FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Impedance learning adaptive super-twisting control of a robotic exoskeleton for physical human-robot interaction

Brahmi, Brahim, Rahman, Mohammad Habibur and Saad, Maarouf. 2023. « Impedance learning adaptive super-twisting control of a robotic exoskeleton for physical human-robot interaction ». IET Cyber-systems and Robotics, vol. 5, nº 1.
Compte des citations dans Scopus : 5.

[thumbnail of Saad-M-2023-26466.pdf]
Preview
PDF
Saad-M-2023-26466.pdf - Published Version
Use licence: Creative Commons CC BY-NC-ND.

Download (1MB) | Preview

Abstract

This study addresses two issues about the interaction of the upper limb rehabilitation robot with individuals who have disabilities. The first step is to estimate the human's target position (also known as TPH). The second step is to develop a robust adaptive impedance control mechanism. A novel Non‐singular Terminal Sliding Mode Control combined with an adaptive super‐twisting controller is being developed to achieve this goal. This combination's purpose is to provide high reliability, continuous performance tracking of the system's trajectories. The proposed adaptive control strategy reduces matched dynamic uncertainty while also lowering chattering, which is the sliding mode's most glaring issue. The proposed TPH is coupled with adaptive impedance control with the use of a Radial Basis Function Neural Network, which allows a robotic exoskeleton to simply track the desired impedance model. To validate the approach in real‐time, an exoskeleton robot was deployed in controlled experimental circumstances. A comparison study has been set up to show how the adaptive impedance approach proposed is better than other traditional controllers.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Saad, Maarouf
Affiliation: Génie électrique
Date Deposited: 30 May 2023 20:32
Last Modified: 31 May 2023 14:31
URI: https://espace2.etsmtl.ca/id/eprint/26466

Actions (login required)

View Item View Item