptor. Next, we assessed the performance of the proposed E-BiT descriptor on four datasets, including histopathological images and natural texture images. Finally, we compared it with the original BiT descriptor and other texture descriptors, such as Haralick, GLCM, and LBP. The E-BiT descriptor achieved state-of-the-art texture classification performance, with accuracy improvements ranging from 0.12% to 20% over other descriptors. In addition, the E-BiT descriptor demonstrated its generic nature by performing well in both natural and histopathologic images. Future work could examine the E-BiT descriptor’s behavior at different spatial scales and resolutions to optimize texture property extraction and improve performance.
Item Type: | Peer reviewed article published in a journal |
---|---|
Professor: | Professor Lameiras Koerich, Alessandro |
Affiliation: | Génie logiciel et des technologies de l'information |
Date Deposited: | 30 May 2023 20:35 |
Last Modified: | 31 May 2023 16:12 |
URI: | https://espace2.etsmtl.ca/id/eprint/26457 |
Actions (login required)
![]() |
View Item |