FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations

Downloads

Downloads per month over past year

Javidikia, Mahshad, Sadeghifar, Morteza, Champliaud, Henri and Jahazi, Mohammad. 2023. « Grain size and temperature evolutions during linear friction welding of Ni-base superalloy Waspaloy: Simulations and experimental validations ». Journal of Advanced Joining Processes, vol. 8.
Compte des citations dans Scopus : 2.

[thumbnail of Champliaud-H-2023-27279.pdf]
Preview
PDF
Champliaud-H-2023-27279.pdf - Published Version
Use licence: Creative Commons CC BY-NC-ND.

Download (23MB) | Preview

Abstract

This research study was aimed at investigating the influence of linear friction welding parameters on grain size alteration and temperature distribution of Ni-base superalloy Waspaloy. A 3D finite element model was developed to predict average grain size and peak temperature as responses. The linear friction welding parameters consisted of oscillation amplitude, oscillation frequency, and applied pressure. Initially, the evolution of the average grain size as a function of the most influential process parameters was subsequently modeled based on the Johnson-Mehl-Avrami-Kolmogorov recrystallization model and were then validated with experimental results. Then, D-optimal design of experiments and analysis of variance were conducted to determine the most influential process parameters that affect the average grain size and peak temperature of the welded joint. Thereafter, response surface method was employed to obtain the regression models of the responses. The analysis of variance demonstrated that the P-value of the regression models was smaller than 5% and R2, R2 adj, and R2 Pred were between 87% and 97%, which showed that the predictive regression models of PT and AGS can be used with a high level of confidence. The regression models were then validated by selecting two extra LFW tests in the space of the DoE. The optimum values of the welding parameters were determined to minimize the responses. The multi-criteria optimization analysis showed that both average grain size and peak temperature were more dependent on pressure than oscillation amplitude and frequency. The developed finite element and regression models can be utilized as a predictive tool for the design of joining industrial components, which minimize expensive and time-consuming experimental tests and measurements.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Champliaud, Henri
Jahazi, Mohammad
Affiliation: Génie mécanique, Génie mécanique
Date Deposited: 08 Aug 2023 14:29
Last Modified: 16 Oct 2023 16:24
URI: https://espace2.etsmtl.ca/id/eprint/27279

Actions (login required)

View Item View Item