FRANÇAIS
A showcase of ÉTS researchers’ publications and other contributions
SEARCH

Engineering Fe-N4 electronic structure with adjacent Co-N2C2 and Co Nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis

Downloads

Downloads per month over past year

Wu, Mingjie, Yang, Xiaohua, Cui, Xun, Chen, Ning, Du, Lei, Cherif, Mohamed, Chiang, Fu-Kuo, Wen, Yuren, Hassanpour, Amir, Vidal, Francois, Omanovic, Sasha, Yang, Yingkui, Sun, Shuhui and Zhang, Gaixia. 2023. « Engineering Fe-N4 electronic structure with adjacent Co-N2C2 and Co Nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis ». Nano-Micro Letters, vol. 15, nº 1.
Compte des citations dans Scopus : 2.

[thumbnail of Zhang-G-2023-28024.pdf]
Preview
PDF
Zhang-G-2023-28024.pdf - Published Version
Use licence: Creative Commons CC BY.

Download (7MB) | Preview

Abstract

Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N4 electronic structure with adjacent Co-N2C2 and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N4 active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M–N–C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M–N–C catalysts.

Item Type: Peer reviewed article published in a journal
Professor:
Professor
Zhang, Gaixia
Affiliation: Génie électrique
Date Deposited: 16 Nov 2023 15:51
Last Modified: 18 Dec 2023 16:13
URI: https://espace2.etsmtl.ca/id/eprint/28024

Actions (login required)

View Item View Item